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Abstract
Studies of fluid-conveying pipes typically consider systems

with an anchor at one or more boundaries, such as pinning or
clamping. These types of conditions are satisfactory in the study
of many common engineering applications, such as pipelines or
heat exhangers. However, a small, fish-like submersible pro-
pelled by a fluttering fluid-conveying pipe requires boundary
conditions which account for the relative freedom at both ends
of the pipe. A submersible of this type achieves its propulsion
by a combination of jet action and thrust produced by the flut-
tering pipe. A simple model of this type of vehicle was devised,
consisting of a rigid body affixed to a fluid-conveying pipe. The
applicable linearized boundary conditions were derived, and this
rigid-free case can be shown to be a generalization of both the
free-free and cantilever conditions. The equation of motion of
this rigid-free system approaches that of the cantilever and free-
free systems for appropriately large and small rigid body masses,
respectively. “Intermediate” values of (non-dimensional) rigid
body mass, in the range corresponding to a proposed physical re-
alization of the system, were investigated. Consistent with prior
work, it was found that, with the addition of external flow gen-
erated by the forward motion of the submersible through still
water, the onset of flutter instability can be achieved for lower
values of conveyed (internal) velocity than would be required in
the absence of external flow. Furthermore, the onset of flutter
for certain rigid body masses can be achieved at a lower inter-

∗Address all correspondence to this author.

nal velocity than the cantilever case at the same external speed.
This point is critical; since it is the internal velocity which must
be “paid for”, by powering the system’s prime mover, reduction
of the required velocity to achieve flutter has the potential to im-
prove the submersible’s efficiency.

1 Background
1.1 Fluid Conveying Pipes

The dynamics of fluid-conveying pipes have been well-
studied in the literature, both with [2] [8] and without [7] exter-
nal flow. In this section we will review the relevant equations for
these systems, and provide one method of determining the on-
set of flutter instability. The equations of motion for a cantilever
pipe conveying fluid with velocityU and immersed in inviscid
fluid flowing with velocityUe are as follows:

EI
∂ 4y
∂x4 +(MU2+MeU

2
e )

∂ 2y
∂x2

+2(MU +MeUe)
∂ 2y

∂x∂ t
+(m+M+Me)

∂ 2y
∂ t2 = 0 (1)

y(0, t) = 0
∂y
∂x

(0, t) = 0

∂ 2y
∂x2 (L, t) = 0

∂ 3y
∂x3 (L, t) = 0

Here,y(x, t) is the displacement of the pipe as shown in Figure
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FIGURE 1. A fluid-conveying pipe, with a magnified view of a small
length element.

FIGURE 2. A finned tube arrangement, with internal fluid-conveying
diameterD and tail spanS. At right, surrounded by a dashed line, is the
area responsible for the added external mass, equal toρ f lπ S2

4 L, where
ρ f l is the density of the external fluid.

1. E, I, L represent the Young’s modulus, area moment of iner-
tia, and length of the pipe, respectively.m, M, Me represent the
mass per unit length of the beam, the internal (conveyed) fluid
and the external fluid. The masses per unit length of the beam
and internal fluid are straightforward, but the external fluid mass
requires approximation. The added mass coefficient [10] can be
used to approximate this mass. As one example, the added mass
associated with a cylindrical beam is equal to the mass of wa-
ter displaced by the cylinder. For thin cross sections, such as a
flat plate, the added mass is equal to the mass of water within a
cylinder which circumscribes the plate. A “finned tube” arrange-
ment well suited to providing both a fluid conduit and a tail of
adequate span is depicted in Figure 2, with the area responsible
for added external mass marked. The authors note that Equation
1 is a simplified version of the equations of motion as presented
in [8], ignoring gravitational, viscous, pressurization and tensile
effects. Pressurization effects are negligible because we are mod-
elling a submersible operating at depth and pumping water at that
depth. Equation 1 may be non-dimensionalized via the following
change of variables:

X =
x
L

Y =
y
L

T =
t

L2

(
EI

m+M+Me

)1/2

(2)

We may define the non-dimensional velocities,ui, ue and the
mass fractionsβi, βe as follows

ui =

(
M
EI

)1/2

UL ue =

(
Me

EI

)1/2

UeL

βi =

(
M

m+M+Me

)

βe =

(
Me

m+M+Me

)

