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Abstract 

In this article an approach for fully automatic mesh generation 

for two dimensional fluid structure problems that respect the 

integrity of the geometrical boundaries is presented. This 

approach is based on the modified Quadtree method. First, 

interior quadrants of the solid structure are created as the 

original Quadtree method. Boundary quadrants of the solid 

structure are created between the boundary curves and the 

interior quadrants using a simple projection algorithm. As a 

result, the problem of cut quadrants of the original modified 

Quadtree method is eliminated here. Boundary elements of the 

fluid region are created on the boundary curves using 

calculated projection points. The use of closed non uniform 

composite B-spline curves, for a unified representation of 

boundaries curves, simplifies the projection algorithm. On the 

other hand using this type of boundaries representation 

reduces geometrical incompatibilities of the generated mesh 

and produces a perfect compatibility between boundary 

elements and finite elements. This method can be extended to 

problems of three dimensional mesh generation and eliminate 

all cases of cut octants. An object-oriented prototype program 

in C++ has been written and application example is presented 

in this paper. Several algorithms of this method are suitable 

for an implementation on parallel computers. 

 

Introduction 

The coupled finite element and boundary element method are 

used more and more in fluid-structure interaction. Such 

method may be used for a solid domain (finite element 

domain) with geometrical complexity. To have a reliable 

application of this technique a valid finite element 

discretization of the solid domain and a compatible boundary 

element discretization of the solid-fluid interface are needed. 

In these types of problems, a fully automatic mesh generation 

is a device which produces automatically a suitable finite 

element mesh from the geometrical representation of the solid 

and a compatible boundary element mesh of the solid-fluid 

interface. These meshes must be topologically compatible and 

geometrically similar to the real geometrical model [1-3]. 

Different approaches have been developed for two and three 

dimensional fully automatic mesh generation such as the 

Delaunay triangulation technique [1,3-7], the isoparametric 

mapping mesh generation [8-12] and modified quadtree/octree 

methods [2,13-20]. The richness of the tree based data 

structure and the spatially based mesh control devices of the 

modified quadtree/octree mesh generator make it one of 

remarkable techniques for the adaptive finite element analysis 

using h or hp type mesh improvement [15,21-23]. 

The principals of the quadtree method for finite element mesh 

generation can be summarized as follow: first we must choose 

a square that encloses the entire solid object. This square is 

then recursively subdivided into four squares. Each square is 

tested to see if it is inside the solid (IN), outside the solid 

(OUT) or partially inside the solid (PARTIAL). Partial 

quadrants are classified as being either edge or vertex quadrant 

[13, 19] and then recursively subdivided in the same manner. 

This process is continued until the criteria of the refinement 

which define by user is satisfied. The interior quadrants are 

then subdivided to be compatible with their neighboring 

interior and partial quadrants. Partial quadrants are cut using 

some methods so that they closely match the representation of 

boundary curves (CUT quadrants). Finally, solid finite 

elements are generated in all quadrants [2, 13-15]. The basic 

algorithms will be found in [13, 19]. 

In this work for fluid-structure problems, an automatic mesh 

generator for two dimensional problems based on the quadtree 

decomposition technique has been developed. An important 

difference with the original method is that in place of dealing 

with cut quadrants as in [2, 13-15, 19], after the quadtree 

subdivision process, we keep interior quadrants and we 

eliminate OUT and PARTIAL quadrants. New solid boundary 

quadrants are created between interface solid-fluid interface 

curves and free edges of interior quadrants. A simple 

projection method based on finding the minimum distance 

between a point and a curve is used. For each free edge of the 
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interior quadrants one solid boundary quadrant is created. In 

this way all of different configurations of cut quadrant which 

were discussed earlier [13-14, 19] are eliminated. 

With the use of closed nonuniform composite rational B-

spline curve, we can produce a unique mathematical 

representation of solid-fluid interface curves. This type of 

representation simplifies solid boundary quadrants generation. 

