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ABSTRACT 
 

This paper investigates the dynamics of a slender, flexible, 

aspirating cantilevered pipe, ingesting fluid at its free end and 

conveying it towards its clamped end. The problem is 

interesting not only from a fundamental perspective, but also 

because applications exist, notably in ocean mining [1]. First, 

the need for the present work is demonstrated through a review 

of previous research into the topic – spanning many years and 

yielding often contradictory results – most recently concluding 

that the system loses stability by flutter at relatively low flow 

velocities [2]. In the current paper, that conclusion is refined 

and expanded upon by exploring the problem in three ways: 

experimentally, numerically and analytically. First, air-flow 

experiments, in which the flow velocity of the fluid was varied 

and the frequency and amplitude of oscillation of the pipe were 

measured, were conducted using different elastomer pipes and 

intake shapes. Second, a fully-coupled Computational Fluid 

Dynamics (CFD) and Computational Structural Mechanics 

(CSM) model was developed in ANSYS in order to simulate 

experiments and corroborate experimental results. Finally, 

using an analytical approach, the existing linear equation of 

motion describing the system was significantly improved upon, 

and then solved via the Galerkin method in order to determine 

its stability characteristics. Heavily influenced by a CFD 

analysis, the proposed analytical model is different from 

previous ones,  most notably because of the inclusion of a two-

part fluid depressurization at the intake. In general, both the 

actual and numerical experiments suggest a first-mode loss of 

stability by flutter at relatively low flow velocities, which 

agrees with the results from the new analytical model. 

 
1. INTRODUCTION 

 

The dynamics of discharging cantilevered pipes, i.e. pipes 

that transport fluid from the clamped end to the free end, has 

been investigated thoroughly and continuously for nearly 50 

years. The simplest linear model of this system, generally 

predicting flutter, has been well-established for years; it has 

even emerged as a paradigm in dynamics, a well-understood 

stepping stone for tackling more complex systems. Why, then, 

does the simple act of reversing the flow direction and causing 

the pipe to aspirate, i.e. to ingest fluid at the free end and 

convey it towards the clamped end, as shown in Fig. 1, spark so 

much interest, debate and controversy? In over 20 years, the 

aspirating cantilevered pipe has been studied experimentally, 

theoretically and numerically, yet the analysis has never yielded 

altogether conclusive, incontrovertible results. 

 

The first attempt at understanding the dynamics of 

aspirating cantilevered pipes, motivated by an essentially 

fundamental interest, consisted of experiments carried out at the 

Chalk River Nuclear Laboratories of Atomic Energy of Canada 

in 1966 by Païdoussis [3], in which a pipe was submerged in 

water and made to ingest it. No instability was ever observed, 

and a shell-type buckling collapse, caused by the large 

transmural pressure near the clamped end, prevented an 

investigation of the behaviour at higher flow velocities. 

Reinforcement of the pipe at the location of collapse did not 

eliminate the problem, and the experiments were eventually 

abandoned. 

 

Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and  
8th International Conference on Nanochannels, Microchannels, and Minichannels 

FEDSM-ICNMM2010 
August 1-5, 2010, Montreal, Canada 

FEDSM-ICNMM2010-30833 
 



 2 Copyright © 2010 by ASME 

 
 

Figure 1. Schematic of an instantaneously deformed aspirating 

cantilevered pipe. 

 

Several years later, an application for the aspirating 

cantilevered appeared in the deep ocean mining of minerals 

such as manganese nodules, prompting an analytical study of 

the system by Païdoussis & Luu [1]. Replacing U+  with 

U−  in the linear equation of motion for a cantilevered pipe 

discharging fluid, their analysis concluded that the aspirating 

pipe loses stability by flutter at very low flow velocities in 

general, and at infinitesimal flow velocities in the absence of 

damping. Unconvinced, in 1986 Païdoussis built a new 

experimental set-up at McGill University to revisit the problem 

[3]. However, flutter remained elusive and, eventually, a rather 

unfortunate freak accident – reminiscent of Richard Feynman’s 

famous ‘inverse sprinkler’ mishap [4, 5] – brought about the 

premature abandonment of this pursuit. 

