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ABSTRACT 
Micropolar theory constitutes extension of the classical 

field theories. It is based on the idea that every particles of the 
material can make both micro rotation and volumetric micro 
elongation in addition to the bulk deformation. Since this 
theory includes the effects of micro structure which could affect 
the overall behaviour of the medium, it reflects the physical 
realities much better than the classical theory for the 
engineering materials. 

In the micropolar theory, the material points are considered 
to possess orientations.  A material point carrying three rigid 
directors introduces one extra degree of freedom over the 
classical theory. This is because in micropolar continuum, a 
point is endowed with three rigid directors only. A material 
point is then equipped with the degrees of freedom for rigid 
rotations, in addition to the classical translational degrees of 
freedom. In fact, the micropolar covers the results of the 
classical continuum mechanics. The micropolar theory recently 
takes attentions in fluid mechanics and mathematicians and 
engineers are implementing this theory in various theoretical 
and practical applications. 

In this paper the fluid-structure analysis of a vibrating 
micropolar plate in contact with a fluid is considered. The fluid 
is contained in a cube which all faces except for one of the 
lateral faces are rigid. The only non-rigid lateral face is made of 
a flexible micropolar plate and therefore, interacts with the 
fluid. An analytical approach is utilized to investigate the 

vibration characteristics of the aforementioned fluid-structure 
problem. The fluid is non-viscous and incompressible. 
Duplicate Chebyshev series, multiplied by boundary functions 
are used as admissible functions and the frequency equations of 
the micropolar plate are obtained by the use of Chebyshev-Ritz 
method.  

Also the vibration analysis of the plates modeled by 
micropolar theory has been done. This analysis shows that 
some additional frequencies due to the micropolarity of the 
plate appears among the values of the frequencies obtained in 
the classical theory of elasticity, as expected. These new 
frequencies are called micro-rotational waves. We also 
observed that when the micropolar material constants vanish, 
these additional frequencies disappear and only the classical 
frequencies remain. Specially, we observed that these additional 
frequencies are more sensitive to the change of the micro 
elastic constants than the classical frequencies. The frequencies 
and mode shapes of the coupled fluid structure interaction 
problem are obtained in the present study based on the 
micropolar and classical modeling. The numerical results for 
the problem are compared with those obtained by the analytical 
method for their differences and to confirm the proposed 
method. The microrotatinal wave frequencies and mode shapes 
are also developed. The results show that the natural 
frequencies and mode shapes for the transverse vibrations of 
the problem are in good agreement with the classical one and 
our knowledge from the physical nature of the problem. 
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INTRODUCTION 
In the classical theory of continuum mechanics, materials 

are assumed to be homogeneous. Nevertheless, some modern 
engineering structures have lots of defects with different sizes 
and forms which violate the assumption of continuity at micro 
scale. Such structures are made of materials possessing an 
internal structure. Polycrystalline materials, materials with 
fibrous or coarse grain structure come in this category [1]. The 
analysis of such materials requires incorporating the theory of 
oriented media.  

Micropolare theory has been developed by Eringen [2−4] 
for elastic solids, fluid and further for nonlocal polar fields. 
Micropolar theory constitutes extension of the classical field 
theories concerned with the rotations, in microscopic space and 
short time scales. Mathematically, material particles are 
assumed to be geometrical points that possess physical and 
mathematical properties, e.g., mass, charge and rigid directors. 
The field equations constructed with this model are expected 
then to represent many new and wider classes of physical 
phenomena that fall outside the classical field theories. 

In the micropolar theory, the material is endowed with 
microstructure, like atoms and molecules at microscopic scale. 
Homogenization of a basically heterogeneous material depends 
on scale of interest. When stress fluctuation is small enough 
compared to microstructure of the material, homogenization 
can be made without considering the detailed microstructure of 
the material. However, if it is not the case, the microstructure of 
material must be considered properly in a homogenized 
formulation [1, 2].  

