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ABSTRACT 
 In this work, we present solutions for flow over an airfoil 
and square obstacle using Weakly Compressible Smoothed 
Particle Hydrodynamics (WCSPH) method. For the solution of 
these two problems, we present an improved WCSPH algorithm 
that can handle complex geometries with the usage of multiple 
tangent solid boundary method, and eliminate particle clustering 
induced instabilities with the implementation of particle fracture 
repair procedure as well as the corrected SPH discretization 
scheme. We have shown that the improved WCSPH method can 
be effectively used for flow simulations over bluff-bodies with 
Reynolds numbers as high as 1400, which is not achievable 
with standard WCSPH formulations. Our simulation results are 
validated with a Finite Element mesh-dependent Method 
(FEM), and excellent agreements among the results were 
observed. We illustrated that the improved WCSPH method is 
able to capture the complex physics of bluff-body flows 
naturally such as flow separation, detachment of separated flow, 
wake formation at the trailing edge, and vortex shedding 
without any extra effort to increase the particle resolution in 
some specific areas of interest.  
 
INTRODUCTION 
 There are several complex flow phenomena such as 
separation, circulation and reattachment in many industrial and 
engineering problems [1, 2]. These phenomena occurs in 
various practical application like water channels design, heat 
transfer performance of fins, sudden expansion in air 
conditioning ducts, flow behaviors in a diffuser, and flow 
around structures. Square obstacle and airfoil are appropriate 
geometries for revealing the fundamental characteristics of the 
fluid flow around structures. In light of this, they became widely 
modeled benchmark problems to validate new Computational 

Fluid Dynamic (CFD) approaches as well as to show the 
capability and the accuracy of developing algorithms. 
Smoothed Particles Hydrodynamics (SPH) is one of the most 
successful meshless computational methods, which was 
introduced separately by Gingold and Monaghan [3] and Lucy 
[4] in 1977 to simulate astrophysical problems. Lately, it has 
attracted significant attention of the fluid and solid mechanics 
as well computer graphics communities, and in turn has been 
utilized to solve a wide variety of complex and highly non-
linear engineering problems [5-8]. In this method, instead of 
using Eulerian fixed mesh, the computational domain is 
represented by a set of particles which are allowed to move in 
accordance with the solutions of relevant governing and 
constitutive equations. In fact, the aforementioned particles are 
merely movable points which carry relevant physical and 
hydrodynamic transport properties such as temperature, 
enthalpy, density, viscosity and so forth. The Lagrangian nature 
of SPH lends itself remarkably to the simulation of a variety of 
complex fluid flow processes such as flow around bluff-bodies. 
One of the common approaches for solving the balance of the 
linear momentum equation utilized in the SPH literature is the 
Weakly Compressible SPH (WCSPH), implemented in this 
work. In this approach, the pressure term in the momentum 
equation is computed explicitly from a simple thermodynamic 
equation of state. 
It has been reported in the SPH literature that the WCSPH 
method suffers dramatically when dealing with fluid flow 
problems characterized by higher Reynolds number values [9, 
10]. Therefore in this work, we have suggested and 
implemented an improved SPH algorithm for the WCSPH 
approach. The improved algorithm comprises; i-) the MBT 
method to treat solid boundaries with complex geometries [11], 
ii-) the artificial particle displacement procedure to repair the 
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non-uniformity and local fractures in particle distributions as 
well as iii-) the corrective SPH discretization scheme to 
circumvent the particle inconsistency problem and in turn 
enhance the accuracy of overall computation. The WCSPH 
method is implemented on two bluff body test cases, namely 
square obstacle and airfoil problems. It is shown that the 
WCSPH results for both intermediate and higher Reynolds 
number values in laminar regime are in good agreement with 
those in FEM methods. 
 