After the creation of all solid quadrants in the interior and on 

the boundary, the shapes of generated solid quadrants can be 

improved using a repositioning algorithm. Although the 

spatial addressability of quadrants as discussed in [24-25] are 

lost using the smoothing operation but, each quadrant can be 

found easily using the quadtree data structure.  

After the generation of the solid elements, boundary elements 

can be generated easily. Each solid boundary quadrant has a 

side on the interface curves which is made by two projection 

points. This side, that cut a segment of the interface curve, 

defines a boundary element having two nodes in common with 

its neighbor finite element. 

This method can be used for three dimensional problems using 

octree method by creating solid boundary octants between 

interior octants and the solid-fluid interface surface. As a 

result, all of catalogued 4096 different configurations of cut 

octants are replaced by a simple routine [26]. 

  

Geometric representation of the solid-fluid interface 

Every mesh generator requires a good geometric 

representation of the domain, both at a geometry level, i.e. 

“the mathematical representation of the geometric model in 

terms of shape and space location”, and at a topology level, 

i.e. “the adjacency relationship of various geometric entities 

among each other”, [6]. The composite nonuniform rational B-

spline curves is a versatile curve model that can represent 

almost any two dimensional domain curves [27-28]. The B-

spline curve is a piecewise polynomial function which can be 

viewed as a generalized polynomial that may have derivative 

discontinuities at some points. A composite B-Spline 

representation of boundary curves of a domain can be obtained 

as defined in [16, 29]: 

The composite B-spline curve presents second order (C
2
) 

continuity between adjacent segments of a smooth curve. 

However, if we use the double repeated knot we obtain C
l
 

continuity and if we use the triple repeated knot, we obtain C
0
 

continuity, i.e. continuity of the function only [30-31]. As a 

result, a boundary curve having C
0
 continuity can also be 

modeled using only this type of the mathematical model. So, a 

closed composite nonuniform cubic B-spline curve is almost 

adequate for representing any boundary curve in two 

dimensional mesh generation problems. We can conclude that 

any two dimensional object with any geometric complexity 

can be approximated satisfactorily by one or by a finite 

number of cubic composite B-Spline curves. This unified 

representation of the geometry has the advantage of 

representing straight, quadric and cubic lines by the same third 

degree polynomial model. This makes the mesh generation 

algorithm and programming straightforward. As a result, the 

problem of the boundary modeling mentioned in [3,32] 

presents no special difficulties. 

The domain can be described by three different types of points 

as follows: 

I. Points of the first type are boundary simple points 

which correspond to points on smooth curves, i.e. 

without derivative discontinuity. 

II. Points of the second type are boundary corner points. 

At these points, the boundary has the derivative 

discontinuity of the C
0
 order

1
.  

III. Points of the third type are points inside the solid which 

are used to define the mesh control criteria inside the 

domain, i.e. if local refinement of quadrants at a region 

is needed we introduce these points to define mesh 

refinement parameter at that region. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: First example of control points and B-spline boundary 

representation. 

 

 

The same as the third type, the first and the second type point 

can also have a mesh control parameter. Mesh control 

                                                 
1
 The second type or corner points are tripled before they are used for finding 

the B-spline representation of boundary. 
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parameters at any point on the boundary curve can be 

calculated by the B-spline approximation of control points on 

the boundary, or any suitable approximation method. 

Figure 1 represent control points and B-spline representation 

of the solid boundary curve (solid-fluid interface curve) for an 

example of a mechanical part in interaction with the fluid 

around it. Figure 2 shows another example.  

 

Quadrant generation 

As mentioned before, first a square that can surround the 

entire solid object must be created. This square is the root of 

the quadtree. Such a square is subdivided into four quadrants. 

Each quadrant is then checked to know if it is inside the object 

(IN), outside (OUT) or partially inside the solid object 

(PARTIAL). Quadrants are marked as IN or OUT and the 

PARTIAL quadrants are subdivided further into four 

quadrants which are then checked and classified in the same 

way. This process is continued until the object is refined to a 

degree which is requested by user [2, 13-15].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Second example of control points and B-spline 

boundary representation. 