At each particle of a micropolar continuum, it is assumed 
that there is a microstructure which can rotate independently 
from the surrounding medium [5]. So every particle contains 
six degrees of freedom, three translational motions which are 
assigned to the macro-element and three rotational ones which 
are referred to the microstructure. 

Due to theoretical and practical importance, many 
problems of waves and vibration of micropolar elasticity have 
been investigated by different researchers. A bending analysis 
of micropolar elastic beams using a 3-D finite element method 
has been developed by Huang et al. [6]. They first derived an 
analytical solution for straight beam problems based on the 
theory of material strength. Then, they applied a new 3-D finite 
element to solve both straight and curved beam problems.  

Recently, a linear theory for the analysis of beams based on 
the micropolar continuum mechanics has been developed by 
Ramezani et al [5]. Power series expansions for the axial 
displacement and micro-rotation fields were assumed in their 
work. The governing equations were derived by integrating the 
momentum and moment of momentum equations in the 
micropolar continuum theory.   

On the other hand, the fluid-structure problems have also 
been extensively contemplated by many researchers [7, 8]. In 
their works, the fluid is considered to be ideal and 
incompressible (compressible) with the Laplace (wave) as its 
governing equations, where the structure has had the variety of 
shapes and assumptions.  

In the present work, fluid-structure interaction problems 
having microstructure are modeled by the microstretch theory. 
In this work, an analytical formulation for vibration analysis of 
a micropolar plate in contact with fluid and based on the 
micropolar continuum mechanics is developed. We follow 
Eringen’s method for constructing the micropolar plate theory 
[2].  

We study the coupled problem to obtain natural 
frequencies of the fluid-structure problem. The fluid is 
considered to be ideal and incompressible. In this work we 
utilize the Chebyshev polynomials because of their simplicity 
for computations and coding and also their high accuracy and 
numerical reliability [8-10]. 

NOMENCLATURE 
,ߙ ,ߚ ,ߛ ߢ  : Micropolar Elasticity Constants
u, v, w: Displacements in x, y, z directions 
G: Shear Modulus 
,ߩ  Mass density and the micro-inertia :݆ߩ
߰ : Microrotation 
F, ࡸ: External stress and couple stress 
߰ଵ, ߰ଶ,ݓ:  Series Expansion terms related to 
displacements
Φ,߮: Deformation potential 
ܶ
 Reference kinetic energy of the fluid :כ
ௌܶ
Reference kinetic energy of the structure :כ
ௌܶ: Kinetic energy of the structure 
ௌܸ : Maximum Reference potential energy of the structure
߱ : Natural frequency of the structure vibration
Ω : Natural frequency of the fluid-structure vibration 
 
MATHEMATICAL MODEL 

As stated in the previous section, there are instances in 
which the assumption of material homogeneity is inadequate: 
either the size of the loaded structure is very small and 
comparable to the length scale of its constituent material 
microstructure or the length scale of the heterogeneity with the 
material structure is significantly larger than microscopic. 
Many nano-devices fall into the first category, whereas 
materials such as ceramics, cement, rock, soil, bone and short 
fiber and particulate-reinforced composites may be referred to 
as the second category. Micropolar theory is an alternative 
theory describing the behaviour of heterogeneous materials. 
The mathematical foundation of theory of micropolar 
continuum mechanics has been developed through the works of 
Eringen and his coworkers. In this section, we present some 
basic relations of the micropolar elasticity needed for our 
derivation in the next sections. 

The vibration analysis of a micropolar plate in contact with 
a fluid is considered. The fluid is contained in a cube with all 
faces except one of the lateral face are rigid. The only non-rigid 
lateral face is made of a flexible micropolar plate and therefore,   
interacts with the fluid. The problem is shown in Fig. 1.  
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Fig. 1. 