Keywords: Smoothed Particle Hydrodynamics (SPH), 
Meshless methods, Bluff-body, Airfoil problem, Square 
obstacle problem 
 
NOMENCLATURE 

 
CCFL Courant-Friedrichs-Lewy coefficient 
FB Magnitude of body force vector 

B
f
�

 
Body force vector 

H The height of the computational domain 
h Smoothing length 
hij Averaged smoothing length 
i Particle identifier for a center particle 
I  Identity tensor 

j Particle identifier for a neighbor particle 
L The length of the computational domain 
lc Characteristic length for Reynolds number 
Lo Characteristic length for the speed of sound 
m Maximum camber in percentage of the chord 
M Mach number 
mi Mass corresponding to the ith particle  
n1 Particle movement method constant 
n2 Particle movement method constant 
ni Number density 
P Pressure 
p Position of the maximum camber in percentage of the 

chord 
Po Reference pressure 

ri
�

 Position vector 

ijr  Magnitude of the distance between the particles i  and j 

ro Cutoff distance 
sij Normalized distance with respect to smoothing length 
t Time 
T  Viscous stress tensor 
v
�

 Velocity vector 
vb Bulk velocity 
vmax Maximum value of the fluid velocity 
vx Velocity component in x direction 
vy Velocity component in y direction 
W Kernel function 
x x horizontal coordinate system 
y y vertical coordinate system 

αo Coefficient for quintic spline kernel  
β Artificial particle displacement coefficient 
δ Dirac-delta function 
δo Density variation factor to calculate speed of sound 
δri

k Artificial particle displacement vector 
µ Dynamic viscosity 
ρ Density 
ρo Reference density 
σ  Total stress tensor 

φ Problem dependent coefficient to calculate speed of 
sound 

Ω Total bounded volume 
φ  The angle of attach of airfoil 
 
 
GOVERNING EQUATIONS 
 

The governing equations used to solve the fluid problems 
in this article are the mass and linear momentum balance 
equations which are expressed in the Lagrangian form and 
given in direct notation as 

/D Dtρ ρ=− ∇ v
�

i                                                             (1) 

/
B

D Dtρ ρ∇ +v = σ f
�

�

i                                                      (2) 

In the present simulations, the fluid is assumed to be 
incompressible and Newtonian. Hence, the incompressibility 
condition requires that the divergence of the fluid velocity 

0∇ =v
�

i  be zero. Here, ρ  is the fluid density, v�  is the 
divergence-free fluid velocity, σ  is the total stress tensor, and 

B
f
�

 is the body force term, respectively. The total stress is 
defined as p=− +σ I T , where p is the absolute pressure, I  is the 

identity tensor, T is the viscous part of the total stress tensor. 

Finally, /D Dt  is the material time derivative operator defined 

as / / /
l l

D Dt t v x= ∂ ∂ + ∂ ∂ . 
 
SPH FORMULATION 
 
 The three-dimensional Dirac-delta function, also refer to as 
a unit pulse function, is the starting point for the SPH 
approximation technique. This function satisfies the identity  
 

( ) ( ) ( )3 3
f f r dδ

Ω

= ∫r r ri j ij j
� � �                         (3) 

where 3
d rj

�  is a differential volume element and Ω represents 

the total bounded volume. 
The SPH approach assumes that the fields of the particle of 
interest are affected by that of all other particles within the 
global domain. The interactions among the particles within the 
global domain are achieved through a compactly supported, 
normalized and even weighting function (smoothing kernel 
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function) ( ),ijW r h   with a smoothing radius hκ  (cut off 

distance, localized domain) beyond which the function is zero. 
Hence, in computations, a given particle interacts with only its 
nearest neighbors contained in this localized domain. Here, the 
length h defines the support domain of the particle of interest, 
κ  is a coefficient associated with the particular kernel function, 
and where ijr  is the magnitude of the distance between the 

particle of interest i  and its neighboring particles j. If the Dirac 
delta function in Equation (3) is replaced by a kernel function 

( )W r ,hij , the integral estimate or the kernel approximation to an 

arbitrary function ( )f ri
�

can be introduced as 

( ) ( ) ( ) ( ) 3
f f f W r ,h d

Ω

≅ ≡ ∫r r r ri i j ij j
� � � �                               (4)         

where the angle bracket  denotes the kernel approximation, 

and ri
�  is the position vector defining the center point of the 

kernel function.  
Approximation to the Dirac-delta function by a smoothing 
kernel function is the origin of the smoothed particle 
hydrodynamics. The Dirac-delta function can be replaced by a 
smoothing kernel function provided that the smoothing kernel 
satisfies several conditions; namely, i) normalization condition: 
the area under the smoothing function must be unity over its 

support domain, ( ) 3 1W r ,h d
Ω

=∫ rij j
�

, ii) the Dirac-delta function 

property: as the smoothing length approaches to zero, the Dirac-

delta function should be recovered ( ) ( )3

0
lim W r ,h r

h
δ=

→
ij ij , iii)  

compactness property: which necessitates that the kernel 
function be zero beyond its compact support domain, 

( ) 0W r ,h =ij  when r hκ>ij , and iv) the kernel function should be 

spherically symmetric even function, ( ) ( )W r ,h W r ,h= −ij ij , and be 

positive within the support domain ( ) 0W r ,h >ij  when r hκ<ij . 

