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ABSTRACT 
The linear problem of liquid sloshing in a cylindrical 

container with a vertical baffle is considered in the present 
paper. In this study, a theoretical oriented approach is 
developed for calculating the natural frequencies of liquid. The 
baffle is a thin-walled and open-ended cylindrical shell that is 
concentrically placed and partially submerged inside the 
container. The free surface of liquid is assumed to be 
perpendicular to axis of the container and is divided into two 
parts by the baffle. The method also captures the singular 
asymptotic behavior of the velocity potential at the sharp baffle 
edge. The liquid is assumed to be incompressible and inviscid 
and the method uses matched eigenfunction expansions and 
Galerkin expansions to derive unknown coefficients presented 
in the velocity potential series. A finite element analysis is also 
used to check the validity of the proposed method. The effects 
of some important parameters of system are also considered on 
the sloshing frequencies. 

 
INTRODUCTION 

The resonant frequencies of oscillation of liquid in a 
bounded container have been the subject of a number of studies 
over many years. In the present paper, a special class of this 
one that involves the introduction of a baffle (internal body) 
inside a container is analytically investigated. The internal body 

is partially or completely submerged inside the tank. The 
convex domain of the fluid changes to a non-convex domain 
because of the internal body, whereas the fluid domain is 
simply connected and continuous. There are axial and radial 
distances between the internal body and the container. 

    Some researches have been carried out on this class of 
problems. Evans and Mclver (1987) explored the effect of 
introducing a vertical baffle into a rectangular container of 
water on fluid frequencies. The technique involved matching 
the appropriate eigenfunction expansions on either side of the 
baffle and the solution of the resulting integral equation for the 
horizontal fluid above or below the baffle. Watson and Evans 
(1991) extended this technique for a number of similar 
problems. Gavrilyuk et al. (2006) proposed fundamental 
solutions of the linearized problem on fluid sloshing in a 
vertical cylindrical container having a thin rigid-ring horizontal 
baffle. A pressure-based finite element technique is developed 
to analyze the slosh dynamics of a partially filled rigid 
container with bottom-mounted submerged components by 
Mitra and Sinhamahapatra (2007). Maleki and Ziyaeifar (2008) 
investigated the potential of baffles (horizontal ring and vertical 
blade baffles) in increasing the hydrodynamic damping of 
sloshing in circular-cylindrical storage tanks. 

    In the present study, we extend the analytical technique 
proposed in reference (Evans and Mclver, 1987) and presented 
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an efficient analytical method for considering this class of 
problems having an open-ended and thin vertical baffle 
partially submerged inside the cylindrical tank capturing the 
singular asymptotic behavior of the velocity potential at the 
sharp baffle edge.  

    In the present paper, the eigenfunction expansion and the 
Galerkin method are used to derive the characteristic equation 
of the liquid frequencies. The baffle is a rigid, thin-walled and 
open-ended cylindrical shell and is concentrically and partially 
submerged inside the rigid container. The bottom plate of the 
container is assumed to be flat and rigid. The fluid is assumed 
to be incompressible and inviscid. The velocity potential is 
formulated in terms of eigenfunction expansions appropriate to 
three distinct fluid regions which can be matched across their 
common vertical boundary. The resulting equations can be 
solved by using the Galerkin method. The validity of the 
proposed theoretical method is verified by comparing the 
results with those obtained by a finite element model. In order 

to evaluate the dynamic characteristics of the system, the 
effects of radius of baffle are also investigated.  

 
MATHEMATICAL MODELLING  

Consider a thin-walled, rigid and cylindrical container of 
length L, radius a as shown in Fig. 1. The bottom plate of the 
container is considered to be flat and rigid. The radial, 
circumferential and axial coordinates in original coordinate 
system are denoted by r, θ and x, respectively. The container is 
partially filled with an inviscid and incompressible fluid of 
mass density ρL, with a free surface orthogonal to the vertical 
container axis. The free surface is at distance H from the 
bottom of the container. Another cylindrical shell is placed 
inside the container as internal body (Fig. 1). It is a thin-walled 
and open-ended rigid cylindrical shell of length h and radius b 
and is partially immersed in the container. 