Structure Domain 
As mentioned earlier, the micropolar elasticity defines 

more degrees of freedom. We consider the linear isotropic plate 
of lowest-order. The governing equations of the Three-
dimensional micropolar elasticity are as follows [2, 4], 

 
ሺࣆ  ࢛ࢺሻࣄ  ሺࣅ  ሻࣆ

ࣔ
࢞ࣔ

൫࢞,࢛ ࢟,࢜ ࢠ,࢝ ൯ 

െࣄ൫ࢠ,࢟ࣀെ ࢟,ࢠࣀ ൯ ൌ  (1)                        ࢚࢚,࢛࣋
ሺࣆ  ࢜ࢺሻࣄ  ሺࣅ  ሻࣆ

ࣔ
࢟ࣔ

൫࢞,࢛ ࢟,࢜ ࢠ,࢝ ൯ 

െࣄሺ࢞,ࢠࣀെ ࢠ,࢞ࣀ ሻ ൌ  (2 )                        ࢚࢚,࢜࣋
ሺࣆ  ࢝ࢺሻࣄ  ሺࣅ  ሻࣆ

ࣔ
ࢠࣔ

൫࢞,࢛ ࢟,࢜ ࢠ,࢝ ൯ 

െࣄ൫࢟,࢞ࣀെ ࢞,࢟ࣀ ൯ ൌ  (3)                        ࢚࢚,࢝࣋
࢞ࣀࢺࢽ  െ ࢞ࣀࣄ  ሺࢻ  ሻࢼ

ࣔ
࢞ࣔ
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െࣄ൫ࢠ,࢜െ ࢟,࢝ ൯ ൌ  (4)                           ࢚࢚,࢞ࣀ࣋
࢟ࣀࢺࢽ െ ࢟ࣀࣄ  ሺࢻ  ሻࢼ

ࣔ
࢟ࣔ

൫࢞,࢞ࣀ ࢟,࢟ࣀ ࢠ,ࢠࣀ ൯ 

െࣄሺ࢞,࢝െ ࢠ,࢛ ሻ ൌ  (5)                        ࢚࢚,࢟ࣀ࣋
ࢠࣀࢺࢽ െ ࢠࣀࣄ  ሺࢻ  ሻࢼ

ࣔ
ࢠࣔ

൫࢞,࢞ࣀ ࢟,࢟ࣀ ࢠ,ࢠࣀ ൯ 

െࣄ൫࢟,࢛െ ࢞,࢜ ൯ ൌ  (6)                        ࢚࢚,ࢠࣀ࣋
 

where ߩ is the mass density, j is the micro-inertia, ࣅ, ,ࣆ ,ࣄ
,ࢻ ,࢞ࣀ are material constants. u, v, w and ࢽ and ࢼ ,࢟ࣀ  are ࢠࣀ
displacement and micro-rotation component, respectively. 

 
 ൌ ࣆ   (a -7)              ࣄ
 ൌ ࣅ  ࣆ   (b -7)                            ࣄ
 ൌ ࢻ  ࢼ   (c -7)                                 ࢽ
 ൌ ࢻ   (d -7)             ࢼ
 ൌ ࣅ   (e -7)                                                                ࣆ

For attaining the governing equations of the micropolar 
plate from three-dimensional micropolar elasticity, various 
methods have been used [2]. Some authors have used the 
perturbation method, when some others, have used the 
asymptotic analysis [11]. Based on the method used in [1], the 
governing equations of the lowest-order micropolar plate are 
obtained by some integration in the thickness direction of the 
micropolar media. The result is as follows 

 
ቀࡳ 

ࣄ


ቁࢺ࢝  ,࣒ࢿࣄ  ࡲሺ࢙࣋ െ ሷ࢝ ሻ ൌ                                     (8) 

ሺࢻ  ,࣒ሻࢼ െ,࣒ࢽ  ,࢝ࢿࣄ
                      െ࣒ࣄ  ࡸ൫࢙࣋ െ ࣒

ሷ ൯ ൌ 0                                 (9) 
where ࢙࣋ is the mass density,  j is the micro-inertia, G is the 
shear modulus. ࣄ, ,ࢻ  are and micropolar material ࢽ and ࢼ
constants. w and  ࣒ are displacement and micro-rotation 
component, respectively. 
We consider the simply supported problem in which the 
boundary conditions are as follows 
 
