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ABSTRACT 
This paper describes large-scale simulations of compressible 

flows over a supersonic disk-gap-band parachute system. An 

adaptive mesh refinement method is used to resolve the coupled 
fluid-structure model. The fluid model employs large-eddy 

simulation to describe the turbulent wakes appearing upstream 

and downstream of the parachute canopy and the structural 

model employed a thin-shell finite element solver that allows 

large canopy deformations by using subdivision finite elements. 

The fluid-structure interaction is described by a variant of the 

Ghost-Fluid method. The simulation was carried out at Mach 

number 1.96 where strong nonlinear coupling between the 

system of bow shocks, turbulent wake and canopy is observed. 

It was found that the canopy oscillations were characterized by 

a breathing type motion due to the strong interaction of the 
turbulent wake and bow shock upstream of the flexible canopy.   

 

1. INTRODUCTION 
Supersonic parachutes have been used as aerodynamic 

decelerators during entry and decent into low-density 

atmospheres, e.g., exploration mission to Mars. The 

deployment of such parachutes, at supersonic speeds, involves 

complex fluid structure interaction (FSI) phenomena. It is 

evident that the rapid change of the parachute shape greatly 
affects the parachute stability and deceleration rate. It involves 

the inevitable coupling between parachute and flow (strongly 

coupled highly nonlinear fluid-structure interaction), bluff body 

(flow-induced vibrations-FIV) and porous aerodynamics due to 

shape and size of the parachute, complex dynamics associated 

with an axial movement of the bow shock upstream of the 

canopy due to over-under pressurization, random loading due to 

the movement of the suspension lines that connect the 

parachute with the capsule (entry vehicle), contact forces due to 

the folding of the parachute and inflation instabilities due to the 

imbalance of fluid forces and parachute inertia with the internal 
and cable (suspension lines) forces. The FSI and FIV 

phenomena become even more complicated if the turbulent 

wake generated by the upstream payload is considered in the 

analysis. Hence, the performance and efficiency of a supersonic 

parachute is a function of the shape and design of the 
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parachute, Mach number, wake behind the parachute and the 

capsule, upstream bow-shock dynamics, fluid properties, 

landing altitude and location (distance from equator) and size 

and weight of capsule.  

By late 1950’s experimental work on the use of parachutes 

for spacecraft applications had already started producing results 

for specific parachute designs. One of the first complete studies 
on the aerodynamics of supersonic decelerators is the work by 

Maynard [1] examining the aerodynamic characteristics of 

different types of supersonic decelerators including the effect of 

balloons, drag chutes, paragliders, and parachutes. A 40-ft 

nominal diameter disk-gap-band (DGB) parachute was 

investigated in an analytical and experimental study calculating 

estimates of maximum expected loads, proposing different 

parachute configurations, preparing a stress analysis, defining 

moments of inertia, and collecting component structural data 

[2]. Research on the performance of DGB parachutes had 

become a priority by mid 1960s. The DGB parachute had been 

originally designed to be used as a decelerator for high-altitude 
meteorological rocket systems [3]. NASA conducted large-

scale experiments investigating the performance of a 30-ft 

diameter DGB parachute in flight tests [4]. The test was 

performed using a rocket launch method. The parachute was 

deployed at Mach number 1.56 and a dynamic pressure of 
2 211 [lb ft ] (546 [N m ])  at an altitude of 127,500 feet or 

38.86 km. Continuous oscillations of the canopy was observed 

almost immediately after deployment. When the parachute was 

fully inflated (in less than 1 second) the total load was 3915 

pounds (17,400 N). The parachute exhibited an average drag 

coefficient of 0.52 and pitch-yaw oscillations of 5  or less. 

During the steady-state descent the average drag coefficient 

dropped to 0.47. A comparison study based on flight-test 

experiments on the performance of modified-ringsail, disk-gap-

band and cross parachute systems was conducted by Whitlock 
et al. [5]. The deployment of the parachutes was performed 

under simulated Martian environmental conditions. It was 

found that canopy stability was acceptable for Mach numbers 

lower than 1.4 for the modified-ringsail and DGB parachutes. It 

is important to note that for higher Mach numbers some tests 

for DGB and ringsail parachutes indicated large-amplitude 

canopy oscillations and that the cross-parachute configurations 

were unstable throughout the experiments even though they 

achieved the highest drag coefficient values with the ringsail 

obtaining the second largest values for the drag coefficient.  

