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ABSTRACT 

This numerical study investigates a circular cylinder placed 
in a uniform stream and moving along a slender figure-8 path. A 
2D computational method based on the finite difference method 
was used. Two aspects were investigated separately: the effect 
of in-line amplitude of oscillation and the effect of the 
frequency ratio. Computations for varying amplitude values 
were carried out at Re=150, 200 and 250. Time-mean and rms 
values of force coefficients yielded smooth curves and tended to 
increase with amplitude.  

When plotted against frequency ratio in the domain of 0.69 
to 0.98 at Re=250, a jump was found in the time-mean values of 
lift and torque. This was also present in the energy transfer 
curves, and positive and negative values were found. 

Limit cycle curves from before and after a jump were 
symmetric, mirror images, and quite complex. Vorticity 
contours also showed a mirror image pre- and post-jump. These 
results indicate the possibility of symmetry-breaking 
bifurcation.  
Keywords: circular cylinder, figure-8, forced oscillation, lock-in  
 
INTRODUCTION 

Flow around a circular cylinder is very rich in flow 
phenomena, and this is even more so the case when the cylinder 
is oscillating. Many studies have been devoted to oscillating 
cylinders, among them Williamson and Roshko (1988), Lu and 
Dalton (1996), and Blackburn and Henderson (1999) for 
transverse oscillation. In-line oscillation has been investigated 
in Cetiner and Rockwell (2001), Al-Mdallal et al. 2007, 
Mureithi et al. (2009), and many others. 

In practice, it can happen that oscillation occurs not only in 
transverse direction, but simultaneously occurs in in-line 
direction as well. When the frequencies for the two oscillations 

are equal to each other, an elliptical path is obtained. Such 
orbital motion has been investigated in Didier and Borges 
(2007), Baranyi (2008), and Stansby and Rainey (2001), for 
instance. Baranyi identified sudden switches in vortex structure 
while varying the amplitude of oscillation.  

It can also occur that the cylinder oscillates in in-line 
direction at  twice the frequency of the transverse oscillation, 
leading to a figure-8-like path. Perdikaris et al. (2009) 
investigated such a case at Re=400 while varying the transverse 
amplitude of oscillation. Their study looked at the power 
transfer parameter for two frequency ratios of 0.5 and 1. They 
found that the orientation of the motion (clockwise or counter-
clockwise) influences the results.   

This study investigates flow around a circular cylinder 
following a figure-8-shaped path in order to gain a better 
understanding of the effect of parameters such as amplitude and 
frequency ratio on flow phenomena. 

NOMENCLATURE 
Ax,y amplitude of oscillation in x or y directions, respectively, 

non-dimensionalized by d 
CD drag coefficient, 2FD  /(ρU 2 d) 
CL lift coefficient, 2FL  /(ρU 2 d) 
Cpb base pressure coefficient 
d cylinder diameter (m) 
E mechanical energy transfer, non-dimensionalized by 
  ρU 2 d 2 / 2 
F force per unit length of cylinder, FD i + FL j (N/m) 
FD drag per unit length of cylinder (N/m) 
FL lift per unit length of cylinder (N/m) 
f oscillation frequency, non-dimensionalized by dU  
i, j unit vectors in x and y directions, respectively 
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p non-dimensionalized by ρU 2 
Re Reynolds number, Ud  
R radius, non-dimensionalized by d 
St non-dimensional vortex shedding frequency 
T motion period, non-dimensionalized by d/U 
t time, non-dimensionalized by d/U 
tq torque coefficient, torque of shear stress on cylinder 

surface, non-dimensionalized by ρU 2 d 2 
U free stream velocity, velocity scale (m/s) 
v0 cylinder velocity, non-dimensionalized by U 
x,y Cartesian co-ordinates, non-dimensionalized by d 
  kinematic viscosity (m2/s) 
Θ polar angle characterizing initial condition 
  fluid density (kg/m3) 