࢞  ൌ െ, :   ࢝ ൌ , ࣒ ൌ ࣒ ൌ                (10) 
࢟  ൌ െ, , ࢝   : ൌ , ࣒ ൌ ࣒ ൌ            (11) 
 
Fluid Domain 

For fluid domain, we have the following equations [7, 8]: 
ࢺ ൌ                   (12) 
where,    is the deformation potential. The related boundary 
conditions are as follows (Fig. 1) 

࢞  ൌ ,   :ࢇ ࣔ ⁄ࣔ ൌ                               (13) 
࢟  ൌ ,  :࢈ ࢶࣔ  ⁄ࣔ ൌ                     (14) 
ࢠ  ൌ െࢉ:  ࢶࣔ  ⁄ࣔ ൌ                               (15) 
ࢠ  ൌ :  ࢶࣔ  ⁄ࣔ ൌ ,࢞ሺ࢝ ,࢟ ,  ሻ                        (16)࢚
 
Using separations of variable in fluid domains, yields the 
following results 
࣐ ൌ ∑ ∑ ࢠሺࢫሺࢎ࢙ࢉሻ࢟࣊ሺ ࢙ࢉሻ࢞࣊ሺ ࢙ࢉ ࡱ  ∞ሻሻࢉ

ൌ
∞
ൌ          (17) 

where  
 ൌ ሾሺ࣊ሻ  ሺ࣊ሻሿ/         (18- a) 
  ൌ ,ܠሺ࣐ ,ܡ  ሻ;                   (18- b)ࣂା࢚ሺ࣓ࢋሻܢ

Natural Frequency and Mode Shapes of the Free 
Vibrations of the Structure 
For the natural frequency and mode shapes of the free vibrations of the 
structure, we have 
ቀࡳ 

ࣄ


ቁࢺ࢝  ,ࣘࢿࣄ ൌ ሷ࢙࢝࣋                (19) 

ሺࢻ  ,࣒ሻࢼ െ,࣒ࢽ െ,࢝ࢿࣄ ࣒ࣄ ൌ ࣒࢙࣋
ሷ            (20) 

As shown in Fig. 2, the boundary conditions are 
࢞  ൌ െ, :    ࢝ ൌ , ࣒ ൌ ࣒ ൌ                   ሺ21ሻ 
࢟  ൌ െ, , ࢝   : ൌ , ࣒ ൌ ࣒ ൌ             (22) 

The natural frequencies and mode shapes of the free 
vibrating micropolar plate, the following results can be 
obtained after performing some mathematical operations,  
 

൝
࢝
࣒
࣒

ൡ ൌ ൫ െ ൯ሺ࢞ െ ∑ሻ࢟ ∑ ൝
࢝
࣒
࣒

ൡ ∞ሻࣂା࢚ሺ࣓ࢋ
ୀ

∞
ୀ                (23) 

 
where  
࢝   ൌ  ሻ                        (24)࢟ሺࡼሻ࢞ሺࡼ
࣒ ൌ  ሻ                                (25)࢟ሺࡼሻ࢞ሺࡼ
࣒ ൌ  ሻ                      (26)࢟ሺࡼሻ࢞ሺࡼ
 ሻ is the mth Chebyshev polynomial and is defined as࢞ሺࡼ
ሻ࢞ሺࡼ ൌ ሺሺ ࢙ࢉ െ ሻ࢙ࢉࢉ࢘ሺ࢞ሻሻ. 
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Also, the terms ൫ െ ൯ and ሺ࢞ െ  ሻ are the boundary࢟
functions to meet the necessary condition for admissibility of 
the functions. 
The potential energy functional of the structure is 
࢙ࢂ ൌ




  ሾࢎሺ,࣒ࢻ ,࣒ ,࣒ࢼ ,࣒ ,࣒ࢽ ,࣒ ሻ 


ି


ି

,࢝ࢎࡳ ,࢝  ࢎࣄሺ࢘ െ ࢘ሻሺ࣒ െ  (27)                       ࢟ࢊ࢞ࢊሻሿ࣒
and the corresponding Kinetic energy is 