Another experimental study was performed at Langley’s 4-
foot wind tunnel to determine the effects of variation in reefing 

ratio and geometric porosity on the drag and stability 

characteristics of cross, hemiflo, DGB and extended-skirt 

parachutes at Mach number 1.80 [6]. In addition, modular cross 

and standard flat canopies and a ballute were also investigated. 

It was found that cross parachutes were the most unstable with 

drag variations due to breathing and squidding on the canopy 

and coning motions of the parachute. Based on the results from 

the wind tunnel an empirical correlation for the drag 

coefficients in transonic and supersonic flows for parachutes 

with specific porosity and reefing ratio was developed and it 

was concluded that reefing ratio, geometric porosity and Mach 

number are the most significant parameters in estimating the 

drag coefficient, which is in agreement with the results 

obtained by [7]. 

Lingard and Darley [8] presented a fully coupled fluid-
structure interaction model using the Arbitrary Lagrangian 

Euler methodology for simulating the flexible parachute 

incorporated with the commercial code LS-DYNA used to 

describe the flow conditions at Mach 1.5. Results for the flow 

field are in qualitative agreement with experimental results 

available in the literature.  

 NASA continued its experimental testing of DGB 

supersonic parachutes at high Mach numbers. In a recent study 

described in Sengupta et al. [9] a 0.813 m DGB parachute was 

subjected to supersonic flow and wake produced by a Viking-

type entry vehicle at NASA’s Glenn Research Center (GRC) 

10’x10’ wind-tunnel. The Mach number reached values up to 
2.5 and the Reynolds number was 3x106, which is 

representative of the Mars Science Laboratory (MSL) mission 

flow conditions. The parachute itself was a 4% scaled down 

MSL parachute and was attached to a 4% scale Viking-heritage  

entry-vehicle also designed for the same mission. Two different 

configurations, one unconstrained and the other with 

constraints allowing translation of the parachute only along the 

axial direction were investigated. In-line load cells and high 

speed cameras recorded measurements for the unsteady and 

mean drag coefficients as a function of Mach and Reynolds 

numbers, supersonic inflation, parachute trim angle, projected 
area and frequency of area oscillations. A brief description of 

the parachute deployment sequence for the MSL DGB 

supersonic decelerator is also found in [10]. In a more recent 

report by Sengupta et al. [11] a detailed discussion on the 

experimental and theoretical findings for the supersonic 

qualification program of the MSL parachute system is 

presented. They discussed the difficulties and uniqueness of the 

MSL mission compared to other past missions to Mars. They 

noted that for this mission the supersonic DGB parachute will 

spend up to 10 seconds above Mach 1.5 which is the threshold 

for increased amplitude area oscillations (Refs. [5,12,13]). They 

present a new CFD model that utilizes a large-eddy simulation 
approach to investigate the wake of the MSL capsule upstream 

of the parachute and the wake and its effect generated 

downstream of the parachute. They also presented a set of 

experiments for a 4% scaled down parachute system. 

Preliminary results from the new CFD model for rigid 

parachutes were shown to be in good quantitative and 

qualitative agreement with the experimental results.  

In this paper a new theoretical computational fluid 

dynamics (CFD) study is presented, investigating the fluid-

structure interaction between the MSL DGB parachute and 

supersonic flow. The computational approach utilizes 
structured adaptive mesh refinement, large-eddy simulation to 

describe the turbu lent flow and a finite-element method 

utilizing subdivision elements to describe the parachute motion. 
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The fluid-structure interaction is modeled using a variant of the 

Ghost-Fluid method. 

 

2. THEORY 
 A typical configuration of a supersonic parachute along 

with the payload is shown in Fig.1. It consists of a capsule 
(payload), the disk-gap-band supersonic parachute and the 

cables connecting the payload with the parachute. The 

reference coordinate system is centered at the plane of 

maximum diameter of the capsule with its x-coordinate aligned 

with the mean flow direction, as shown. The capsule is fixed at 

point A while the canopy and cables are free to move due to 

their interaction with the supersonic fluid. The distance 

between the origin of the coordinate system of reference and 

the parachute is H=1.824 m. The connecting cables are 

anchored at point B with coordinates xB=35.4 cm. The 

parachute and its cables are connected using the patterns 

discussed in Reuter et al. [14]. The capsule geometry is scaled 

down from the Viking mission capsule ( 070 sphere-cone entry 

vehicle). The capsule dimensions are: d=16.96 cm with 

w=10.72 cm. The dimensions of the parachute are: D=55.88 
cm, D0=9.3 cm, LB=10.16 cm, and LG=10.16 cm. For this study 

H/d=10.75. In addition, the Mach number considered in this 

analysis was set to 1.96. 

