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Abstract
This paper presents the transient response of submerged

elastic structures subject to underwater shock waves. Two funda-
mental effects are investigated, namely, the inertial and elastic ef-
fects, characterized by two non-dimensional parameters, namely,
the inertial parameter M and the elastic parameter K. Case stud-
ies are provided with physical and mathematical interpretations
of the results.

1 Introduction
In the pioneering work of Taylor (1941), Taylor studied the

fluid-structure interactions (FSI) between an exponentially de-
caying plane shock wave and an infinite rigid flat plate. Taylor’s
model of a floating air-backed plate remains the foundation for
the understanding of FSI between underwater shock and floating
structures. An enhancement of Taylor’s treatment was presented
in Hutchinson & Xue (2005) to account for the yield strength of
the core to improve the estimation of momentum transmission to
sandwich constructions. Extension of Taylor’s model for air blast
loading was accomplished in Kambouchev et al. (2006), where
nonlinear compressibility effects are important.

Much of the previous work was focusing on air-backed
structures. Recently, there was an increased interest in water-
backed structures, driven by analysis and design of advanced
composite marine propellers (Young, 2007, 2008; Liu, 2008; Liu
& Young, 2009). In Liu & Young (2008), the influence of back-
ing conditions (i.e. air-backed versus water-backed) was system-

atically analyzed. The solution of the water-backed plate (WBP)
was cast into the same format as that of the air-backed plate
(ABP) with a modified fluid-structure interaction (FSI) param-
eter to facilitate a unified analysis of the ABP and WBP using
the same set of formulae. The influence of back conditions on
fluid and structural dynamics, including fluid cavitation, was sys-
tematically investigated. Asymptotic limits were mathematically
identified and physically interpolated. Results showed that the
WBP experiences lower net pressure loading, reduced structural
response, and hence lower peak momentum gaining. The time
to reach peak momentum was shown to be shorter for the WBP
than for the ABP. Cavitation was found to be almost inevitable
for the ABP, while relevant to the WBP only for a small range of
the FSI parameter.

Another important feature of underwater shock waves is
their finite pressure rise time. Most of the previous studies,
however, assumed ‘steep front’, namely, zero pressure rise time.
More recently, Liu & Young (2010) performed detailed mathe-
matical and physical analysis of submerged elastic plates (both
air- and water-backed) subject to underwater shock loading with
pressure precursor. Case studies showed that the pressure precur-
sor significantly decreases the impact-side peak pressure of both
air-backed and water-backed plates. At the same time, it leads to
much earlier cavitation and peak momentum arrival.

Another phenomenon that was in general missing in previ-
ous studies is the influence of elastic support in terms of shock-
structure interaction dynamics. The elastic effect was included
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in the original work of Taylor (1941) for air-backed structures.
However, elastic effect was not the primary focus of Taylor
(1941). Instead, more discussions were based on the solution
for freely standing structures. The current work is to derive the
complete mathematical formulations for the transient responses
of both ABP and WBP with elastic support subject to underwa-
ter shocks. Two fundamental effects, namely inertial and elastic
effects, are identified and studied in the parametric space. The
general solution is shown to be bounded by extreme cases with
interesting intermediate response spectrums. Detail results are
presented in the following sections.

2 Formulation
Consider a rigid plate of mass per unit area m = ρshs with

elastic support, where ρs and hs are respectively the density and
thickness of the solid plate. The elastic support is assumed
to have an equivalent stiffness of k. Notice that the unit of
k is f orce/length3, namely stiffness per unit area. Thus the
elastically supported structure has a fundamental frequency of
f = 1/2π ∗