 

  

We have used a modified version which is similar to the 

original method. In version the root quadrant is checked and 

subdivided into four quadrants as follows: 

a) If the greatest mesh control parameter inside the 

quadrant is greater than the actual level of the 

quadrant plus one the quadrant will be subdivided 

into four quadrants and each of the subdivided 

quadrant will be checked in the same way. 

b) If the greatest mesh control parameter inside the 

quadrant is equal to or less than actual level of the 

quadrant plus one, the quadrant will be subdivided 

into four quadrants and the process will be 

terminated. 

The above procedure can be presented in the following 

recursive algorithm: 

 

Algorithm:check_and_subdivide_quadrant(In_quadrants, 

Level) 

 

Begin 

If Maximum_control_parameter > (Level + 1) 

Then Divide_quadrant_into_four; 

 

For i in 1..4 loop  

    

check_and_subdivision_quadrant

(quadrants(i), Level+ 1); 

Endloop; 

Else 

Divide_quadrant_into_four;  

            Endif; 

End; 

 
This process is similar to the In/Out algorithm and the 

recursive subdivision of the partial quadrants of the original 

method, as most of mesh control parameter are found on the 

boundary curve. Nevertheless this method produces much 

more uniform quadrants near the solid boundary curve and 

mesh control points. As a result, quadrants near the solid-fluid 

interface are at the same level of subdivision as requested by 

the user for the solid-fluid interface curve. Figure 3 shows the 

first step of the quadrants generation for the second example. 

It must be mentioned that the above algorithm (check and 

subdivide quadrant) is suitable for implementation on parallel 

computer. One processor can subdivide a quadrant and send 

them to four processors for further refinement. 

 

  
               Figure 3: First step of quadrants generation. 

 

Copyright © 2010 by ASME



4 
Copyright @ 2010 by ASME 

 

 
Figure 4: Generated quadrants after one level difference process. 

 

 

In the above a quadtree data structure is constructed. We will 

modify and use this tree in the following steps. For smooth 

transitions between quadrants of different subdivision level, as 

the original quadtree method the one level difference rule [2, 

13-15] is applied. This rule forces that the maximum level 

difference between any two neighboring quadrants are not 

greater than one. As a result, if two quadrants have a 

difference level greater than one the greater quadrant is 

subdivided recursively until the one level rule is achieved. 

This process guarantees acceptable aspect ratio of triangular 

finite elements which will be created later. Figure 4 shows the 

result of this process for the second example. 

In the next step the interior quadrants are separated from other 

quadrants. This is done by marking the partial quadrant and 

then using an In/Out test method such as the method of 

“inflatable balloon
”
. As partial quadrants intersect boundary 

curves they can be detected with a simple intersection 

algorithm. Figure 5 shows interior quadrants for the second 

example. For the rest of the mesh generation procedure we 

need only interior quadrants as a result other quadrants can be 

removed from the tree.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Interior quadrants are selected. 

 

Generation of boundary quadrants 

The solid domain decomposition process must generate 

elements which can representation the solid boundary 

adequately. A boundary quadrant must be endowed with 

information describing the boundary curve such as: the type of 

the curve, intersection points, boundary edges or vertices 

embed in the quadrant and so on. Even if the boundary curve 

is well represented, some technical difficulties are still 

possible. For example we can have: 

• Very small or tiny quadrants 

• Complex boundary of cut quadrants (due to the 

complexity of the boundary curve inside the original 

partial quadrant). 

To circumvent these difficulties, we present a new approach 

for dealing with boundary quadrants. Instead of using partial 

quadrants generated by the In/Out test during the quadrant 

generation; we discard them and we use information of 

interior quadrants (IN) and boundary curves to generate new 

boundary quadrants.  