࢙ࢀ ൌ
ࢎ

න න ሾ



ି



ି
ሶ࣒࢙࣋ ሶ࣒   ሶ࢙࢝࣋ ሿ࢟ࢊ࢞ࢊ 

ൌ 
ࢎ


࣓   ሾ


ି


ି ࣒࣒࢙࣋   (28)                                   ࢟ࢊ࢞ࢊሿ࢙࢝࣋

For more details see [2]. 

 
Fig. 2 

 

Based on the above relations, one can have the reference kinetic 
energy of the structure as 
࢙ࢀ

כ ൌ
ࢎ


  ሾ


ି


ି ࣒࣒࢙࣋   (29)             ࢟ࢊ࢞ࢊሿ࢙࢝࣋

The maximum reference potential energy of the structure can 
also be written as 
࢙ࢂ ൌ




  ሾࢎሺ,࣒ࢻ ,࣒ ,࣒ࢼ ,࣒ ,࣒ࢽ ,࣒ ሻ 


ି


ି       

,࢝ࢎࡳ ,࢝ ࢎࣄሺ࢘ െ ࢘ሻሺ࣒ െ  (30)            ࢟ࢊ࢞ࢊሻሿ࣒

Since we need to attain the natural frequencies and mode 
shapes of the free vibration of the structure, we define the 
following functional 
 
મ ൌ ࢙ࢂ െ ࢙ࢀ ൌ ࢙ࢂ െ ࣓࢙ࢀ

 (31)              כ
By minimizing this functional with respect to ܣ, ,ܤ  ,ܥ
one can obtain the natural frequencies and natural modes of the 
free vibrations. 

NUMERICAL RESULTS 
In this paper we use the Chebyshev polynomials because 

of their simplicity for computations and coding and also their 
high accuracy and numerical reliability. First, we briefly 
introduce the Chebyshev polynomials and some of their 
properties. The first six terms of the Chebyshev polynomials 
are 
ܶ ൌ 1;  ଵܶ ൌ  ;ݔ ଶܶ ൌ ଶݔ2 െ 1;  ଷܶ ൌ ଷݔ4 െ  ;ݔ3
ସܶ ൌ ସݔ8 െ ଶݔ8  1; ହܶ ൌ ହݔ16 െ ଷݔ20   ;ݔ5

These functions are mutually orthogonal in the interval [-1, 1] 
with the weighting function ሺ1 െ  ଶሻିଵ/ଶ. The six polynomialݔ

graphs are shown in Fig. 3. Using Chebyshev-Ritz method, and 
approximating the number of series (we use 48 terms for all 
three variables), the problems turns to  

 

detሺ

௪௪ܭ ࣒௪ܭ మ࣒௪ܭ
௪࣒ܭ ࣒࣒ܭ మ࣒࣒ܭ
௪࣒ܭ ࣒࣒ܭ ࣒మ࣒ܭ



ସ଼ൈସ଼

െ ߱ଶ 
௪௪ܯ 0 0
0 ࣒࣒ܯ 0
0 0 ࣒మ࣒ܯ



ସ଼ൈସ଼

ሻ ൌ 0           (32) 

 
Where  

Fig. 3. Chebyshev polynomials 
 

௪௪ܭ ൌ ሾ ࢙ࢂ2߲
߲ሺ݊݉ܣሻ

2ሿ
16ൈ16

                (33) 

࣒௪ܭ ൌ ௪࣒ܭ ൌ ሾ ࢙ࢂ2߲
݊݉ܤ߲݊݉ܣ߲

ሿ
16ൈ16

             (34) 

మ࣒௪ܭ ൌ మ௪࣒ܭ ൌ ሾ ࢙ࢂ2߲
݊݉ܥ߲݊݉ܣ߲

ሿ
16ൈ16

             (35) 