Finally, the value of the smoothing function should decay with 
increasing distance away from the center particle. 
In this work, we have used a quintic spline kernel function 
suggested by Morris [12] 

( )
( ) ( ) ( )
( ) ( )
( )

5 5 5
3 6 2 15 1 if 0 1ij ij ij ij

5 5
3 6 2 if 1 2ij ij ij,ij

5
3 if 2 3ij ij

0 if 3ij

s s s s

s s s
W r h o

s s

s

α


− − − + − ≤ <


 − − − ≤ <

= 


− ≤ ≤


≥

             (5) 

Here 
7

2478o h
α

π
=  and /ij ijs r h= . The spatial resolution of SPH 

is affected by the smoothing length. Hence, depending on the 
problem solved, each particle can be assigned to a different 
value of smoothing length. However, for a variable smoothing 
length, it is probable to violate Newton’s third law. For 

example, it might be possible for a particle j to exert a force on 
particle i, and not to experience an equal and opposite reaction 
force from particle i. To ensure that Newton’s third law is not 
violated and the pair wise interaction among particles moving 
close to each other is achieved, the smoothing length is 

substituted by its average, defined as ( )0.5h h h= +ij i j . The 

averaged smoothing length ensures that particle i is within the 
influence domain of particle j and vice versa. 
The SPH approximation for the gradient of an arbitrary function 
(i.e., scalar, vectorial, or tensorial) can be written through the 

substitution ( ) ( ) kf f / x→∂ ∂r rj j j
� �  in Equation (4) to produce 

( ) ( ) ( ) ( ) 3ff f
W r ,h d

k k kx x x

∂∂ ∂
≅ ≡ ∫

∂ ∂ ∂Ω

rr r ji i rij j
i i j

�

� �

�            (6) 

Upon integrating Equation (6) by parts and using compactness 
property of the kernel function as well as noting that 

( ) ( )k kW r ,h / x W r ,h / x∂ ∂ =−∂ ∂ij iji j  for a constant smoothing length 

h, it can be shown that 

( ) ( ) ( ) ( ) 3W r ,hf f
f d

k k kx x x

∂∂ ∂
≅ ≡ ∫

∂ ∂ ∂Ω

r r iji i r rj j
i i j

� �

� �                       (7) 

Using a Taylor series expansion and the properties of a second-
rank isotropic tensor, a more accurate SPH approximation for 
the gradient of an arbitrary function can be introduced as 

( ) ( ) ( )( ) ( )
1

p N W r ,hmf ks p pa f f
k sx xρ

∂∂
= −∑

∂ ∂=

r ijji r rj iij jji i

�

� �                    (8) 

where ( ) ( )( )/ , /
1

Nks k sa m r W r h xρ= ∂ ∂∑

=
j j ijij ji i

j
 is a corrective second-

rank tensor. This form is referred to as corrective SPH gradient 
formulation that can eliminate particle inconsistency. It should 

be noted that the corrective term ksaij  is ideally equal to 

Kronecker delta ksδ  for a continuous function. 
In the SPH literature, there are two main forms of the SPH 
approximation for the Laplacian of a vector-valued function 
[13, 14].  
We have in appendix shown that these two forms can be derived 
from the SPH form of the second spatial derivative of a vector 

field ( )2 p k lf / x x∂ ∂ ∂ri i i
�

as 

( ) ( ) ( )( ) ( )2
8

21

pp rN W r ,hmf pm p pa f f
k k mx x r xρ

∂∂
= −∑

∂ ∂ ∂=

r ijj iji r ri jij jj iji i i

�

� �           (9) 

( )( ) ( ) ( )( ) ( )2
2 8

21

sp rN W r ,hmf ll p pa f f
k k sx x r xρ

∂∂
+ = −∑

∂ ∂ ∂=

r ijj iji r ri jij jj iji i i

�

� �       (10) 

Upon replacing the corrective second rank tensor in Equation 
(9) and its trace in Equation (10) by the Kronecker delta and its 
trace, respectively, one can obtain the SPH Laplacian 
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formulations of a vector-valued function commonly used in 
SPH literature. Unlike Equation (10), Equation (9) can only be 
used for divergence free vector- valued functions. Throughout 
this work, all modelling results are obtained with the usage of 
corrective SPH discretization schemes, and Equation (9) is used 
for the Laplacian of velocity, while Equation (10) is used for the 
Laplacian of pressure in the pressure Poisson equation. 
 