In the first step, we create a new boundary quadrant between 

each free edge of interior quadrants and boundary curves.  The 

procedure is as follow: 

For a given IN quadrant as shown in Figure 6, take Q1 and Q2 

as vertices of a free segment L. We will find points P1 and P2 

on the boundary curve located at minimum distance to points 

Q1 and Q2 respectively. Note that the lines (Q1, P1) and (Q2, 

P2) must not intersect any other quadrant. A new boundary 

quadrant is defined by the segment L, lines (Ql, P1) and (Q2, 

P2) and the boundary segment (P1, P2). 
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Figure 6: Generated boundary quadrant between the boundary 

curve and the free edge segment of interior quadrant “l”. 

 

The minimum distance between a point Q (in the domain) and 

a parametric curve P(u) (the boundary curve)  can be find as 

follows: we find a vector (P-Q) such that P belong to the curve 

P(u) and the vector (P-Q) is perpendicular to the tangent P
u
(u) 

at P. In other word, we must find the point P ∈  P(u) that 

satisfy the following equation:  

 

 (P-Q).P
u
 = 0.  (1) 

 

The equation (1) can be solved using the Newton Raphson 

method [31].  

As we used unified representation and our boundary curve is 

closed, the answer is not unique and we need to select an 

acceptable one. We may have more than one occurrence of 

normal in the domain. If this is the case, all normals must be 

computed and the shortest (P-Q) vector must be selected as the 

answer. It is possible that this shortest vector passes through 

an existing quadrant. If it is the case, we choose another 

normal vector and if all of normal vectors run into existing 

quadrants, we start from the closest point from Equation (1) 

and we move on the boundary curve step by step until we find 

a point which does not intersect other quadrants. It is also 

possible that we create a quadrant with zero area, i.e. if points 

P1, P2, Q1 and Q2 are collinear. This situation can be handled 

by displacing point P1 or P2 a little or we can treat it later in 

the smoothing process. In the smoothing process this 

pathological case will be entirely eliminated automatically 

without any special consideration. If the point P1 is coincident 

with the point P2, we have a triangular shape in place of the 

quadrilateral one. This case needs a little attention during the 

mesh generation process to do not try to divide it to two 

triangles. Figure 7 shows generated boundary quadrants 

together with interior quadrants after the first step of boundary 

quadrant generation. 

 

 

 

 

 

 

 
Figure 7: Interior and boundary quadrants after the first step of 

boundary quadrant generation. 

 

 

As one can see in Figure 7, these boundary quadrants dose not 

present a good geometric similarity at corners compare to the 

B-spline representation of the object. To have an acceptable 

match with the geometrical model and to add corner points 

into the model, another operation is needed. In the second step 

of boundary quadrant generation, nodes of boundary quadrants 

which are on boundary curves near corner points are pulled to 

corner points. As we keep the list of corner points in our 

database this process is easy to execute. Such process 

guarantees the geometric similarity of the generated model. 

Figure 8 shows generated quadrants after this process. 

 

Smoothing process 

As mentioned in the previous section, it is possible that some 

of quadrants do not have satisfactory shape. For example there 

is a considerable sharp transition between adjacent quadrants 

with different levels of subdivision. To moderate these 

situations, a smoothing operation may be used after the 

generation of all quadrants. In this process, nodes of quadrants 

are repositioned to improve quadrants shape.  

One of the widely used repositioning methods in quadtree 

technique is the Laplacin smoothing method [12, 15, 19].  In 

this method, the Laplace equation must be satisfied for interior 

nodes. Here, a given interior node is moved to the centroid of 

its neighboring nodes. This process can be used several times. 

In our implemented software, boundary nodes remain at their 

original locations as they can only move on boundary curves. 

Generally four iterations are recommended to have a 

reasonable convergence [13]. Figure 9 shows generated 

quadrants after applying the smoothing process. This process 

can also be used after the solid finite element mesh generation 

process to improve shape of elements. 
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Figure 8: Generated quadrants after pulling to corner process. 