Equation 1 may now be written in its non-dimensional form,

∂ 4Y
∂X4 +(u2

i + u2
e)

∂ 2Y
∂X2

+2
(

β 1/2
i ui +β 1/2

e ue

) ∂ 2Y
∂X∂T

+
∂ 2Y
∂T 2 = 0 (3)

If a separable form is assumed fory(x, t) such thaty(x, t) =
f (x)eiΩt , the above yields the equivalent nondimensional expres-
sion

Y (X ,T ) = φ(X)eiωT (4)

where the nondimensional frequency,ω is defined as:

ω =

(
m+M+Me

EI

)1/2

ΩL2

Separation yields the ordinary differential equation and boundary
conditions

d4φ
dX4 +(u2

i + u2
e)

d2φ
dX2 +2(βiui +βeue) iω

dφ
dX

−ω2φ = 0 (5)

φ(0) = 0 φ ′(0) = 0

φ ′′(1) = 0 φ ′′′(1) = 0

The solutionφ is assumed to be of the formφ(X) = AezX . For
specific values ofui, ue, βi, βe, the characteristic polynomial
of Equation 5 provides four rootszn, wherezn = zn(ω). The
solution ofφ(X) therefore takes the form

φ(X) = A1ez1X +A2ez2X +A3ez3X +A4ez4X (6)

Substitution of Equation 6 into Equation 5 yields the identity







1 1 1 1
z1 z2 z3 z4

z2
1ez1 z2

2ez2 z2
3ez3 z2

4ez4

z3
1ez1 z3

2ez2 z3
3ez3 z3

4ez4







︸ ︷︷ ︸

Z







A1

A2

A3

A4







︸ ︷︷ ︸

A

=







0
0
0
0







︸︷︷︸

0

(7)
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FIGURE 3. Argand diagram of the first three modes of a fluttering
cantilever pipe,βi = 0.2, βe = 0.

A non-trivial solution (forω) of Equation 7 is obtained by nu-
merical evaluation of the roots ofDet(Z) = 0. This equation
has infinite roots inω . The real and imaginary parts the first
three roots are plotted in Figure 3 forβi = 0.2, βe = 0. This fig-
ure, called an Argand diagram, is composed of three branches,
each one the locus of a vibrational mode. These loci are formed
by first obtaining the real root of each mode atui = 0, which
match those of a regular, non fluid conveying cantilever beam,
then findingω numerically asu is slowly increased. The onset
of flutter instability in mode two is marked in Figure 3 where its
locus crosses the imaginary axis. Substitution of Equation 6 into
Equation 4 yields

Y (X ,T ) =
4

∑
n=1

AneznX eiωT

=
4

∑
n=1

An eRe[zn]X
︸ ︷︷ ︸

(i)

ei(Im[zn]X+Re[ω]T )
︸ ︷︷ ︸

(ii)

e−Im[ω]T
︸ ︷︷ ︸

(iii)

(8)

Y (X ,T ) is a product of three exponential terms of which the first
term is bounded (since X is bounded), and the second term is
periodic since the exponent is imaginary. The third term is un-
bounded with time ifIm[ω ] < 0; if Re[ω ] > 0, this represents
the onset of flutter instability. The mode and velocity at which
the pipe becomes unstable depends on the fluid mass fractions
βi, βe. Though not necessary for determining the natural fre-
quency (ω) and wavenumbers (zn) of the system, the coefficients
An may be determined by computing the nullspace of the matrix
Z in Equation 7, onceω , zn have been determined. These coef-
ficients are needed to estimate the force exerted by the beam on
the surrounding fluid, discussed presently.

FIGURE 4. The proposed submersible. The linearized form of the
equations of motion means thatℓ, L are constants, not related toy(x, t).

1.2 Motivation
Fish-like propulsion has been a topic of interest in the aca-

demic community for more than 60 years, and several robotic
platforms have been built (see [11]) to exploit the phenomenon.
The combined mechanism proposed here (Figure 4), in which a
fluttering fluid-conveying pipe provides thrust by both tail and
jet action, has also been implemented. That system, constructed
in the mid-1970’s by Paidoussis [5], was found to produce posi-
tive thrust only if the phase velocity of the tail displacement was
greater than the forward speed of the vessel. That work and the
accompanying patent [6] are primarily experimental in nature,
and contain a variety of construction details for their system, as
well as the thrust optimizations performed.