 

 
 

FIGURE 1. Configuration of a disk-gap-band supersonic 

parachute and its payload. 
 

2.1 Fluid model 

 Assuming negligible viscous work and triple correlations, 

the large-eddy simulation (LES) dimensional conservation 

transport equations for the conservation of mass, momentum 

and total energy of the fluid based on the Favre-filtered (i.e. 

density weighted) quantities [15], denoted with overbars, are 

given by  

 
0j jt u x       , 

 i i j ij j ij j ij ju t u u p x x x               , 

  j jE t E p u x       

                        T

j j ji i j j jT x x u x q x         ,  (1) 

where   is the density,  iu is the fluid momentum, p is the 

pressure (determined by the ideal gas equation of state), 
ij  is 

Kronecker’s delta, ij is the Newtonian stress tensor defined by 

   2 3ij i j j i k k iju x u x u x          
 

,   is the 

Favre-filtered value for the viscosity,   is the heat conductivity 

coefficient, T  is the Favre-filtered temperature, 

 ij i j i ju u u u   ,  T

j p j p jq c Tu c Tu  , and E is the 

filtered total energy given by 
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where 
p v

c c   is the average specific heat ratio, 
pc  is the 

specific heat capacity at constant pressure and 
vc  is the specific 

heat capacity at constant volume. 

 Furthermore, closure to LES equations is achieved in the 
form of a model for subgrid quantities [16]. The subgrid stress 

tensor 
ij  and the turbulent temperature flux T

iq  are computed 

using the stretched-vortex subgrid-scale model for 
compressible and subgrid scalar transport flows [17, 18]. The 

resulting subgrid stresses are  
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ij ij i jk e e    ,               (3) 
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where 

    
ck

k E k dk



  ,                (5) 

is the subgrid energy, v
e is the unit vector aligned with the 

subgrid vortex axis, c ck   is the largest resolved 

wavenumber, and c  is taken to be the grid spacing. The 

subgrid turbulent kinetic energy is estimated using the spiral 

vortex assumption by [19] whose energy (velocity) spectrum 

for the subgrid motion is given by  

  

    2 3 5 3 2

0 exp 2 2E k K k k v a      ,                       (6) 

where 
0K  is the Kolmogorov prefactor,  is the local cell 

averaged dissipation and v v

ij i ja S e e  is the axial strain along the 

subgrid vortex axis with a resolved rate of strain tensor given 

by  

               
1

2

ji

ij

j i

uu
S

x x

 
  

   

.                                                 (7) 

Furthermore, the group prefactor 2 3

0K  is refined from the 

resolved flow [18, 20, 21] using the following expression  

 
 22 3

0 2 3

F
K

A






,                (8) 

where  5 3 1

0

4 1 sin  1.90695A s s s ds


    , and  
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   
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

       ,    (9) 

where    0 0i i j iu u u     x e x denotes the ith velocity 

component difference in the unitary direction 
je  and 

0x . 

Appropriately resolving the energy-containing velocity 
spectrum (keeping the subgrid energy contribution small) 

enables modeling of turbulence amplification as it traverses 

shocks. It is expected that the shock-turbulence interaction 

modeling uncertainties will be small, at least when few 

interactions are present, as in the present case.  

  

2.2 Thin shell model  

 The parachute is modeled using a thin-shell theory 

including the membrane and bending energies. A Lagrangian 
description is used and the equilibrium equation in the weak 

form is given by  

 

  
dyn int ext 0G G G   .            (10) 

The first term represents the contribution of the inertial forces 

given by  

 

   dyn sG d 


  x x ,            (11) 

where s is the mass density of the structure, x is the 

acceleration of the mid surface,  x  are virtual deformations, 

and  is the reference shell mid-surface (integration domain). 
The rotational inertia terms are neglected since their 

contribution is expected to be small for thin shells. The second 

term in Eq. (10) denotes all the internal forces from the 

membrane and bending energies and is given by  

 

  int   G d d 
 

   n ‡ m ‰ ,            (12) 

where n is the stress resultant tensor,  is the conjugate strain 

tensor, m is the moment resultant and  is the respective 
conjugate strain tensor. The last term in Eq. (10) represents the 

external force (pressure by the fluid) given by  

 

 

  

   

G
ext
 pdx d



 ,             (13) 

where p is the pressure exerted by the fluid. The direction of the 

pressure loading is always in the direction of the shell normal 

 d and orthogonal to the mid-surface.  