Subscripts 
fb fixed body 
D drag 
L lift 
mean time-mean value 
rms root-mean-square value 
x, y components in x and y directions 
1, 2 for energy transfer in y and x directions, respectively 
0 for cylinder motion; for stationary cylinder at same Re 

COMPUTATIONAL METHOD 
A non-inertial system fixed to the cylinder is used to 

compute 2D low-Reynolds number unsteady flow around a 
circular cylinder placed in a uniform stream and forced to 
oscillate in transverse, in in-line direction, or both. The non-
dimensional Navier-Stokes equations for incompressible 
constant-property Newtonian fluid, the equation of continuity 
and the Poisson equation for pressure can be written as follows, 
equations (1) to (4): 
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In these equations, u and v are the x and y components of 

velocity, t is time, p is the pressure, Re is the Reynolds number 
based on cylinder diameter d, free stream velocity U, and 
kinematic viscosity ν, and D is the dilation. Although D is 
theoretically equal to 0 from equation (3), it is kept in equation 
(4) to avoid accumulation of numerical errors. In equations (1) 
and (2) a0x and a0y mean the x and y components of cylinder 
acceleration, respectively. 

On the cylinder surface, no-slip boundary condition is used 
for the velocity and a Neumann type boundary condition is used 
for the pressure. At the far region, potential flow is assumed. 

Boundary-fitted coordinates are used to impose the 
boundary conditions accurately. Using unique, single-valued 
functions, the physical domain bounded by two concentric 
circles is mapped into a rectangular computational domain with 
equidistant spacing in both directions (see Fig. 1). In the 
physical domain logarithmically spaced radial cells are used, 
providing a fine grid scale near the cylinder wall and a coarse 
grid in the far field. The transformed governing equations and 
boundary conditions are solved by finite difference method. 
Space derivatives are approximated by fourth order central 
differences, except for the convective terms for which a third 
order modified upwind scheme is used. The Poisson equation 
for pressure is solved by the successive over-relaxation (SOR) 
method. The Navier-Stokes equations are integrated explicitly 
and continuity is satisfied at every time step. For further details 
see Baranyi (2003; 2008). 

 

 

 
 

Figure 1.  Physical and computational domains 
 

The 2D code developed by the author has been extensively 
tested against experimental and computational results for a 
stationary cylinder (e.g. Chakraborty et al., 2004, Baranyi, 
2008) and computational results for cylinders oscillating in 
transverse or in in-line directions or following a circular path, 
including Lu and Dalton (1996), Al-Mdallal et al. (2007), and 
Didier and Borges (2007), with good agreement being found, 
(Baranyi, 2008). In this study the dimensionless time step is 
0.0005, the number of grid points is 481x451, and a relatively 
large physical domain of R2 /R1=360 has been chosen to 
enhance accuracy. 
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COMPUTATIONAL SETUP 
This study investigates the behavior of flow past a cylinder 

placed in a uniform stream with its axis perpendicular to the 
velocity vector of the main flow. The cylinder is oscillated 
mechanically in both in-line and transverse directions in relation 
to the uniform stream. The motion of the centre of the cylinder 
is described by the following equations: 

 
x0=Ax cos(2 π fx t+Θ)                                  (5) 

 
y0= - Ay sin(2 π fy t+Θ)                               (6) 

 
where Θ is a polar angle characterizing the initial position of the 
cylinder. Naturally the second time derivatives of x0 and y0 give 
the accelerations a0x and a0y in equations (1) and (2). 

The time-history of force coefficients (lift, drag, base 
pressure and torque), pressure and velocity field are computed. 
From these data, time-mean (TM) and root-mean-square (rms) 
values of force coefficients, streamlines, and vorticity contours 
can be obtained. 