Thrust production via a high phase velocity traveling wave
was described first in an early paper by Lighthill [4], which used
slender body analysis to approximate the thrust produced by an
idealized fish. Lighthill found that a traveling waveform, for ex-
ampley(x, t) = f (x)cos(kx+Ωt), with phase velocityP = Ω/k,
may be used to propel a body at some speedU , whereP > U .
As the reader is no doubt aware, Equation 8 is the sum of four
traveling waveforms. Per the predictions of Lighthill, a wave-
form with dimensional wavenumber and frequencyZn, Ω will
only have positive thrust if

Pn

Ue
> 1 or

Ω/Zn

Ue
> 1

This dimensional constraint is equivalent to the non-dimensional
requirement that

ω
zn

>
ue

β 1/2
(9)

whereω/zn is the waveform’s non-dimensional phase velocity.
The system described by Paidoussis in [9] is described collo-

quially in that work to have a (single) phase velocity while oper-
ating, which was measured by direct observation. While simple
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to determine experimentally, determination of positive thrust by
the phase velocity is not straightforward in the context of Equa-
tion 8 in that four traveling waveforms of different, spatially vari-
able amplitudes and phase velocities are propagating down the
pipe. It is easier to estimate the thrust by the method laid out by
both Lighthill [4] and Wu [12]. In those papers, a slender1 fish is
considered, and has displacement from its neutral position equal
to y(x, t). The time-averaged thrustτ provided by this displace-
ment is given as:

τ =

1
2

Me

(

[ẏ2−Uey′2]x=L − [ẏ2−Uey′2]x=0

)

(10)

In Equation 10, the overbar refers to a time average over a long
time. Both Lighthill and Wu derive the expression without the
assumption of harmonic motion; if harmonic motion is assumed,
the time average over a single cycle is sufficient. Note that Equa-
tion 10 differs slightly from that found in [12]2. Wu’s assumption
that no mass is affected atx = 0 is relaxed, since we are dealing
with a uniform tail, rather than a tapered fish which has zero area
at the tip.

A similar expression is derived for the average powerP re-
quired to provide the displacementsy(x, t). This expression in-
cludes the power required to generate the vortex wake, into which
energy is shed.

P =

UeMe

(

[ẏ(ẏ+Uey′)]x=L − [ẏ(ẏ+Uey′)]x=0

)

(11)

Equations 10 and 11 may be used to form a definition for hydro-
dynamic efficiency of the tail’s motions:

η =
τUe

P
(12)

Note that this efficiency does not account for power lost to inter-
nal fluid shearing in the jet, or external drag. The submersible’s
total efficiency will therefore be somewhat lower after these ef-
fects are accounted for.

Analysis of the submersible device proposed here requires
the use of the rigid body boundary condition developed in Sec-
tion 2.1. This device, depicted conceptually in Figure 4 has a hull
much smaller than that of the surface vessel used by Paidous-
sis [9]. This reduced size and mass requires that the dynamics

1A good description of the meaning of “slender” as used here may be found
in §2 of Wu [12].

2Equation (47) in that work)

FIGURE 5. Rigid body boundary conditions.

of the hull be accounted for in modeling the dynamics of the
tail-like pipe. A surface vessel does not have a unique relation-
ship between the vessel’s displacement and weight, only requir-
ing that it have positive buoyancy, whereas a neutrally-buoyant
submersible requires a reduced mass if it is to have a smaller dis-
placement. A smaller displacement leads to lower drag and in-
creased maneuverability. While this proposed device is perhaps a
less “pure” example of fish-like propulsion than other platforms,
it offers many of the same advantages, including noise reduction
and the ability to safely work near human divers and animals. We
believe that similar handling characteristics can also be realized
by controlling the flow rate of the conveyed fluid, though this is
beyond the scope of this communication.