 Subdivision elements [22] are used for discretizing the 
equilibrium equations in weak form. The final discrete equation 

of motion is given by  

 

     int ext , 0h h h t  Mx f x f x ,           (14) 

where M is the mass matrix, 
hx  is the acceleration vector, and 

fint and fext are the internal and external force vectors, 

respectively. The equations of motion are integrated over time 

using the explicit Newmark scheme. The critical time step used 

in the integration of the structure is usually smaller than the 

critical step in the fluid solver (since the structure tends to be 

more stiff than the fluid) and a subcycling technique is 

employed to integrate the overall equations in time.  

 

2.3 Fluid-structure interaction modeling 

The computational fluid dynamics and finite element 

analysis models interact only in a thin region around the 

interface boundary using a temporal splitting method (which is 

appropriate for compressible flows). This interaction is 

modeled using a variant of the Ghost-Fluid Method (GFM) 

[23]. All the fluid cells that are overlapped by the structural 

elements are reconstructed by identical cells within the solid 

elements that satisfy approximately the boundary conditions at 
the interface between fluid and solid. These reconstructed cells 

are referred to as the ghost cells. The solid boundary in the 

Cartesian fluid solver is represented by a level set technique 

[24, 25]. The boundary conditions for the transmural pressure 

and flow velocity at the interface are then applied on the ghost 

cells.  

The resulting force from the fluid-structure interaction acting 

at the interface boundary is given by  

 

 
   
f

ext  p d


,              (15) 

where   and   denote the limit surfaces that approach the 

shell mid-surface  from both solid and fluid sides. The normal 
to surfaces, d, is taken to be positive outwards from the fluid 

region. Essentially, equation (15) represents the transmural 

pressure (difference of pressure across the surface) at the fluid-

structure interface.  

The slip boundary condition for the fluid and zero normal 

pressure and density gradients are used for the mass and energy 

conservations equations for reflective wall-boundary conditions 

in the inviscid approximation [26].  

 
3. NUMERICAL RESULTS 

The flow conditions used in the numerical experiment 

presented in this study are shown in Table 1.  

 

M Re q (Pa) u (m/s) min (mm) 

1.96 122,143 4202.5 674.9 3.9 

 

Table 1: Flow conditions used in the simulation. 

 

The parameters in Table 1 are defined as: Mach number

M u c  , dynamic pressure 21 2q u  , where u , 
, 

and c are the free-stream velocity, density and speed of sound, 

respectively. The Reynolds number, Re, is defined using the 
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capsule diameter according to Re u d    , where 
 

denotes the dynamic viscosity at the conditions of the flow 

upstream. The supersonic parachute has a Young’s Modulus 

E=878 MPa, Poisson’s ratio v=0.33, thickness h=0.0635 mm 

and mass density 614s   kg/m3.  The cables have an elastic 

modulus E=43 GPa and their density per unit area is 
48.27 10c
 kg/m with a diameter 0.495  mm. The flow 

conditions and material properties used in this simulation match 

those used in the experimental study by [26].  

The computational domain is      3,5 1,1 1,1     (meters) 

with the capsule centered at the origin. The coarse mesh 

resolution based on the AMR level is 1 32x y z    m. In 

our case three additional levels of refinement were used to 
increase resolution appropriately within the AMR framework 

(usually around shocks, interface boundary, and turbulent 

wakes). The total number of grid cells in the simulation varied 

with time ranging from 12 to 50 million. The simulation was 

run on a SGI Altix 3700 System at the Supercomputer and 

Visualization Facility at the Jet Propulsion Laboratory. It 

utilized 100 processors (96 assigned to the fluid and 4 to the 

structure) and required approximately 4 months to complete the 

run.  

 

3.1 Fluid dynamics  

 Figure 2 shows the compressible flow around the supersonic 

parachute decomposed into a number of canonical regions. The 

capsule, canopy and suspension lines as well as color iso-

contour levels of the streamwise velocity, u , and iso-lines of 

pressure (shown with black colored lines) at t=57.5 ms are 
shown in the central plane of the computational domain.  