SPH SOLUTION ALGORITHMS 
 

WCSPH 
The artificial equation of state used in the WCSPH approach is 
of the following form, 

( )2
P P c oo ρ ρ− = −i                              (11)      
where oρ , po , c  are the reference density (taken as  the real 

fluid density), reference pressure, and the speed of sound. This 
state equation enforces the incompressibility condition on the 
flow such that a small variation in density produces a relatively 
large change in pressure whereby preventing the dilatation of 
the fluid. The speed of sound ci for each particle must be 

chosen carefully to ensure that the fluid is very closely 
incompressible. The square of the sound speed might be 
estimated  

2
2 max max    , ,i

Bv v F Loc max
Lo o

µϕ
δ ρ δ δ

  
 ≈  
   

          (12) 

where ϕ  is problem dependent coefficient, maxv  is the 

maximum value of the fluid velocity, Lo  is a characteristic 

length, BF is a body force,δ is the relative incompressibility or 
the density variation factor, which is defined as 

2 2 2/ /max iv c Moδ ρ ρ=∆ = = , where M is the Mach number. Upon 

selecting the sound speed much larger than the fluid velocity (at 
least an order of magnitude) thereby resulting in a very small 
Mach number, the density variation can be limited to 1% 
( 0.01δ ≈ ), which is used this work.  
The speed of sound chosen has a direct effect on the permissible 
time-step in a given simulation. The algorithm stability is 
controlled by the Courant-Friedrichs-Lewy (CFL) condition, 
where the recommended time-step [15] is 

( )/,min maxt C h c vCFL∆ ≤ +ij i  where ( )0 5h . h h= +ij i j , h ,minij  is 

the minimum smoothing length among all i-j particle pairs, 
CCFL  is a constant satisfying 0 1CCFL< ≤ (in this work, 

0.125CCFL = .)  
In order to increment the time-steps in WCSPH algorithm, we 
have used a predictor corrector method. This technique is an 
explicit time integration scheme, and is relatively simple to 
implement. Particle positions, densities, and velocities are 
computed respectively as  

/D Dt=r vi i
� � , /D Dt kρ =i i , /D Dt=v fi i

�

�            (13) 

The time integration scheme starts with the predictor step to 
compute the intermediate particle positions and densities as 

( ) ( ) ( )1/2
0.5

n n n
t

+ = + ∆r r vi i i
� � �  and ( ) ( ) ( )1/2

0.5
n n n

k tρ ρ+ = + ∆i i i  
respectively. Having computed the intermediate particle 
positions and densities during the first half time step, the 
pressure is computed using Equation (11), while the velocity is 

computed by ( ) ( ) ( )1 1/2n n n
t

+ += + ∆v v fi i i
�

� �

. In the next half time 

(the corrector step), the particle positions and densities are 

updated as ( ) ( ) ( )1 1/2 1
0.5

n n n
t

+ + += + ∆r r vi i i
� � �

, and 

( ) ( ) ( )1 1/2 1
0.5

n n n
k tρ ρ+ + += + ∆i i i . Note that in order to 

differentiate between spatial and temporal indices, the time 
index n is put within brackets.   
 