࣒࣒ܭ ൌ ሾ ࢙ࢂ2߲
߲ሺ݊݉ܤሻ

2ሿ
16ൈ16

              (36) 

మ࣒మ࣒ܭ ൌ ሾ
࢙ࢂ2߲

߲ሺ݊݉ܥሻ
2ሿ
16ൈ16

              (37) 

௪௪ܯ ൌ ሾ ࢙ࢀ2߲
כ

߲ሺ݊݉ܣሻ
2ሿ
16ൈ16

              (38) 

࣒࣒ܯ ൌ ሾ ࢙ࢀ2߲
כ

߲ሺ݊݉ܤሻ
2ሿ
16ൈ16

               (39) 

మ࣒మ࣒ܯ ൌ ሾ
࢙ࢀ2߲

כ

߲ሺ݊݉ܥሻ
2ሿ
16ൈ16

               (40) 

To our knowledge, there is no other result found for the 
frequencies of free vibration of a plate modeled by microstretch 
theory in the literature. Therefore we must compare our results 
with only the results obtained in the classical theory by taking 
all microstretch material constants zero. The numerical results 
from the present study for dry-structure are compared with 
those obtained from analytical solution [12] in Table 1.   
 

Table.1 Frequencies of vibration for dry-structure, classic theory, ߱ 
(sିଵሻ 

Mode 
No. Present Study Analytical Results 

[12] Error (%) 

1 162.150 162.150 0 
2 256.441 256.381 0.02 
3 256.441 256.381 0.02 
4 324.395 324.300 0.03 
5 363.215 362.578 0.2 
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The numerical results for frequencies of transverse vibration of 
dry structure obtained by using the micropolar theory are given 
in Table 2 and are compared with the results of analytical 
method. The different parameters for the micropolar theory are 
also presented in this table. 
 

Table 2. Results for frequency of transverse vibration for dry 
structure, micropolar theory, ߱ (sିଵሻ 

Mode 
No. 

Micropolar 
Theory (Present 

Study) 

Analytical Results 
[12] 

1 162.150 162.150 
2 256.441 256.381 
3 256.441 256.381 
4 324.395 324.300 
5 363.215 362.578 

 
As can be seen, even though in our computations the 
micropolar frequencies are a bit less than the classical 
frequencies, the micropolar frequencies are very close to the 
classical one (with two decimal digit accuracy). The main 
reason is that the micropolar theory admits the rigid body 
rotation for micro-elements. It should also be noted that some 
additional frequencies are observed due to microstructure of the 
plate among the values of the frequencies obtained from 
classical theory of the elasticity. The results for the micro-
rotational wave frequencies are presented in Table 3. It should 
be noted that these additional frequencies disappear when all 
micropolar parameters are taken as zero.  
As mentioned before, some additional are observed from the 
micromotion assumptions among the values of the frequencies 
obtained from the classical theory of elasticity. We observed 
that these additional frequencies disappear while the all 
microstretch constants are taken as zero. We also observed that 
these additional frequencies are more sensitive to the change of 
the micro elastic constants than the classical frequencies. 

 
Table 3. Results for the Micro-rotaional wave Frequency, Dry 

Structure, ߱ (sିଵሻ 
  ,ൌ  0.05966ߛ  ,ൌ  0.01585 ߚ  ,ൌ 0.1236 ߙ
 ݆ ൌ 0.325 ൈ 10ି,   ,h = 0.002 ,0.1316 = ߢ

G =  26.64 ൈ 10ହ, E = 70.85 ൈ 10ହ, 0.33 = ߥ 
Mode 
No. 

Micro-rotational Wave 
Frequency 

1 95.206 
2 173.905 
3 191.051 
4 198.261 
5 258.348 

 
It is in accordance with the results reported by [4]. The values 
of the additional frequencies increase by the change of the 
micro constants and then considerable amount of additional 
frequencies move out among the classical frequencies under 
consideration. We think that this observation may guide us to 
identify the microstretch material constants for different 
materials for future works. The shapes for the first four mode 
shapes of the micropolar structure are shown in Figs. 4-7. The 

mode shapes corresponding to the micro-rotational frequencies 
are also presented in Figs. 8-11. 