2 Fluid Conveying Rigid Body-Free Pipe
2.1 Boundary conditions

The linearized boundary conditions for a rigid body atx = 0
are:

EI
∂ 3y
∂x3 +MB

(
∂ 2y
∂ t2 − ℓ

∂ 3y
∂x∂ t2

)

= 0 (13a)

EI
∂ 2y
∂x2 +(J0+MBℓ

2)
∂ 3y

∂x∂ t2 −MBℓ
∂ 2y
∂ t2 = 0 (13b)

In Equation 13,MB refers to the mass of the rigid body,J0 is the
moment of inertia of the rigid body about the pointx = 0, andℓ
is the distance between the origin and the center of mass of the
rigid body. The boundary conditions above are similar to those
found by Rama Bhat and Wagner in [1], with the exception that
they have been derived atx = 0 rather thanx = L. Some simplifi-
cations have been made to obtain Equation 13. First, the expres-
sions have been linearized, such that sinθ ≈ ∂y(0)/∂x, where
θ is the angle between the rigid body and the x-axis. Note that
this linearization does not impose additional restriction beyond
that required of the Euler-Bernoulli beam model. A more subtle
simplification lies in ignoring the effect of the external fluid ve-
locity on the dynamics of the rigid body. While the added mass
of the surrounding fluid may be accounted for by increasingMB

andJ0, terms analogous to theyxx, yxt terms from Equation 1
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are not present, and may be appropriate. A much more detailed
version of the equations of motion for a submersible is derived
in [3], which accounts for acceleration in x andθ , as well as a
detailed accounting of external fluid and many other effects. The
equations presented in that work, however, are not analytically
tractable. Equation 2 may be applied to Equation 13 to obtain
the following non-dimensional expressions:

Y ′′′+ µ(Ÿ −λŸ ′) = 0 (14a)

Y ′′+ µ [(ψJ +λ 2)Ÿ ′−λŸ ] = 0 (14b)

In Equation 14,

µ =
MB

(m+M+Me)L
λ =

ℓ

L
ψJ =

J0

MBL2 (15)

Physically,µ is the mass ratio between the body and the rest of
the system,λ non-dimensionalizes the length, andψJ accounts
for the shape of the rigid body. Note that asµ approaches 0,
Equation 14 approaches the expressions for a free end, while as
µ approaches∞, the equations approach the expressions for a
clamped end. The former point is trivial; to clarify the latter,
Equation 14 is rewritten below in the limit asµ goes to∞, and
quantities shared by all terms are removed:

(Ÿ −λŸ ′) = 0

[(ψJ +λ 2)Ÿ ′−λŸ ] = 0

Therefore

(ψJ +λ 2)Ÿ ′ = λ 2Ÿ ′

This requires that

Ÿ ′ = 0 or ψJ = 0

The conditionψJ = 0 is impossible for a body of finite size, so
the former condition must hold. The zero acceleration condition
for a clamped end now follows trivially.

2.2 Method of Analysis
The equations of motion for the rigid body-free boundary

condition are approached in the same way as those for the can-
tilever, though Equation 7 is replaced by an equivalent statement

for the new boundary conditions, shown below:







η1 η2 η3 η4

ζ1 ζ2 ζ3 ζ4

z2
1ez1 z2

2ez2 z2
3ez3 z2

4ez4

z3
1ez1 z3

2ez2 z3
3ez3 z3

4ez4







︸ ︷︷ ︸

Z







A1

A2

A3

A4







︸ ︷︷ ︸

A

=







0
0
0
0







︸︷︷︸

0

(17)

In Equation 17,ηn, ζn are the moment and shear boundary con-
ditions found in Equation 14 such that

ηn = z2
n − µω2((ψ +λ 2)zn −λ )

ζn = z3
n − µω2(1−λ zn)

The proposed application, that of a fish-like submersible swim-
ming with reasonably constant forward speed, requires that the
oscillations of the fluttering tail do not grow in time. The points
of neutral stability (Im[ω ] = 0) are therefore sought in theui, ue

parameter space. While it would be possible to determine these
curves by repeated examination of Argand diagrams like Figure
3, the number of points required to obtain a curve with high reso-
lution renders this method prohibitively time-expensive. An au-
tomated method, similar in character to that used to build the
Argand diagram, is therefore proposed.

First, theui required for neutral stability atue = 0 is com-
puted by interpolating values ofui with the propertyIm[ω ] ≈ 0.
This is repeated forue = ∆, where∆ is a small number. Sub-
sequent points may be found by extrapolating at a distance of
∆ from the last point to obtain a guess for the neutrally stable
ui, ue, then iterating near that guess. The “direction” of iteration
is important in this procedure; simply iterating inui or ue will
fail in some regions of the parameter space. Iterating perpendic-
ular to the guessed direction of the curve was found to give good
results. A curve with sharper turns will require a lower value of
∆ to achieve good results; the lowest value required to compute
the curves in the current work was 0.02, with a velocity itera-
tion stepsize of 0.002. This velocity iteration stepsize was kept
constant, even when∆ was increased, to minimize interpolation
error. Figure 6 is provided to illustrate the algorithm.