Instabilities and their possible remedies in SPH 
method 

The homogeneity of the particle distribution is quite important 
for the accuracy and the robustness of SPH models. Highly 
irregular particle distributions which may occur as the solution 
progress may cause numerical algorithms to break down. For 
instance, if the pressure field is solved correctly thereby 
imposing the incompressibility condition as accurately as 
possible, the particle motion closely follow the trajectory of 
streamline, hence resulting in a linear clustering and in turn 
fracture in particle distribution. In these regions due to the lack 
of sufficient number of particles, or inhomogeneous particle 
distribution, the gradients of field variables cannot be computed 
reliably. Such a situation leads to spurious fields, especially 
erroneous pressure values in SPH approach. As the computation 
progress, the error in computed field variables accumulates 
whereby blowing-up the simulation.  
To prevent the particle clustering, the trajectory of particles can 
be disturbed by adding relatively small artificial displacement 

krδ i  to the advection of particles computed by the solution of 

the equation of motion. Recall the form of a Lennard–Jones 
potential (LJP)-type force used in the SPH literature as a 
repulsive force for the solid boundary treatment, 

( ) ( )1 2

2
max

2
/ /

kN n nk
LJP o o

r v
F r r r r

r

β = −  ∑
ij

i, ij ij
j ij

          (14) 

where 
LJP

kFi, is the force per unit mass on fluid particle i due to 

the neighbor particles j, 1n  and 2n  are constants, β  is a 

problem-dependent parameter,or is the cutoff distance at which 

the inter-particle potential is zero, and maxv  is the largest 

particle velocity in the system. If the second term (attractive 
interaction) on the right-hand side of LJP force is neglected, and 
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1 2n = , and the force 
LJP

kFi, , and  maxv  are replaced by 

( )2/kr tδ ∆i  and /r t∆ij , one can write the relationship  

2
max3

kN
k

o

r
r r v t

r
δ β= ∆∑

ij
i

j ij

                      (15) 

where krδ i  is an artificial particle displacement vector.  

Here, the cut-off distance can be approximated as /
N

r r No =∑ ij
j

. 

Since the repulsive force depends exponentially on the distance 

and goes to infinity at 0r =ij , when the distances between two 

particles decreases, a stronger repulsive force between the 
closer particles is generated, hence clustering of particles is 

effectively avoided. Given that 3/kr rij ij  is an odd function with 

vanishing integral, one can write 3/ 0
N kr r∑ =ij ij
j

for a spherically 

symmetric particle distribution. However, if the particle 

distribution is asymmetric, and clustered, the term 3/ 0
N kr r ≠∑ ij ij
j

 is 

no longer equal to zero, whereby implying the region with 
clustered particle distribution. The artificial particle 
displacement is only influential in the clustered region and 
negligibly small in the rest of the computational domain due 

to 3/ 0
N

kr r ≅∑ ij ij
j

 provided that the particle distribution is closely 

uniform.  
 

Boundary condition and domain definition 
 

Mass and linear momentum balance equations are solved for 
both test cases on a rectangular domain with the length of L=15 
m, a height of H =6m. For the first problem a square obstacle 
with a side dimension of 0.7 m is positioned in the 
computational domain with its center coordinates at /3x L=  and 

/2y L= . Initially, a 349×145 array (in x- and y-directions, 
respectively) of particles is created in the rectangular domain, 
and then particles within the square obstacle are removed from 
the particle array. The boundary particles are created and then 
distributed on solid boundaries such that their particle spacing 
is almost the same as initial particle spacing of the fluid 
particles. The simulation parameters, fluid density, dynamic 
viscosity and body force are taken as 

respectively 31000kg / mρ= , 1 kg / msµ= , and 
33 0 10x

BF . x N / kg−= .  Body force per unit mass (B
xF )  is used to 

model the hydrostatic part of the pressure gradient. The mass of 
each particle is constant and found through the relation 

m / nρ=i i i  where ( )
1

n W r ,h
=

=∑
j

i ij  is the number density of the 

particle i. The smoothing length for all particles is set equal to 
1.6 times the initial particle spacing.  
The slightly modified periodic boundary condition is 
implemented for inlet and outlet particles in the direction of the 
flow. Particles crossing the outflow boundary are reinserted into 
the flow domain at the inlet from the same y-coordinate 
positions with the bulk velocity of the fluid so that the inlet 
velocity profile is not poisoned by the outlet velocity profile. 
The no-slip boundary condition is implemented for the square 
obstacle. For upper and lower walls bounding the simulation 
domain, the symmetry boundary condition for the velocity is 

applied such that 0
y

v = , and 0
x

v / y∂ ∂ =  which is discretized 
by using Equation (8). The no-slip boundary and symmetry 
boundary conditions are implemented for both test cases using 
multiple tangent boundary (MBT) method, which is explained 
in detail in [11].   
The channel geometry and the boundary conditions for the 
second benchmark problem are identical to the first one except 
that the square obstacle geometry is replaced by the NACA 
airfoil with a chord length of 2(m) which is created by 