 

Nonetheless, still dissatisfied with the apparent 

disagreement between theory and experiments, Païdoussis [6] 

re-evaluated the analytical problem, upon realizing that the 

flow field at the intake is not the mirror-image of the 

discharging case. In other words, the fluid does not enter the 

pipe as a reverse jet, as had effectively been assumed in 1985; 

rather, Païdoussis now assumed a sink-like flow. In this case, 

the inlet gauge pressure is not zero. Instead, the sudden velocity 

increase causes a mean depressurization at the inlet, 
2

inlet Up ρ−= , where ρ  is the density of the fluid and U  is 

the mean flow velocity inside the pipe, effectively cancelling 

out the centrifugal force in the  equation of motion, and 

eliminating the potential for flutter. Moreover, almost 

simultaneously, renewed experiments involving two flexible 

elastomer pipes fitted with plastic elbows at their free ends and 

interconnected by a pump at their clamped ends appeared to 

confirm the cancellation of the centrifugal force and the 

impossibility for flutter to arise. 

 

Later, Kuiper & Metrikine [7] argued that Païdoussis was 

overvaluing the inlet depressurization, and therefore that the 

conclusion reached was incorrect. They suggested that the 

depressurization should instead be somewhere between 2Uρ−  

and 2

2
1 Uρ− , the latter found using Bernoulli’s equation, and 

that, as a result, the centrifugal force may not be wholly 

cancelled out. Furthermore, they reasoned that, even in the 

absence of the centrifugal force, the Coriolis force generates 

negative damping in the case of an aspirating pipe, and thus the 

system may lose stability after all. Finally, it was their assertion 

that the substantial drag caused by the surrounding fluid, water, 

was what prevented the occurrence of flutter in experiments, 

rather than the fundamental dynamics of the system. 

 

Soon after, a theoretical reappraisal of the problem was 

undertaken by Païdoussis et al. [8], the two key new 

assumptions being that (i) rather than a pure sink-flow, there 

exists a small (but non-zero) mean flow velocity, v , just facing 

the inlet and (ii) there exists an additional mean tension at the 

free end of the pipe, related to the flow over the inlet lip (edge) 

of the pipe and the factor 
inletedge pp=γ . Under these 

assumptions, two variants of the model were considered [9]. In 

the first, v  remains vertical during the motion of the system, 

whereas in the second, v  always remains tangential to the free 

end. In the first case, the pipe always remains stable, as before. 

In the second case, the aspirating pipe can become subject to 

flutter, but even qualitative results are dependent on the values 

chosen for v  andγ . It therefore became crucial to obtain 

accurate estimates of these quantities, and a CFD analysis was 

initiated to elucidate the inlet flow dynamics. 

 

Giacobbi et al. [2] carried out the CFD analysis and 

established values for v   and γ , concluding that the aspirating 

pipe can indeed flutter. This result was corroborated, at least 

qualitatively, by preliminary experiments with air, and by a 

coupled numerical CSM-CFD analysis in ANSYS which 

replicated experiments as faithfully as possible at the time. 

However, quantitatively, agreement between analytical results, 

experiments and numerical experiments remained 

unsatisfactory, and therefore so too did a unified, cohesive 

theory. 

 

At about the same time, Kuiper et al. [10, 11, 12] renewed 

efforts to capture the instability, if it exists, in experiments. In 

order to accomplish this, a 5 m long aspirating pipe was only 

partly submerged in a large tank filled with water, therefore 

greatly reducing the viscous drag as compared to previous 

experiments. Under these conditions, they found that the 

aspirating pipe does appear to lose stability above a certain 

critical flow velocity, and that the motion is an unpredictable 
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sequence of (i) nearly periodic orbital motions and (ii) noise-

like vibrations of small amplitude. However, similarly to 

Giacobbi et al., in comparing their results with existing theory, 

they found that neither the critical flow velocity for flutter nor 

the behaviour of the pipe in the unstable region could be 

predicted. 