3 Dynamics and Applications
3.1 Stability in µ-space

The stability of the fluid conveying pipe with rigid body-free
boundary conditions was assessed in theui ue space for various
values ofµ , using mass ratiosβi = 0.01, βe = 0.9. The extreme
values forβ are the product of a proposed implementation of
the submersible discussed in Section 1.2. In particular, the large
value ofβe is due to the use of a high-aspect ratio finned tube
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FIGURE 6. Finding the curve of neutral stability. The two known
points are marked with◦, the guess point with a×, and the point found
with a�. The iteration points include the guess point, and four others,
marked by•. The dotted line depicts the curve, which is not knowna
priori.

FIGURE 7. Curves of neutral stability for various values ofµ. The
dashed line indicates the cantilever boundary condition,µ = ∞. The
curves depictµ = ∞, 5, 2, 1, 0.7, 0.66, 0.5, 0.37.

(Figure 2) as the pipe. Rigid body parametersψJ = 1/3, λ = 1/3
were used. These values correspond to a uniform cylinder with
length two-thirds that of the pipe.

Curves of neutral stability are depicted in Figure 7. For each
curve, the area inside the curve (toward the origin) is stable, and
the area outside is unstable. Each curve was determined by first
finding theui required to create flutter instability atue = 0. ue

and ui are then perturbed along the predicted direction of the
curve, and the nearby point of neutral stability can be found. This
method of using nearby points on the curve is employed to reduce

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

0

0.5

1

1.5

2

2.5

3

u
i

u e
FIGURE 8. Curves of neutral stability for various values ofµ at
low values of ue. Note the proximity of all curves near the point
ui = 5.3, ue = 2.5. Forue < 2.5, the curves depict, from left to right,
µ = ∞, 5, 2, 1, 0.7, 0.66, 0.5, 0.37.

the search space, and to make sure that the algorithm used to find
ω has a starting guess sufficiently close to the desired root.

The difference between the low-µ and high-µ curves in Fig-
ure 7 is quite striking, considering the relatively small difference
in critical ui at ue = 0. At low ue, theui required to create flut-
ter instability decreases with increasedµ , until approximately
ui = 5.3, ue = 2.5. The proximity of all curves to this point is
interesting, but the authors see no theoretical reason for this con-
fluence. A closeup view of this region is given as Figure 8. For
values ofue > 2.5, the curves diverge. In general, lower values
of µ require a lowerui at a givenue to achieve flutter instabil-
ity. This trend is most apparent forµ ≤ 0.66. The “kink” in the
curves forµ > 0.5 may be explained by reference to Figure 9.
Higher mass ratios undergo one or more sharp jumps in natural
frequency asue increases.

3.2 Thrust characteristics
Equation 10 may be non-dimensionalized, and the average

over one cycle computed, to give the average non-dimensional
thrustτ∗.

τ∗ =
τL2

EI
=

ωcr

4π

∫ 2π
ωcr

0

(
[
Ẏ 2βe − u2

eY
′2]

X=1

−
[
Ẏ 2βe − u2

eY
′2]

X=0

)

dT (18)

The functionY (X ,T ) is found by the method laid out in Section
1.1, and takes the form of Equation 8. Equation 8 has both real
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FIGURE 9. Critical frequency,ωcr , as a function ofue.

and imaginary parts; only the real part is physically manifest, and
contributes to the thrust. Assuming neutral stability (Im[ω ] = 0),
the real part of Equation 8 is

Y (X ,T ) =
4

∑
n=1

eRe[zn]X×

(

Re[An]cos(Im[zn]X +Re[ω ]T )

− Im[An]sin(Im[zn]X +Re[ω ]T)

)

(19)

The coefficientsAn in Equations 8 and 19 are found by comput-
ing the nullspace of the matrixZ in Equations 7, 17, respectively.
Figure 10 shows curves of neutral stability with thickened re-
gions of each curve showing where the thrust is negative. Notice
that noµ allows thrust-producing instability atui = 0. This is
physically intuitive – after all, a flapping flag does not generate
thrust! It is also interesting to note that systems with lower values
of µ can produce thrust at lowerui than highµ systems, though
the higher mass systems have higher forward speed (ue). It is im-
portant to remember, however, that merely having positive thrust
from the tail does not guarantee that a givenui, ue point can be
reached. The system’s drag and the thrust of the fluid jet will
also govern the submersible’s top speed. Since the drag of the
system will, for a neutrally-buoyant vessel, be strongly related
to the displacement and mass, we will reserve these concerns for
a later work more closely tied to the physical realization of the
submersible.