 
( )

( )( ) ( )
222 /

2 22 1 1 / 1

y m px x pc cc

y m p x x pc cc

= −

= − + − −
 




≤<
≤≤

1

0

c

c

xp

px
      (16) 

where m is the maximum camber in percentage of the chord, 
which is taken to be 5%, p is the position of the maximum 
camber in percentage of the chord that is set to be 50 %, and t is 
the maximum thickness of the airfoil in percentage of the chord, 
which is 15 %. The thickness distribution above and below the 
mean camber line is calculated as  

0.5
5 (0.2969 0.126

2 3 4
0.3516 0.284 0.1015 )

y t x xt c c

x x xc c c

= − −

+ −
               (17) 

The final coordinates of the airfoil for the upper surface 
( Ux , Uy ) and the lower surface (

L
x , Ly ) are determined using 

the following relations: sinx x yu c t φ= − , 

cos
U

y y yc t φ= + , sinLx x yc t φ= + , cosLy y yc t φ= − , and 

( )arctan /dy dxcφ= . Having obtained all coordinates of the airfoil 

geometry, the upper and lower surface lines are curve fitted 
using the least square method of order six. In so doing, it 
becomes possible to compute boundary unit normals, tangents 
and slopes for each boundary particles. All the initial particles 
falling between the upper and lower camber fitted curves are 
removed from the rectangular computational domain, then 
remaining fluid particles are combined with the boundary 
particles to form a particle array of the computational domain. 
The leading edge of the airfoil is located at Cartesian 
coordinates (L/5, H/2). Initially, a 300×125 array (in x- and y-
directions, respectively) of particles is created in the rectangular 
domain, and then, particles within the airfoil are removed from 
the particle array. Subsequently, boundary particles are created 
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and then distributed on solid boundaries. The smoothing length 
for all particles is set equal to 1.6 times the initial particle 
spacing. 
 
FLOW AROUND A SQUARE OBSTACLE AND AN 
AIRFOIL 

 
In this work, to be able to test the effectiveness of the 

improved WCSPH algorithm (involving the utility of MBT 
method together with artificial particle displacement and 
corrective SPH discretization scheme) for modeling fluid flow 
over complex geometries, we have solved two benchmark flow 
problems; namely, two-dimensional simulations of a flow 
around a square obstacle and NACA airfoil.  
The flow around the airfoil and square obstacle positioned 
inside the channel were simulated for a range of Reynolds 
numbersRe /l vc bρ µ= , which is defined by the characteristic 

length, cl (set equal to the side length for the square obstacle, 

and the chord length for the airfoil geometry), the density, the 

bulk flow velocity bv  and the dynamic viscosity µ . Both test 

cases are validated through comparing SPH results with those 
obtained by a Finite Element Method (FEM) based solver of a 
Comsol multi-physics software tool. The WCSPH and FEM 
results are compared in terms of velocity contours for both test 
cases, and the pressure envelope for the airfoil.  
Figure 1 compares WCSPH and FEM velocity contours for the 
Reynolds number value of 100. As can be seen from the figure, 
the magnitude and the place of contours for the proposed 
algorithm are in good agreement with those which obtained 
using FEM in the low Reynolds number range.  
It is well-known from both earlier experiments and numerical 
studies that vortex shedding is observed at the rear edge of the 
obstacles at higher Reynolds numbers [1, 16, 17]. In light of 
this, to be able address whether SPH can capture vortex 
shedding as accurately as mesh dependent solvers, we here 
present simulation results for Reynolds number of 350. Figures 
2 up and down show the simulation results for WCSPH and 
FEM respectively. It is valuable to mention that in these figures 
colors show the velocity magnitude. On comparing results, one can 
notice that results are satisfactorily in agreement with each other 
regarding the magnitude of velocities as well as the position and 
number of vortices. However, there is a slight discrepancy 
between WCSPH and FEM results in terms of the separation 
point of the vortices from the rear edge of the obstacle. For the 
sake of brevity, without presenting further results, we can safely 
assert that SPH method is highly successful in predicting 
changes of the topology of the vortex shedding behind a square 
obstacle with the high Reynolds number. 
In both test problems solved, the square of the speed of sound is 
chosen to be equal to (c2=25). Figure 3 reveals that this speed 
of sound value satisfactorily enforces the fluid incompressibility 
condition since the density variation is less than 1 percentage. 