 

The aspirating cantilevered pipe has perplexed researchers 

for many years, and continues to draw interest from a purely 

fundamental perspective. However, as new applications emerge 

in processes such as ship-board natural gas liquefaction and gas 

hydrate exploitation, a better understanding of this system has 

moved from being desirable to necessary. Therefore, the present 

paper has two objectives: (i) to strengthen the conviction that 

aspirating cantilevered pipes can be subject to flutter, by 

presenting new numerical and experimental evidence to support 

it, and (ii) to present a new linear theory, based on results from 

CFD analysis and new physical insight, that better explains the 

observed behaviour and provides additional insight into the 

fundamental dynamics of the system. 

 

2. EXPERIMENTAL INVESTIGATION 
 

The uncertainty plaguing past results and the unsatisfactory 

nature of the available evidence were convincing enough 

reasons to warrant a renewed interest in experiments. In 

particular, though unstable behaviour had most recently been 

witnessed by Kuiper et al. [10], Kuiper and Metrikine [11], and 

Kuiper [12], the small amplitude and irregular nature of the 

motion were cause for uncertainty; substantiation was therefore 

highly desirable. 

 

The new experiments were distinct from earlier ones 

mainly in that, building on the preliminary experiments carried 

out by Giacobbi et al (2), they were conducted using air-flow 

entirely. Earlier experiments using water, in which the pipe was 

therefore immersed in water, were problematic for two reasons. 

Firstly, and most importantly, as pointed out by Kuiper and 

Metrikine [7], the considerable drag induced by the surrounding 

water would dampen out any small oscillations if they should 

arise. Secondly, at high flow velocities, a shell-type buckling 

collapse would occur near the clamped end of the cantilevered 

pipe due to a large transmural pressure difference. Using air-

flow, both these issues were circumvented entirely. 

 

2.1 EXPERIMENTAL APPARATUS 
 

The experimental apparatus allowed for a controlled air 

feed to either the clamped end or the free end of the pipe, and 

measurement of the amplitude of pipe motion. In particular, it 

included (i) a large steel tank, (ii) an internal plexiglas flow-

guiding protective conduit, (iii) a flexible elastomer pipe, and 

an Optron system for measuring displacements.  

 

The tank intake/outlet connections could easily be 

reconfigured to accommodate either a discharging or an 

aspirating pipe. As shown in Figs. 2(a) and 2(b), the 

discharging configuration was obtained by feeding air to the 

clamped end directly, whereas aspiration was instead achieved 

by feeding air into the tank, thereby pressurizing it and forcing 

air up the pipe. The tank also possessed a plexiglas window for 

both viewing and recording purposes, and three pressure gauges 

located at different locations to monitor fluid characteristics. 

 

 
(a)     (b) 

 

Figure 2. Experimental set-up; (a) discharging configuration; 

(b) aspirating configuration. (i) large steel tank, (ii) plexiglas 

protective conduit, and (iii) flexible elastomer pipe. 

 

The protective 15 cm × 15 cm conduit was used to 

reduce flow disturbances and eliminate cross-flow that would 

otherwise interfere with the motion of the pipe and produce 

inaccurate results; it was placed within the tank and attached to 

the top cover of the latter by bolts. The combination of two 

screens and a honeycomb grid were placed at the lower end of 

the conduit to slow down and regularize the incoming flow. In 

this way, the air surrounding the pipe would be, for the most 

part, quiescent. 

 

Finally, an Optron system, which is a non-contact 

electro-optical biaxial displacement follower system, was 

employed together with LabVIEW to acquire a time history of 

the motion of the pipe at various flow velocities. The amplitude 

and frequency of the pipe motion were obtained from these 

time histories. 

 

For complete details and additional figures regarding the 

experimental apparatus, the reader is referred to Rinaldi [13]. 