Throughout this paper the lift and drag coefficients used 
unless otherwise stated contain the inertial forces originated 
from the non-inertial system fixed to the accelerating cylinder. 
Coefficients obtained by removing the inertial forces are often 
termed ‘fixed body’ coefficients (see Lu and Dalton, 1996). The 
relationship between the two sets of coefficients can be written 
as 

 
CD=CD fb +π a0x / 2                                    (7) 

 
CL=CL fb +π a0y / 2                                     (8) 

 
where subscript ‘fb’ refers to the fixed body (understood in an 
inertial system fixed to the stationary cylinder), Baranyi (2005). 
Since the inertial terms are T-periodic functions, their time-
mean values vanish, resulting in identical TM values for lift and 
drag in the inertial and non-inertial systems. Naturally the rms 
values of CL and CD will be somewhat different in the two 
systems (but this does not affect the curve being continuous). 

Investigation was restricted to lock-in cases. Lock-in, or the 
synchronization between vortex shedding and cylinder motion, 
produces a periodic solution for each of the force coefficients. 
In this paper, we consider lock-in to be when the vortex 
shedding frequency is identical to fy, the frequency of transverse 
cylinder oscillation. 

To create a figure-8 path with a clockwise orientation in the 
upper loop, conditions 

 
fx=2 fy;   Θ =- π / 2 

 
should be fulfilled in equations (5) and (6). 

The non-dimensional energy transfer originally introduced 
by Blackburn and Henderson (1999) for transversely oscillated 
cylinder was extended for a general two-degree-of-freedom 
motion of the cylinder by Baranyi (2008): 

 

  
T

yLxD

T

tvCvCt
dU

E
0

00

0

022  d   d2 vF


 

 
where T is the motion period, xv0  and yv0  are the velocity of 
the cylinder in x and y directions, respectively. For transverse 
cylinder oscillation x0=0, hence only the integral of the product 
of lift and transverse cylinder velocity component contributes to 
the energy transfer. This will be denoted by E1, and that 
originating from the drag and in-line cylinder velocity 
component by E2. The sum of E1 and E2 gives the mechanical 
energy transfer E= E1 + E. Some researchers prefer to use non-
dimensional power transfer (see Perdikaris et al., 2009) instead 
of the energy transfer coefficient E. 

RESULTS 
For a single computation, all parameters (Ax, Ay, Re, fx,  fy, 

Θ) are kept constant. The computations are then repeated at 
different Ax values to investigate the effect of oscillation 
amplitude. Ay was set at 0.5, and Ax values between 0.1 and 0.2 
were chosen in order to maintain an elongated path in the y 
direction, as this is said to be more relevant to actual 
engineering situations.  

The same approach is used to investigate the effect of 
frequency ratio fy / St0. Here St0 is the non-dimensional vortex 
shedding frequency from a stationary cylinder at the given 
Reynolds number. Only the locked-in domain was considered, 
which for  Re=250  and Ax=0.14,  Ay=0.5  was determined to be  
fy  / St0=0.69 to 0.98. 

For both cases, time-mean (TM) and root-mean-square 
(rms) values of lift (CL), drag (CD), base pressure (Cpb) and 
torque (tq) coefficients, further the mechanical energy transfer E 
between the cylinder and fluid were determined and plotted 
against the independent variable. The polar angle Θ was zero 
throughout the whole investigation. 

 
Effect of In-line Amplitude 

Here, three Re values were investigated: Re=150, 200, and 
250. The frequency of transverse oscillation was kept at            
fy /St0 =0.9, under resonant forcing. This frequency ratio ensures 
moderate amplitude values for subharmonic lock-in. The 
dimensionless transverse amplitude of oscillation Ay was fixed 
at the value of 0.5 while Ax was varied systematically between 
0.1 and 0.2.  

Figure 2 shows the variation of TM of lift against Ax for the 
three Re values. As seen in the figure, all TM values of lift in 
the domain are positive and the values increase with both Ax and 
Reynolds number. 
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Figure 8-shape motion; fy=fx/2=0.9St0
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Figure 2.  Time-mean value of lift vs. Ax  
for Re=150, 200 and 250 

 
Figure 3 shows the variation of rms value of fixed body 

(see equations (7) and (8)) lift coefficient against Ax for the 
three Re values. The trend for these curves is very similar to 
that shown in Fig. 2. Other TM and rms curves show the same 
trend, with the exception of the TM of the torque coefficient, 
shown in Fig. 4, where no general tendency can be ascertained 
yet. 
 