FIGURE 10. Curves of neutral stability forµ = 0.37, 0.5, 0.66, 1, ∞.
The thickened portion of each curve depicts the region of negative thrust.

3.3 Hydrodynamic Efficiency
Similar to the expression for thrust, Equation 11 may be non-

dimensionalized, and the average over one cycle computed, to
give the average non-dimensional powerW ∗.

W ∗ =
WM1/2

e L3

(EI)3/2
=

ωcr

2π

∫ 2π
ωcr

0

([

Ẏ 2βeue − u2
eβ 1/2

e Y ′Ẏ
]

X=1

−
[

Ẏ 2βeue − u2
eβ 1/2

e Y ′Ẏ
]

X=0

)

dT (20)

The expression for efficiency is therefore

η =
Ueτ
W

=
Ue τ∗EI

L2

W ∗ (EI)3/2

M
1/2
e L3

=
τ∗ue

W ∗
(21)

Efficiencies computed via Equation 21 at various values ofµ
are given in Figure 11. Each curve considers the equation of
motion whenui, ue are such that the system is neutrally stable.
Per the discussion in Wu [12], Equation 21 has meaning only
when the thrust is positive. Figure 11 therefore only contains data
atui, ue locations with positive thrust, the non-thickened portions
of Figure 10. The flatness of the curves depicted in Figure 11 fits
well with expectations about fish-like motion. That is, that the
type of motions employed by fish are efficient over a broad range
of swimming speeds. This broad peak isnot characteristic of a
typical marine propeller, which tends to be most efficient over a
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FIGURE 11. Curves of efficiency,η, for µ = 0.37, 0.5, 0.66, 1, ∞.
The waveforms used to compute efficiency are all taken from neutrally-
stable, thrust-producing regions of Figure 10.

narrow range of velocities. It is interesting to note the collapse
of the curves at lowue; for ue < 4, the efficiency is essentially
the same for all values ofµ . The curves’ flatness and collapse is
somewhat liberating from the standpoint of submersible design,
since it means that the hull’s mass can be chosen based on other
needs, such as power source, drag, and buoyancy, rather than
hydrodynamic efficiency.

4 Conclusion
The equations of motion for an immersed fluid-conveying

pipe affixed to a rigid body have been derived, and the re-
sult compared to the classical [2] case of an immersed fluid-
conveying cantilever. It was shown that both the cantilever and
free pipe can be expressed as special cases of the rigid body
boundary condition, as might be expected. It was found that as
the mass of the rigid body (µ) decreases, theue required for in-
stability at a givenui decreases, though this is not a strong func-
tion of µ aboveµ ≈ 1. Estimates the sign of the thrust produced
by the fluttering pipe and the efficiency of that thrust have also
been computed. Regrettably, it is not possible to estimate the
magnitude of the thrust without an estimate of the magnitude of
the tail displacement such as might be gained through limit cy-
cle analysis. We are therefore not able to compare the “fish-like”
thrust of the fluttering tail to the “octopus-like” thrust of the jet
on the basis of this work in its current form. In [3], also sub-
mitted to this Symposium, we present a more detailed (though
analytically intractable) form of this work, and subject it to finite-
difference simulation. It was found in that work that the speed
of the submersible does increase as the magnitude of flutter in-
creases, indicating a net increase in thrust. This is consistent with

the findings of Paidoussis [5] in his original communication on
the hydroelastic icthyoid propulsor. We also note that the effi-
ciency of the produced thrust is relatively insensitiveue over a
large range ofue. This is consistent with observations of live
fish, which move with a waveformreminiscent of the travelling
waveform generated by a fluid-conveying pipe, though not one
we are able to reproduce in detail. It is therefore heartening that
one of the great advantages of fish-like propulsion is preserved.
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