√
k/m. The corresponding angular frequency is thus

ω =
√

k/m. In the current work, both ABP and WBP are mod-
eled. Thus the plate may have two wetted surfaces ΩI (incident
side) and ΩB (back side). Consider normal incidence of an expo-
nentially decaying planar pressure wave on the incident surface
ΩI :

pi(x, t) = p0e−(t−x/c)/θ (1)

where c is the speed of sound in water, p0 is the peak pressure,
and θ is the pressure decay time. Notice that origin of the coor-
dinate is taken to be on the plate, with the positive direction to be
the same as the traveling direction of the incoming wave. Based
on the methodology presented in Liu & Young (2008), the equa-
tion of motion for the plate subject to planar shock wave reduces
to the form typical of a mass-spring-damper system as follows:

mü(t)+βρcu̇(t)+mω2u(t)−2p0e−t/θ = 0 (2)

where ρ is the water density. The velocity term in Eqn. 2 comes
from the mass and momentum balance. Notice that in Eqn. 2,
β = 1 for ABP and β = 2 for WBP. This difference is derived
from the fact that the transmitted wave (given in Eqn. 5 of (Liu
& Young, 2008) and Eqn. 9 of the current paper) is only relevant
for WBP. The forcing term 2p0e−t/θ represents the summation
of the incident and reflected pulses given that the plate is rigid
and fixed in space. It should be pointed out that in Eqn. 2, the
structural damping and fluid added-mass effects were neglected.

In general, the effect of structural damping is negligible com-
pared to acoustic damping. The effect of added-mass warrants
further investigation. For early time response, the fluid acts as
a compressible acoustic medium and localized added-mass ef-
fect should be considered; for late time response, the fluid acts
more like an incompressible medium and global added-mass ef-
fect should be considered. One can expect that the added-mass
effect is more important for late time response than for early time
response. The current paper is mainly focusing on the early time
response.

Applying initial conditions u(0) = u̇(0) = 0 to solve for the
transient structural response considering FSI from Eqn. 2:

u(t) =
p0θ 2

m(1−M+K2)
{2e−t/θ

+ [−1+
2−M√

M2 −4K2
]e

−M+
√

M2−4K2
2 t/θ

+ [−1− 2−M√
M2 −4K2

]e
−M−

√
M2−4K2
2 t/θ} (3)

u̇(t) =
p0θ

m(1−M+K2)
{−2e−t/θ

+ [−1+
2−M√

M2 −4K2
][
−M+

√
M2 −4K2

2
]e

−M+
√

M2−4K2
2 t/θ

+ [−1− 2−M√
M2 −4K2

][
−M−

√
M2 −4K2

2
]e

−M−
√

M2−4K2
2 t/θ}

(4)

ü(t) =
p0

m(1−M+K2)
{2e−t/θ

+ [−1+
2−M√

M2 −4K2
][
−M+

√
M2 −4K2

2
]2e

−M+
√

M2−4K2
2 t/θ

+ [−1− 2−M√
M2 −4K2

][
−M−

√
M2 −4K2

2
]2e

−M−
√

M2−4K2
2 t/θ}

(5)

where the two non-dimensional parameters are defined as fol-
lows:

M ≡ τS

τA
≡ θ

m
β ρc

=
βρcθ

m
(6)

K ≡ τS

τV
≡ θ

1
ω

= ωθ (7)

Notice that both M and K can be interpreted as the ratio be-
tween critical time scales. Basically, M is the ratio between the
characteristic shock decaying time (τS = θ ) and the characteristic
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time to compress an acoustic medium with the same equivalent
mass of the rigid plate (τA = m/βρc); K is the ratio between the
characteristic shock decaying time (τS = θ ) and the characteristic
free vibration time of the elastically supported plate (τV = 1/ω).
Thus the inertial and elastic effects of the structural system sub-
ject to underwater shock loading are characterized by M and K,
respectively.

After solving the structural response, the transient pressure
on the incident surface ΩI and on the back surface ΩB can be
obtained as, respectively:

pI(t) = 2p0e−t/θ −ρcu̇(t) (8)
pB(t) = ρcu̇(t) (9)

where pI(t) and pB(t) are respectively the pressure on the inci-
dent and back surfaces. Notice that pB(t) is only relevant for
WBP.