Figure 8-shape motion; fy=fx/2=0.9St0
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Figure 3.  Rms value of fixed body lift vs. Ax  
for Re=150, 200 and 250 

 
Note that no jumps indicating vortex switches were found 

within this parameter domain, in contrast to findings for an 
orbiting cylinder (see Baranyi, 2008) or cylinder moving in-line 
(Baranyi, 2009), meaning that no bifurcation was found within 
this domain.  

Finally, Fig. 5 shows the variation of E with Ax for the three 
Reynolds numbers. This mechanical energy transfer was 
negative for all the investigated cases, meaning that energy is 
transferred from the cylinder to the fluid. The absolute value of 
E increases with increasing amplitude Ax. As can be seen in the 
figure, the relationship between E and Ax for the two smaller 
Reynolds numbers is almost linear. It can also be observed that 

the order of the absolute value of E values at the two ends of the 
Ax domain is reversed. Since all energy transfer values are 
negative, no vortex-induced vibration can occur. 

 
Figure 8-shape motion; fy=fx/2=0.9St0
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Figure 4.  Time-mean value of torque vs. Ax  
for Re=150, 200 and 250 

 
Energy transfer; fy=fx/2=0.9St0
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Figure 5. Mechanical energy transfer E vs. Ax  
for Re=150, 200 and 250 

 
 
Effect of Frequency Ratio 

Here, only one Reynolds number was investigated, 
Re=250. Ay was chosen to be 0.5, Ax was 0.14 during the whole 
investigation. The step between two consecutive frequency ratio 
fy / St0 values was 0.01, except around the area of the jump, 
where computations were carried out at smaller intervals to 
determine the location of the jump. The locked-in domain 
ranged from fy  / St0=0.69 to 0.98.  

Figure 6 shows the TM of lift. As can be seen, at around 
0.71 there is a jump from negative values to positive values, and 
the absolute values are approximately equal to each other. 
Considering findings from earlier studies (Baranyi, 2008; 
2009), there exist two so-called state curves that can be 
reproduced by varying the initial condition Θ. These state 
curves were found to be symmetric around zero (i.e., the value 
for a stationary cylinder) for in-line oscillation (Baranyi, 2009), 
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and this may be the case here, as well. If so, it is probably due 
to a symmetry-breaking bifurcation (see e.g., Crawford and 
Knobloch, 1991). 

 
Figure 8-shape motion
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Figure 6.  Time-mean value of lift vs. frequency ratio 
for Re=250 

 
Three rms values of similar magnitudes are shown in Fig. 

7. All values increase with increasing frequency ratio; the 
largest is the fixed body drag, followed by base pressure and the 
fixed body lift, while the rms of torque (not shown here) is 
about two orders of magnitude smaller, but also increases with 
frequency ratio.    

Figure 8 gives the TM of torque, once again displaying the 
jump seen for the TM of lift shown in Fig. 6, with the jump 
being located at the same frequency ratio as for lift. The state 
curves are once again apparently symmetric. The fact that a 
jump was found in the TM of lift and torque only (out of the 
four TM and four rms curves of force coefficients) is 
characteristic also of the earlier results for in-line oscillation 
(Baranyi, 2009).  

 
Figure 8-shape motion
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Figure 7.  Rms values of base pressure, fixed-body lift 
and drag vs. frequency ratio for Re=250 

 
The mechanical energy transfer, broken into its two 

components and their sum, is shown in Fig. 9. E2 (originating 

from the product of drag and in-line cylinder velocity) is nearly 
constant—almost independent of the frequency ratio—and 
negative. E1, related to transverse motion and force, also 
undergoes a jump, again at around fy / St0=0.71, and the two 
(incomplete) state curves appear to be symmetric. The sum of 
the two components, E, follows the shape of E1 and can be 
either positive or negative. Below fy / St0=0.71, the cylinder 
obtains energy from the fluid, which might lead to vortex-
induced vibration. Above this, however, E is always negative 
within the domain investigated, i.e., the fluid obtains energy 
from the cylinder. 