 
Fig. 4. First Mode Shape of the Micropolar Structure  

 
Fig. 5. Second Mode Shape of the Micropolar Structure 

 
Fig. 6. Third Mode Shape of the Micropolar Structure 

 
Fig. 7. Fourth Mode Shape of the Micropolar Structure 

 

 
Fig. 8. First Mode Shape of the Micropolar Structure for ૐ, 
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Fig. 9. Second Mode Shape of the Micropolar Structure for ૐ, 

 
Fig. 10. Third Mode Shape of the Micropolar Structure for ߰ଵ,ଶ 

 
Fig. 11. Fourth Mode Shape of the Micropolar structure for ߰ଵ,ଶ 

 
FLUID-STRUCTURE INTERACTION 
 

The coupling between the fluid and structure occurs in a 
boundary condition at  ࢠ ൌ . As we know this coupling has the 
following form 
ࢠ  ൌ :   ࣔ ⁄ࣔ ൌ ,࢞ሺ࢝ ,࢟  ሻ                      (41)࢚
As mentioned earlier, we have the following relations for the 
fluid domain 
,ܠሺ࣐ ,ܡ ሻܢ ൌ 
∑ ∑ ࢠሺሾ ܐܛܗ܋ሻ࢟࣊ሺ ܛܗ܋ሻ࢞࣊ሺ ܛܗ܋ ࡱ  ሻሿஶࢉ

ୀ
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and for the structure, we have 

ቀࡳ 
ࣄ


ቁࢺ࢝  ,ࣘࢿࣄ ࡼ ൌ ሷ࢝࣋             (43) 

ሺࢻ  ,࣒ሻࢼ െ,࣒ࢽ െ,࢝ࢿࣄ ࣒ࣄൌ ࣒࣋
ሷ            (44) 

With the following boundary conditions 
 
ࢠ  ൌ :   ࣔ ⁄ࣔ ൌ ,࢞ሺ࢝ ,࢟  ሻ                               (45)࢚
࢞  ൌ െ, :   ࢝ ൌ , ࣒ ൌ ࣒ ൌ                                     (46) 
࢟  ൌ െ, , ࢝   : ൌ , ࣒ ൌ ࣒ ൌ                                     (47) 
Where, P is the hydrodynamic pressure due to interaction 
between fluid and structure. At this step, we use the Chebyshev 
polynomial to write the plate parameters.  
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By some straightforward algebraic operations, one can obtain 
ࡱ ൌ ∑ ∑ ሻࢉࢫሺ ࢎࢉ࢙ࢉ   ൫ െ ൯ሺ࢞ െ
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 (49)                    ࢟ࢊ࢞ࢊሻ࢟ሺࡼሻ࢞ሺࡼሻ࢟࣊ሺ ܛܗ܋ሻ࢞࣊ሺ ܛܗ܋ሻ࢟
Because of the orthonormality nature of the Chebyshev 
polynomials in [-1, 1], the above relations can easily be 
computed. 

Chebyshev-Ritz Method 
At this step, we are ready for finding natural frequencies 

of the couple problem. It is necessary to construct the Rayleigh 
quotient. For finding the Rayleigh quotient, the related 
reference energies are presented: 
Fluid Reference Kinetic Energy 

The reference kinetic energy of the fluid is due to fluid-
structure interaction, therefore [7, 8], 
ࡸࢀ
כ ൌ




ࡸ࣋  ࣐

࣐ࣔ

ࣔ
ࡿࢊ

 
ࡿ               (50) 

Which yields the following relation for the fluid reference 
kinetic energy is as 
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Structure Reference Energy 
The reference kinetic energy of the structure is as follows 

[2], 
כ࢙ࢀ ൌ
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Maximum Potential Energy of the Structure 