 

 
FIGURE 2. General flow features around the capsule and 

flexible supersonic canopy. Iso-contours indicate velocity and 

isolines denote the pressure for t=57.5 ms.  

 

There are two bow shocks, BS1 and BS2, ahead of the 

capsule and canopy, respectively. These shocks influence the 

supersonic conditions upstream of the rigid capsule boundary 

and flexible canopy. A stable narrow turbulent wake, TW1, 

develops behind the rigid capsule (which is fixed in space) and 

a rather unsteady irregular turbulent wake, TW2, develops 

behind the deformed canopy. Two recompression shocks, RS1 

and RS2, are seen behind the capsule and canopy due to the 

detached flow in these regions. Moreover, a supersonic jet also 

develops from the hole of the canopy.  

It was observed that a breathing response was developed in 

time due to the interaction of the bow shock and irregularities 
of the turbulent wake TW1. This interaction gives rise to 

transmural pressure fluctuations forcing large-amplitude 

parachute oscillations that augment the unsteadiness of the bow 

shock BS2 and initiate the canopy breathing movement.  

 

3.2 Canopy dynamics  

The flexible canopy oscillates in a breathing fashion due to 

the interaction of the bow shock BS2 with the turbulent wake 

TW1 and the structure. Figure 3 shows different canopy 

configurations within a cycle of oscillation.  
 

 
 
FIGURE 3. Canopy breathing cycle. 

  

In stage (i) the canopy is fully inflated with small 

deformations mostly in the radial direction of the parachute. In 

stage (ii) the band shows large deformations mostly due to the 

cable forces. Clearly, in stage (iii) the parachute is partially 

collapsed with large amplitude deformations. It is interesting 

that the collapse is not symmetrical and that it is strongly 

affected by the forces exerted by the cables on the canopy. It 

seems that the nonlinear oscillation of the parachute is more 

complex as the wake generated behind the canopy enhances a 

non-symmetrical partial collapse of the parachute favoring only 
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one side of the canopy. In stage (iv) the parachute is slowly 

inflated again and in stage (v) the canopy is fully opened. A 

similar partial collapse of the canopy was observed in the 

experimental work by [27]. This deflation-inflation cycle of the 

nominal parachute area is shown in Fig. 4 as a plot of the ratio 

of the instantaneous projected canopy frontal area over the 

original frontal area, 2

0 4S D , versus time.  

 
FIGURE 4. Cyclical frontal canopy area fluctuation over time.  

  

3.3 Pressure dynamics  

 It was found that the drag force on the rigid capsule 

remained insensitive to the dynamics of the canopy. The reason 

is that the bow shock upstream of the capsule is very stable and 
not easily perturbed by the turbulent wake behind the capsule. 

The capsule drag is steady and varies less than 1% during the 

simulation time. The drag force on the canopy changes 

dynamically due to the multiple interactions of the turbulent 

wake behind the canopy, the bow shock unsteadiness and the 

induced large canopy deformation. However, after the initial 

transient, the drag attains an almost periodic cycle (the 

breathing movement of the parachute). Table 2 gives the 

simulation results for the average drag forces over one 

breathing cycle applied on the capsule, Fc, and parachute, Fp 

and their corresponding drag coefficients Cc and Cp, 
respectively. 

 

cF (N) pF (N) 
cC  pC  

130 717 1.37 0.34 

 

Table 2: Force distribution on the canopy and parachute. 

 

4.  CONCLUSIONS 
This paper summarizes some results of a simulation of the 

complex dynamical behaviour of a disk-gap-band parachute 

connected to a rigid capsule in supersonic flow. The coupled 

model utilized adaptive mesh refinement using large-eddy 
simulation for compressible flows and a thin-shell solver with 

subdivision finite elements to describe the large oscillations of 

DGB parachutes. It was found that high Mach number flows 

destabilize the parachute due to the strong interaction of the 

turbulent wake of the upstream capsule and the dynamics of the 

bow shock appearing before the canopy. The dynamics of the 

interaction of the turbulent flow and thin structure generate a 

breathing type parachute oscillation with very large 

deformations and rapid changes in the canopy drag coefficient, 
in agreement with experimental observations. These 

oscillations degrade the overall performance of the supersonic 

decelerator.  
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