It can be seen from Eqn. 2 that the system acts as a mass-
spring-damper system. The value of the damping ratio deter-
mines the behavior of the system. It can be shown that:

1. M/2K > 1, the system is overdamped
2. M/2K = 1, the system is critically damped
3. M/2K < 1, the system is underdamped

The damping characteristics will be investigated in Section
3.2.

3 Results
As defined in Section 2, the two parameters M and K char-

acterize the inertial and elastic effects, respectively. In this sec-
tion, parametric studies will be performed to quantitatively study
these two effects. In the following studies, the water density,
sound speed, and steel density are chosen to be ρ = 1000 kg/m3,
c = 1400 m/s, and ρs = 8000 kg/m3, respectively. The incoming
shock wave has peak pressure of p0 = 10 MPa and pressure de-
cay time of θ = 0.1 ms. Since a complete study was already pre-
sented in (Liu & Young, 2008) regarding the influence of back
conditions, the current work will primarily focus on the water-
backed structures.

3.1 Inertial effects
To study the inertial effects, the elastic effects are temporar-

ily neglected, namely, K = 0 by taking ω = 0. The plate is
thus freely standing without elastic support. Three plate thick-
nesses are chosen to yield three distinct values for the inertial
parameter M. These three values are respectively, hs = 0.001 m,
hs = 0.01 m, and hs = 0.1 m, which lead to m = 8 kg/m2,

m = 80 kg/m2, and m = 800 kg/m2, respectively. Correspond-
ingly, the inertial parameter takes the value of M = 35, M = 3.5,
and M = 0.35, respectively. Based on analytical results in (Liu &
Young, 2008), cavitation is only relevant for WBP when M < 2.
Thus among the above three cases, only the last one will lead to
cavitation. The cavitation inception time can be calculated using
the formula τc/θ = [lnM/(M − 1)− ln(2 − M)/(M − 1)] (Liu
& Young, 2008). Even if cavitation is relevant for the thickest
plate hs = 0.1 m, it will not occur until t ≈ 2.4θ . To avoid post-
cavitation complications, the results in this section will only be
plotted until t = 2θ . Notice that in all the following plots, the
time axis (horizontal) is normalized by the pressure decay time
θ .

The inertial effects over the incident side shock pressure p(t)
is shown in Fig. 1. The pressure p(t) is normalized by two times
of the peak incident pressure p0. In general, the pressure his-
tory is bounded by the case of infinity thickness (hs = ∞ and
thus M = 0) and the case of vanishing thickness (hs = 0 and thus
M = ∞). For the case of M = 0, the incident side shock pressure
basically doubles the incoming pressure, namely, the plate is so
thick (heavy) that it perfectly reflects the incoming pressure; for
the case of M =∞, the incident side shock pressure is equal to the
incoming pressure, namely, the plate is so thin (light) that it ap-
pears transparent and completely passes the incoming pressure.
The two cases (M = 0.35 and M = 3.5) are more intermediate.
The case of M = 35 has a dog-leg shape in its pressure profile,
namely a sharp drop in the initial stage followed by a gradual
decay resembling the case of M = ∞, namely, the extremely thin
(light) plate.
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Figure 1. Inertial effects: the incident side shock pressure (K = 0).

3 Copyright c© 2010 by ASME



The inertial effects over the plate momentum transfer is
shown in Fig. 2. The unit area momentum mv(t) is normalized by
the maximum achievable momentum 2p0θ (Liu & Young, 2008).
The normalized momentum transfer history is well bounded by
the case of infinity thickness (hs = ∞ and thus M = 0) and the
case of vanishing thickness (hs = 0 and thus M = ∞). For the
case of M = 0, the momentum transfer is maximized, namely, it
will reach the maximum momentum eventually (notice that only
the first two decay time is shown so it is yet to reach the max-
ima of unity). This is because the plate is so thick (heavy) that
it absorbs all the momentum that is available. For the case of
M = ∞, the momentum transfer is zero, because the plate is so
thin (light) that it allows the incoming pressure to escape without
momentum loss. The two cases (M = 0.35 and M = 3.5) are more
intermediate. The case of M = 35 (hs = 0.01m) is already very
close to the case of M = ∞ because of its thinness (lightness).
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Figure 2. Inertial effects: the plate momentum transfer (K = 0).