 

 
Figure 1: A comparison of WCSPH (up) and FEM (down) velocity 
contours at Reynolds number 100. It should be noted that in this 
presentation, all velocities are given as a velocity magnitude 
 

 

 
Figure 2: The comparison of vortex shedding contours obtained with 
WSPH (left) and FEM (right) methods for the Reynolds number of 
350 (colors show the velocity magnitude) 
 

 
Figure 3: The density contours obtained with WCSPH method for the 
Reynolds number of 350 (colors show the density values). The utilized 
speed of sound satisfactorily enforces incompressibility condition.   
 
To have a closer look at the vortex shedding behavior captured 
at the trailing edge of the square obstacle by WCSPH method, 
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in Figure 4 are presented the snap shots of vortex shedding for a 
full period (each snap shot corresponds to one-sixth of the full 
period) for the Reynolds number of 350.  
Figure 5 presents a close-up view of particle positions around 
airfoils with the angles of attack of 15 degree corresponding to 
the Reynolds numbers of 570 (up) and 1400 (down) 
respectively. This figure also illustrates the effectivity of using 
MBT method to treat difficult geometries which is to our best 
knowledge not achievable with any other boundary treatment 
methods proposed for meshless approaches. The proposed 
algorithm is also very successful in simulating the flow around 
the airfoil geometry with any geometrical orientations across the 
flow field. For both low and high Reynolds number values, 
there are no particle depletions in the domains of interest. 
 

  

  

  
Figure 4: One period of vortex shedding for the square obstacle problem 
for the Reynolds number of 350 (colors show the velocity magnitude) 
 
It is critical to mention that without the artificial particle 
displacement algorithm presented and implemented in this 
work, unphysical particle fractures occur around the airfoil 
geometry due to the tendency of SPH particles to follow 
streamline trajectory as illustrated in Figure 6. This brings about 
erroneous pressure and velocity fields and in turn blow-up of 
simulations even for relatively small Reynolds numbers and 
angle of attack values.  
 

 

 
Figure 5: Close-up view of particle positions around airfoils with the 
angles of attack of 15 degree corresponding to the Reynolds numbers 
of 570 (up) and 1400 (down) 
 

 
Figure 6: Close-up view of particle positions around the airfoil with 
the angle of attack of 0 degree corresponding to the Reynolds 
numbers of 250.  
 
Figure 7 compares SPH and FEM pressure envelopes for the 
angle of attack of 15 degree with the Reynolds numbers value 
of 420 (up) and 570 (down). One can rightfully conclude that 
for both Reynolds number values, WCSPH results are in good 
agreement with those corresponding to mesh dependent solver. 
Additionally the pressure differences between upper and lower 
camber which correlates with the lift force are in match with 
FEM results for a given position on the boundary. 
Figure 8 compares WCSPH and FEM results in terms of the 
vortex shedding contours for the angle of attack of 5 degree 
with the Reynolds number of 1400 (colors denote the velocity 
magnitude).  As in the case of the presented square obstacle 
results, SPH results are also satisfactorily in agreement with 
FEM regarding the magnitude of velocities as well as the 
position and number of vortices for the airfoil geometry.  

T/6 2T/6 

3T/6 4T/6 

6T/6 5T/6 
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Figure 7: The comparison of pressure envelopes for the angles of 
attack of 15 for the Reynolds numbers of 420 (up) and 570 (down) 

 

 

 
Figure 8: The comparison of vortex shedding contours produced by 
WCSPH (left) and FEM (right) methods for the angle of attack of 5 
degree and the Reynolds number of 1400 (colors show the velocity 
magnitude) 
 

CONCLUSION 
 
In this work, we present solutions for flow over an airfoil 

and square obstacle using an improved WCSPH algorithm that 

can handle complex geometries with the usage of multiple 
tangent solid boundary method, and eliminate particle clustering 
induced instabilities with the implementation of artificial 
particle displacement (particle fracture repair) procedure as well 
as the corrective SPH discretization scheme. The results were 
compared in terms of velocity contours for both test cases, and 
the pressure envelope for the airfoil. Our simulation results 
were validated with a FEM method, and excellent agreements 
among the results were observed. We illustrated that the 
improved WCSPH method is able to capture the complex 
physics of bluff-body flows naturally such as flow separation, 
wake formation at the trailing edge, and vortex shedding 
without any extra effort to increase the particle resolution in 
some specific areas of interest. We have shown that the 
improved WCSPH method can be effectively used for flow 
simulations over bluff-bodies with Reynolds numbers as high as 
1400, which is not achievable with standard WCSPH 
formulations. 
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APPENDIX A 
 