The maximum potential energy of the structure is [2], 
࢙ࢂ ൌ
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Hence, we are ready to find the natural frequencies of the 
coupled problem. Utilizing Rayleigh quotient, 
ષ ൌ

࢙ࢂ
ࡸࢀ
࢙ࢀାכ

 (54)                      כ

 
and minimizing the following functional with respect to ܣ  , 
 ܤ   and  ܥ   yields the desired result 
 
મ ൌ ࢙ࢂ െ ષሺࡸࢀ

כ   ሻ              (39)כ࢙ࢀ
which results 
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Noting that ࡱ  Ԣs are functions of   , 
  ,   ; therefore we 

can compute the mode shapes and natural frequencies of the 

coupled problem. 
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NUMERICAL RESULTS 
Using again Chebyshev-Ritz method, and approximating 

the number of series (we use 16 terms for fluid domain), the 
problems turns to 

 

det ሺ

௪௪ܭ ࣒௪ܭ మ࣒௪ܭ
࣒࣒ܭ ࣒࣒ܭ మ࣒࣒ܭ
௪࣒ܭ ࣒࣒ܭ ࣒మ࣒ܭ



ସ଼ൈସ଼

െ ષ 
௪௪ܯ 0 0
0 ࣒࣒ܯ 0
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ସ଼ൈସ଼

ሻ ൌ 0       (55) 

 
Where 
௪௪ܭ ൌ ሾ ࢙ࢂ2߲
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16ൈ16
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The numerical results from the present study for wet-
micropolar structure are given in Table 4 and are compared 
with those obtained for the dry micropolar structure.   

 
Table 4. Results for FSI Frequency ( ષ ) in (sିଵሻ 

  ,ൌ  0.05966ߛ  ,ൌ  0.01585 ߚ  ,ൌ 0.1236 ߙ
 ݆ ൌ 0.325 ൈ 10ି,   ,h = 0.002 ,0.1316 = ߢ

G =  26.64 ൈ 10ହ, E = 70.85 ൈ 10ହ, 0.33 = ߥ 
Mode 
No. 

Wet Frequencies  Dry 
Frequencies 

1  32.913 162.150 
2  59.664  256.441 
3  64.679 256.441 
4  93.057 324.395 
5  170.788 363.215 

 
 

Table 5. Results for FSI Frequency of Micropolar and Classic 
Structures( ષ ) in (sିଵሻ 

Mode No. Micropolar 
Theory (Present 

Study) 

Classical Theory 
(Present Study) 

1 32.913 32.913 
2 59.664 59.664 
3 64.679 64.679 
4 93.057 93.057 
5 170.788 170.788 
6 249.077 249.077 
7 256.441 256.441 

 
 

 
Fig. 12. First Mode Shape of the Micropolar Fluid-Structure  

 
Fig. 13. Second Mode Shape of the Micropolar Fluid-Structure 

 
Fig. 14. Third Mode Shape of the Micropolar Fluid-Structure 

 
Fig. 15. Fourth Mode Shape of the Micropolar Fluid-Structure 

 

The results for micromotions ߰, is same as the results for the 
structure without having contact with a fluid and therefore we 
omit them. 
 
CONCLUSION 

In this paper the coupled vibrations of the lowest-order 
micropolar plate in contact with the ideal incompressible fluid 
has been investigated. The method for finding the natural 
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frequencies of the coupled vibrations relies on the Chebyshev-
Ritz method.  

This theory predicts the existence of micro-rotational 
waves which are not present in any of the known plate theories 
based on the classical continuum mechanics. Moreover, When 
all microstretch constants are taken as zero, these additional 
frequencies disappear and only classical frequencies. Excellent 
agreement between micropolar elasticity and classical elasticity 
has been found in finding natural frequencies of free vibrations. 
As expected, the fluid-structure frequencies have found to be 
less than the natural frequencies for the dry structure. It can be 
concluded that this observation may be used to determine 
microstretch material constants in future works by combining 
this analysis with some other assumptions for analysis of fluid 
structure interaction problems. 
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