 

 
Fig. 1. The fluid domain of fluid divided into three parts (III), (IV) and (V). 

 
Dynamic behaviour of the fluid-structure interaction 
The inviscid, incompressible and irrotational fluid permits the 
introduction of velocity potential for the fluid motion. 
Assuming simple harmonic motion of radian frequency ω, the 
velocity potential can be expressed as 
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)(  iexritxr ti

s
  (1)  

The radial, circumferential and axial coordinates are denoted by 
r, θ and X, respectively as shown in Fig. 1. This coordinate 
system can be changed to original coordinate system using 

hLxX  . In order to compute the time-independent 
velocity potential, )(s , the fluid domain can be divided into 
three parts (III, IV, V) as shown in Fig. 1, (Evans and McIver, 
1987; Askari and Daneshmand, 2009) 
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In order to find III
s)( , we restrict our attention to region (III) 

satisfying conditions (3) to (5) in that region, 
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It will be convenient to define 
   arbhLxbrhLx  ,:,0,:  (6) 
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where   is boundary contact between the two fluid regions 
(III) and (IV), and    is boundary contact between the two 
fluid regions (IV) and (V). 
In the fluid region (III), for asymmetric modes (n>0), the 
method of separation of variables gives 
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and for axisymmetric modes (n=0), Eq. (7) is replaced by 
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where functions III
s)(  satisfy conditions (4) and (5), ns  are 

given by 
 ,1,0)( sJ nsn   (9) 

and the modified Bessel function of second order nY  is 
discarded in order to avoid infinite velocities at r=0.  
    Now, we can restrict our attention to region (IV), and seek 
function ),,( xrIV  , satisfying conditions (10) to (12) in that 
region. 
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on the free surface Hx  , the sloshing condition is 
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In the fluid region (IV), for asymmetric modes (n>0), the 
method of separation of variables gives  
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and for axisymmetric modes (n=0), Eq. (13) is replaced by 
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    Now, we can restrict our attention to region (V), and seek 
function ),,()( xrV

s  , satisfying conditions (15) to (17) in that 
region. 
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In the fluid region (V), for asymmetric modes (n>0), the 
method of separation of variables gives 
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and for axisymmetric modes (n=0), Eq. (19) is replaced by 
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where ns  is given by 
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and nY  is the modified Bessel function of the second kind of 
order n, and also nJ  and nY  indicate the derivatives of nJ  and 

nY  with respect to r, respectively. nsns B ,A , nsns DC , , nsE , 

00000000 ,,, DCBA  and 00E  are unknown coefficients 
depending on the integers n and s and have to be determined by 
the matching process. It is necessary to ensure that the potential 
and velocity of fluid are continuous along boundaries  , , 
and the sloshing conditions (44) and (50) are satisfied on the 
free surface. These conditions are presented as follow 
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where Eq. (22) indicates that the axial velocities of the fluid are 
continuous along   and   , Eqs. (23) and (24) are the 
continuity condition for the velocity potentials along 
boundaries   and   . Eqs. (25) and (26) are the sloshing 
conditions on the free surface. 
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Eq. (22) must be satisfied for all values ar   (on the 

boundary,   ). Multiplying this equation by 2)(
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and integrating between 0 and a, one obtains 
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and for axisymmetric modes (n=0), the following equation 
must also be added: 
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Eq. (23) must be satisfied for all values br   (on the boundary 

 ). If one multiplies this equation by 2)(
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integrates between 0 and b, one obtains 
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and for axisymmetric modes (n=0), the following equation 
must also be added: 
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Eq. (24) must be satisfied for all values arb   (on the free 
surface in region V). If one multiplies this equation by 
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and for axisymmetric modes (n=0), the following equation 
must also be added: 
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Eq. (25) must be satisfied for all values br   (on the free 
surface in region IV). Multiplying this equation by 
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and for axisymmetric modes (n=0), the following equation 
must also be added: 
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and for axisymmetric modes (n=0), the following equation 
must also be added: 