The following section provides derivations for the SPH 

approximation to first- and second-order derivatives of a vector-
valued function. The derivations are carried out in Cartesian 
coordinates. The SPH approximation for the gradient of a 
vectorial function starts with a Taylor series expansion of 
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Upon multiplying Equation (A.1) by the term, ( )ij j

sW r ,h / x∂ ∂ , 

and then integrating over the whole space 3
jrd
� ,  one can write,  
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Note that the first and the second integrals on the right hand 
side of Equation (A.2) are, respectively, second- and third-rank 
tensors. The third-rank tensor lksI can be integrated by parts, 
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which, upon using the Green-Gauss theorem produces Equation 
(A.3) since the kernel ( )ijW r ,h  vanishes beyond its support 

domain. 
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ij ji ji j ij ji ji j

j

r rlks l k l sk k ls
s

I W r ,h r r d W r ,h r r d
r

δ δ
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∂= − = − +
∂∫ ∫

� �  

                                                                    (A.3) 
Recalling that the kernel function is spherically symmetric even 
function and the multiplication of an even function by an odd 
function produces an odd function. Integration of an odd 
function over a symmetric domain leads to zero. 
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            (A.4) 

 
Following the above described procedure identically, the second 
rank tensor lsI  can be written as  
 

( ) 3

1

ij jrls ls lsI W r ,h dδ δ
Ω

=

= − = −∫
�

�������

                                   (A.5) 

On combining Equation (A.2) with Equations (A.4) and (A.5), 
one can write,  
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Note that in Equation (A.6), the relationship 

( ) ( )ij j ij i
s sW r ,h / x W r ,h / x∂ ∂ = −∂ ∂  has been used. Replacing the 

integration in Equation (A.6) with SPH summation over particle 
“ j ” and setting 

jjjr ρ/md =�3 , we can obtain the gradient of a 

vector-valued function in the form of SPH interpolation as. 
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It is important to note that the second rank tensor lsI , shown to 
be equal to kronecker delta for a continuous function, may not 
be equal to kronecker delta for discrete particles. Hence, for the 
accuracy of the computations, this term should be included in 
the SPH gradient interpolation of a function. From Equation 
(A.2), we can write 
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                                                         (A.8) 
Equation (A.8) can be written in matrix form as  
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where ( ) ( )( )j j j ij i

s sa m / W r ,h / xρ= ∂ ∂ .  

Starting with the relation for the SPH second-order derivative 
approximation [11] of a vector valued-function( )ir

�pf  given in 

Equation (A.10) 
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which, upon contracting on indices p and s, one can obtain 
 

( ) ( )( ) ( ) ( )2
3

2

1
2

ijij i
i j j

ij i i i

r
r r r

p p
p p pm

m k k

W r ,hr f
f f d

r x x x
δ

ξΩ

∂ ∂
− =

∂ ∂ ∂∫
�

� � �        (A.11)

       
Note that the first term on the right hand side of Equation 
(A.10) becomes ( )2

i i irp p mf / x x∂ ∂ ∂�  and consequently drops off if 

the vector-valued function ( )ir
�pf  is assumed to be divergence-

free velocity field. Here, the coefficient ξ  takes the value of 4 

and 5 in two and three dimensions, respectively. We have shown 
in Equations (A.2) and (A.5) that Kronecker delta can be 
written as,  
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Casting Equation (A.12) into Equation (A.11) leads to 
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              (A.13) 
Equation (A.13) can be written in matrix form as  
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                                                   (A.14) 
Upon contracting on indices s and m of Equation (A.10), an 
alternative form of Laplacian for a vector field can be obtained 
as 
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If the trace of the Kronecker delta in Equation (A.15) is 
replaced by the trace of Equation (A.12), one can obtain an 
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alternative form of corrective SPH interpolation for a 
Laplacian. 
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