 

Figure 8-shape motion
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Figure 8.  Time-mean value of torque vs. frequency ratio  
for Re=250 

 
 

Figure 8-shape motion
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Figure 9.  Energy transfer E, E1, E2 vs. frequency ratio 
for Re=250 

 
 

Pre- and Post-jump Analysis 
The vicinity of a jump is investigated by drag-lift limit 

cycles and vorticity contours. The limit cycle (CD, CL) curve 
shown in Fig. 10 reveals complex curves for the pre-jump curve 
(thick line) and the post-jump curve (thin line). The difference 
in frequency ratios is only 0.00001, but a drastic change in the 
outcome is evident. The curves are mirror images (flipping 
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along the line of CL=0), and the direction of orientation of the 
two curves is also opposite.  

The vorticity contours shown in Fig. 11 also show the 
mirror image nature of the flow before and after a jump. The 
contours belong to the same cylinder position. The gray lines 
indicate negative vorticity values, moving clockwise, and the 
black are positive, rotating counter-clockwise. The vortex 
shedding mode starts out as P+S, meaning that a pair of vortices 
and a single vortex are shed in one period. Later, however, the 
mode seems to shift towards 2S. 
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Figure 10.  Pre- and post-jump limit cycle (CD,CL) curves: 
thick line - Ax=0.71213, thin line - Ax=0.71214 

    
The vorticity contours shown in Fig. 12 give flow patterns 

at larger frequency ratios (still under 1), with ‘snapshots’ taken 
at the same instant (t=300). Compared to the vorticity contours 
nearer the vortex switch (Fig. 11), the path is wider and the 
vortices seem to disperse somewhat earlier as frequency 
increases. The P+S vortex mode is present near the cylinder. 
 
 

 
 

  
 

Figure 11.  Pre- and post-jump vorticity contours:  
top - f/St0=0.71213, bottom - f/St0=0.71214 

 
The present cylinder-flow system is reflection-symmetric 

about a line through the cylinder center and parallel to the 
freestream velocity vector, as shown by both the limit cycle 
curves and vorticity contours. A physical system that is 
symmetric is vulnerable to symmetry-breaking bifurcation 
(Crawford and Knobloch, 1991), which may well be the case 
here.  

 

 
 

 
 

Figure 12.  Vorticity contours at two frequency ratios:  
top - f/St0=0.85, bottom - f/St0=0.95 

 

CONCLUSIONS 
Cylinder motion in the shape of a slender figure 8 was 

investigated in this numerical study using a 2D computational 
method based on the finite difference method. When plotted 
against in-line amplitude of oscillation, time-mean and rms 
values of force coefficients at Re=150, 200 and 250 yielded 
smooth curves and tended to increase with amplitude, although 
energy transfer decreased and was always negative, meaning 
that the fluid obtains energy from the cylinder.  

When plotted against frequency ratio, the time-mean values 
of lift and torque showed a jump, a symptom of vortex 
switching. This was also present in the energy transfer curves, 
with the pre-jump values being positive, and the post-jump 
values negative.  

Limit cycle curves from before and after a jump were 
symmetric, mirror images, and quite complex. Vorticity 
contours also showed a mirror image pre- and post-jump.  

In this study, only one orientation was investigated. As 
Perdikaris et al. (2009) found at Re=400 that orientation 
influences results, this is one direction for future study. It should 
be noted that a great deal of computational time is required for a 
systematic study. Another area of investigation would be to vary 
the initial condition in order to produce more complete state 
curves and confirm their symmetric nature. 
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