 

 

 

 

 

 

 
Figure 9: Generated quadrants after smoothing process. 

 

 

Boundary element mesh generation 

If we consider boundary quadrants, we will realize that these 

are the only quadrants which have a side on common with the 

solid-fluid interface. They are shown in Figure 10.  These 

common sides have been made from the projection point on 

the solid-fluid interface curves. So, we have all the 

information about these sides. These sides make boundary 

elements of the fluid in interaction with the solid. These 

boundary elements have been shown in Figure 11.  

 

 

 
Figure 10: Boundary quadrants. 

 

 

 

These boundary elements have common nodes with adjacent 

solid finite elements which we will create in the next section. 

As result, there will be no incompatibility between boundary 

and finite elements. 

 

 

 

 

 
Figure 11: Boundary elements. 

 

 

Finite element mesh generation 

Depends on our finite element package and on their analysis 

capabilities; conforming elements versus non uniform 

(nonconforming) elements, possibility of error estimations 

based on h, p or h-p formation, we can generate a finite 

element mesh tailored to our solid object. Both triangular and 

quadrilateral elements can be generated.  

If triangular elements are desired, we can use simple 

triangulation algorithm. It is easier to use predefined templates 

that match various quadrant configurations. In our case, only 

six templates are required for the triangulation of interior 

quadrants. The same templates can be used for the 

triangulation of boundary quadrants; nevertheless, we usually 

need only one template here. (The special case of triangular 

shape boundary quadrant does not need any template.) 

Generated quadrants after the smoothing process can also be 

used for the generation of mixed triangular/quadrilateral 

elements. Note that some interior quadrants have difference 

level of subdivision with respect to their neighbors. These 

quadrants have more than four edges (see Figure 9). They 

should be subdivided using appropriate template to generate 

quadrilateral or triangular element. 

 

 

 

 

 
Figure 12: Generated solid mesh. 

 

 

Figure 12 presents our second example after the triangulation 

process. Further smoothing processes can be used, if 

necessary, to produce more uniformity between elements.  
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General algorithm 

The overall algorithm of the mesh generation procedure can be 

written as follows: 

 

 

1- Enter geometric data and mesh parameters. 

2- Generate the geometric model using NURB [26] 
technique. 

3- Generate quadrants. 

 3-1 Perform recursive subdivision. 

 3-2 Enforce one level difference. 

 3-3  Find interior quadrants. 

 3-4  Generate boundary quadrants.  

4- Perform the smoothing process. 

5- Perform boundary element mesh generation. 

6-   Perform the finite element mesh generation. 

7- Produce output results.  

 

Conclusion 

The modified quadtree method is a well suited technique for 

fully automatic mesh generation in two dimensional solid-

fluid interaction problems. This method can be improved by 

paying special attention to the boundary mesh generation. In 

this article, we have examined a method for improving the 

treatment of boundary quadrant generation. Solid-fluid 

interface curves are approximated by closed composite cubic 

B-spline curves in order to obtain a unified geometric 

representation. Interior quadrants are generated using mesh 

control parameter on the boundary interface and inside the 

domain. In our method we have the same level of subdivision 

between partial quadrants and adjacent IN quadrants. OUT 

and partial quadrants are eliminated and boundary quadrants 

are generated between free edges of interior quadrants and 

boundary interface curves. Therefore, all special treatments for 

dealing with different configurations of cut quadrants are 

eliminated. Boundary quadrants are generated by using a 

simple algorithm which is based on the minimum distance 

between a point inside the domain and boundary curves. As a 

consequence, boundary quadrants are easily generated and 

have satisfactory geometric shapes which are suitable for the 

boundary element and the finite element mesh generation. 

Boundary elements are created from the common side of the 

boundary quadrant and interface curves. Finite elements are 

created from discretization of interior and boundary quadrants 

according to some predefine templates. This approach for 

handling boundary quadrants can be extended to three 

dimensional problems and can condense out all of 4096 

different configurations of cut octants [26, 33].  
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