  




















 








 




ED

ED

1110

22

0000

22

1

2

22
0098

22
)(

2/)(

μμ
ba

ED
ba

hH
g

baDμμ

  














a

b
nsns

a

b
nsns

a

b
nsnsns

a

b
nsnsns

rrhHs

rrhHs

rrhHs

rrhHs

,d))(sinh()(

,d))(cosh()(

,d))(cosh()(

,d))(sinh()(

111

110

19

18









 

(37) 

4 Copyright © 2010 by ASME



5 
Copyright © 2010 by ASME 

 

Eq. (34) by using Eq. (30) is rewritten with respect to variables 
( 0000 ,,, DACA ) as follows 

 CACA 53
1

14

2

33
1

12 BDDB
g

BDDB     (38) 

and for axisymmetric modes (n=0), the following equation 
must also be added: 
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Eq. (36) by using Eqs. (27) and (32) is rewritten with respect 
variables ( 0000 ,,, DACA ) as follows 
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and for axisymmetric modes (n=0), the following equation 
must also be added: 
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The eigenvalue problem 
    For the numerical calculation of the sloshing natural 
frequencies, N

~  terms in the expansion of )(s  ( 1~
N  in the 

case of axisymmetric modes) is considered, where N
~  is chosen 

large enough to give the required accuracy. So, all the above 
relations are given by finite summations. In above section, all 
of fluid equations associated with the sloshing of the fluid were 
rewritten with respect to variables ( 0000 ,,, DACA ).It is 
convenient to introduce a vectorial notation. The vector q of 
the parameters of the Ritz expansion is defined by 
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where A is the vector of unknown coefficients addressed in Eq. 
(7) and C is the vector of unknown coefficients addressed in 
Eq. (13). For axisymmetric (n=0) modes, the coefficient A00 
and D00 must be included in the vectors q. The sloshing 
condition in region (IV), Eq. (38), is given by 
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The sloshing condition in region (V), Eq. (40), is given by 
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where all of submatrices have dimension NN
~~

 .  
For axisymmetric modes, the dimension N

~  of all the matrices 
must be changed into 1~

N . The additional row of the matrices 
in the Eqs. (39) and (41) for n=0 and in regions (IV) and (V), 
respectively are as follow  
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(46
) 

where ω is the circular frequency of the liquid sloshing.  
 
RESULTS AND DISCUSSION 

Based on the preceding analysis, the eigenvalue problems, 
Eq. (43) and (44), are solved at the same time to find the 
sloshing natural frequencies. A finite element analysis is also 
used to check the validity of the present method for the 
partially water-filled cylindrical container with internal body. 
Fluid element is defined by four nodes having three degrees of 
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freedom at each node: three translations in each direction 
(Zienkiewicz, 1977).  

The velocities of the fluid nodes along the wet surface of 
the container are zero. The radial velocities of the fluid nodes 
along the wet surface of the internal body are zero. In 
calculation of natural frequencies of the system, the system of 
equations is condensed down to those interest DOFs by Guyan 
reduction (Guyan, 1965).  

The following material properties are used: the fluid is 
water with mass density ρL=1000 kg/m3. This container is 
partially filled to H=0.4 m and its dimensions are a=0.2 m, 
b=0.5a, L=3a, h=0.5L. 

 
 
 
Convergence and Validation study 

To check the convergence of the present method, a partially 
water-filled container with a cylindrical shell as a baffle is 
analyzed. Table 1 shows the convergence of present method 
with number of nodal diameters n=1 and 2 for different 
numbers of term N

~  used in the series expansions. From the 
frequencies presented in this table, we conclude that 8 terms in 
the series expansions are adequate for convergence.  

To validate the present theoretical method, the natural 
frequencies (Hz) of the sloshing modes for the partially water-
filled rigid container are compared with those obtained from 
the finite element analysis, in Table 2. It is seen that the present 
results are very close to those obtained from finite element 
analysis.  