3.2 Elastic effects
To study the elastic effects, the plate thickness is taken to

be hs = 0.01 m, which leads to an inertial parameter of M = 3.5.
Three characteristic frequencies are chosen to yield three distinct
values for the elastic parameter K. These three frequency values
are respectively, f = 102 Hz, f = 103 Hz, and f = 104 Hz, which
lead to K = 0.02π , K = 0.2π , and K = 2π , respectively. Since
M > 2 so cavitation is not relevant, which permits the plotting
of longer time without introducing complications. The following
two figures are plotted until t/θ = 4 to reveal all the essential
features.

The inertial effects over the incident side shock pressure is
shown in Fig. 3. In general, the pressure history is bounded by
the case of infinity stiffness ( f = ∞ and thus K = ∞) and the case
of vanishing stiffness ( f = 0 and thus K = 0). For the case of
K = ∞, the incident side shock pressure basically doubles the in-
coming pressure, namely, the elastic support is so stiff (strong)
that it prevents the plate from retreating and thus perfectly re-
flects the incoming pressure. The case of K = 2π ( f = 104 Hz)
features pressure oscillations. This is because M/2K < 1 and the
system is underdamped. Its value is oscillating around that of
the infinitely stiff plate K = ∞. Also noticed is that the magni-
tude of oscillation dies down quickly. After t/θ > 2, it’s essen-
tially overlapping with the case of K = ∞ without much oscilla-
tion, primarily due to the acoustic damping effect. The case of
K = 0.02π ( f = 102 Hz) shows almost no difference than the
case of K = 0 (the corresponding two curves are nearly indis-
tinguishable). Thus the stiffness of the elastic support has to be
high enough for the elastic effects to be significant. The case of
K = 0.2π ( f = 103 Hz) is more intermediate, showing notice-
able difference than both the zero-stiffness and infinite-stiffness
cases.
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Figure 3. elastic effects: the incident side shock pressure (M = 3.5).

The inertial effects over the plate momentum transfer is
shown in Fig. 4. In general, the momentum transfer history is
also bounded by the case of infinity stiffness ( f = ∞ and thus
K =∞) and the case of vanishing stiffness ( f = 0 and thus K = 0).
For the case of K = ∞, the plate momentum stays at zero. Phys-
ically, the elastic support is so stiff (strong) that it prohibits the
plate with finite mass to move to gain momentum. In another
word, the finite-thickness plate does not move at all while the
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incoming pressure is doubled at the incident side. The case of
K = 2π features momentum transfer oscillations. This is again
because M/2K < 1 and the system is underdamped. Its value
is oscillating around that of the infinitely stiff plate K = ∞ (zero
momentum transfer). Also noticed is that the magnitude of os-
cillation dies down quickly as well. After t/θ > 2, it essentially
becomes zero reflecting the fact of stationary plate, also due to
the acoustic damping effect. The case of K = 0.02π shows al-
most no difference than the case of K = 0 (the two legends are
indistinguishable). The case of K = 0.2π is more intermediate,
with noticeably lower momentum transfer than the zero-stiffness
plate.
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Figure 4. elastic effects: the plate momentum transfer (M = 3.5).

4 Discussions
Transient shock response of submerged plates with elastic

support was analyzed. Inertial and elastic effects were investi-
gated, which are characterized by two non-dimensional param-
eters, namely, the inertial parameter and the elastic parameter.
Results show that:

1. The incident side shock pressure increases with the plate
thickness (or mass per unit area) while all other conditions
are fixed;

2. The plate momentum transfer increases with the plate thick-
ness (or mass per unit area) while other conditions are fixed;

3. The incident side shock pressure increases with the stiff-
ness of the elastic plate support while all other conditions
are fixed;

4. The plate momentum transfer decreases with the stiffness of
the elastic plate support while all other conditions are fixed.
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