 

Table 1. 

Convergence study of natural frequencies (Hz) of the first three sloshing  

  n=2  n=1 

Number 

of terms 

 

 
1st mode 2nd mode 3rd mode  1st mode 2nd mode 3rd mode 

2  1.8424 2.7582 2.9632  1.3888 2.1645 2.8580 

4  1.8409 2.7568 2.9626  1.3848 2.1587 2.8566 

6  1.8404 2.7566 2.9626  1.3835 2.1574 2.8565 

7  1.8404 2.7565 2.9626  1.3836 2.1571 2.8564 

8  1.8404 2.7565 2.9626  1.3834 2.1570 2.8564 

 

Table 2. 

Sloshing frequencies (Hz) of a partially fluid-filled cylindrical container with internal body 

b=0.14    b=0.1    Mode No.  

B A   B A   m=1/n 

1.3731 1.3804   1.3368 1.3852   1  

1.7547 1.7606    1.8303 1.8409   2  

2.1125 2.1097   2.2214 2.2201   3  

2.4255 2.4226   2.5381 2.5362   4  

2.7041 2.7026   2.8075 2.8064   5  

2.9564 2.9557  3.0533 3.0449  6 

A: flexible container; B: rigid container 
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Fig. 2. Effect of radius ratio (b/a) on the first natural frequencies (rad/s) of the fluid for various 

numbers of nodal diameters (h=0.25 m). ( , n=0; , n=1; , n=2; , 
n=3)

Effect of internal body radius on sloshing frequencies 
    Effect of the internal body radius on sloshing frequencies 
(rad/s) for various numbers of nodal diameters are considered 
and shown in Figs. 2, 3 and 4. It can be observed from these 
figures that the variation trend for nodal diameters n=1, 2 and 3 
are approximately similar but for nodal diameter n=0, it is 
different from others. The internal body radius has a small 
effect on the first natural frequency as seen in Fig. 2 when 
compared with the second and third natural frequencies shown 

in Figs. 3 and 4, respectively. Comparing with the natural 
frequency for the first radius ratio, the maximum increase about 
30% and the maximum decrease about 25% can be observed in 
Figs. 3 and 4. As shown in Fig. 3, the local maximum points 
are occurred in radius ratios 0.2, 0.3, 0.4 and 0.5 for the nodal 
diameters n=0, 1, 2 and 3, respectively. The local region around 
the radius ration 0.5 in Fig. 4 should also be noted where it 
seems to be a local minimum for the third natural frequency. 

 
 
 

 
Fig. 3. Effect of radius ratio (b/a) on the second natural frequencies (rad/s) of the fluid for various 

numbers of nodal diameters (h=0.25 m). ( , n=0; , n=1; , n=2; , n=3). 
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Fig. 4. Effect of radius ratio (b/a) on the third natural frequencies (rad/s) of the fluid for various 

numbers of nodal diameters (h=0.25 m). ( , n=0; , n=1; , n=2; , n=3) 
.

 

 
CONCLUSION 

    Pursuing an analytically oriented method to consider 
sloshing phenomena happened in a partially liquid-filled 
cylindrical container with a cylindrical internal body, we 
developed an efficient approach that captures the analytical 
features of the velocity potential in a non-convex, continuous, 
and simply connected fluid domain. It was verified that this 
theoretical approach can predict the dynamic characteristics of 
sloshing liquid inside a cylindrical container having a baffle 
excellently. Another important advantage of this method is the 
possibility of testing and analyzing different sizes of internal 
bodies within the container making the necessary physical and 
engineering conclusions. Moreover, effects of the baffle's 
radius on the sloshing frequencies of the system were also 
considered. It was found that the increasing of baffle's radius 
changed the sloshing frequencies. Effects of the baffle's radius 
on the liquid natural frequencies in the partially fluid-filled 
container vary with numbers of nodal diameters and axial 
modes. 
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