 
2.2 EXPERIMENTAL PIPES 

 

The experiments were performed using three different 

flexible elastomer pipes, fabricated in-house, using Silastic® E 

RTV Silicone Rubber from Dow Corning. Each pipe had 
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distinctive defining characteristics, as follows: (i) Pipe 1 was an 

ordinary elastomer pipe without any special attributes; (ii) Pipe 

2 was constrained to move in a 2-D plane by inserting a thin 

metal blade along its length during the casting process; (iii) 

Pipe 3 was made denser by introducing fine copper particles 

within the silicone rubber mixture. The specific geometrical 

and physical characteristics of Pipe 1 are presented in Section 5 

when comparing with theory. 

 

In addition to their defining characteristics, each pipe 

could be fitted with differently profiled end-pieces, whose 

purpose was two-fold. Firstly, the end-piece would prevent – or 

at least delay – a shell-type flutter instability and subsequent 

collapse at the free end of the pipe, observed to otherwise be 

inevitable at high aspirating flow velocities
*
. Secondly, the 

various end pieces would provide differing intake profiles, in 

order to help elucidate the effect of the intake flow dynamics on 

the overall stability of the system. The simplest end-piece, 1A, 

used to produce the results given in the present paper, offered a 

straight cylindrical intake. 

 

It should be mentioned that, given the similarity between 

results discussed in Section 2.4, a full description of the 

different pipe characteristics and end-pieces is not warranted in 

this paper. Therefore, for details, the reader is referred to 

Rinaldi [13].  

 

2.3 EXPERIMENTAL VALIDATION 
 

To verify the capabilities and effectiveness of the 

apparatus, it was first tested under the discharging 

configuration, for which comparison with well-established 

theory is easily achievable. The apparatus could not produce 

pipe flow velocities below 60 m/s – a minor nuisance – but 

consistently successfully yielded critical flow velocities, 

m/s 130120crit −≈U , no more than 5 to 10% greater than 

those predicted by theory ( m/s 115crit ≈U ), an entirely 

acceptable difference for experiments of this type. 

 

However, several uncommonly encountered factors 

became apparent during these preliminary tests, and deserve 

mention, as they may slightly influence the experimental 

aspirating dynamics. First, compressibility effects for Mach 

numbers approaching 0.5 were accounted for through standard 

iterative means for average quantities, but may have had minor 

local effects. Second, a pressure drop due to friction resulted in 

a slight change in fluid density from pipe end to pipe end, but, 

in calculations, an effective average density was considered to 

apply along the length of the pipe. Finally, in the case of the 

aspirating pipe only, the tank must be pressurized to varying 

extents to generate the reverse flow, causing the fluid density to 

become a weak function of flow velocity; however, in cases of 

                                                           
* The first occurrence of this incredibly loud and still poorly understood event 

was wholly unexpected, scaring the lead author witless and leaving him to 

contemplate the solidity of a 1in plexiglas window.  

comparison with theory or numerical simulations, computations 

were carried out based on an average density for the entire 

range of flow velocities.  

 

2.4 EXPERIMENTAL RESULTS FOR THE ASPIRATING 
PIPE 

 

Overall, the experimental results suggest that aspirating 

pipes are indeed subject to flutter, at smaller flow velocities 

than the discharging case: i.e. at m/s 10060 −≈U  for the 

aspirating case versus m/s 120≈U  for the discharging case. In 

general, pipe motion was recorded for any flow velocity 

considered, with the lower bound of 60 m/s being imposed by 

the apparatus rather than the physical system. Moreover, as the 

flow velocity was increased, a steady increase in amplitude 

would follow and noticeably steepen. Fig. 3(a) illustrates this 

behaviour for Experiment 1A, i.e. Pipe 1 with end-piece A. 

However, similar to the experimental results obtained by 

Kuiper et al. [10], the motion was irregular, switching between 

appreciable orbital oscillations one minute, to a near negligible 

shuddering motion the next. The representative time history 

signal in Fig. 4 demonstrates this inconsistent yet recurring 

behaviour, which also explains the significant difference 

between the time-averaged rms amplitude and max amplitude 

values in Fig. 3(a). In Fig. 3, u  is the dimensionless flow 

velocity, formally defined in Eq. (16), but also here for 

convenience: ( ) ULEIMu 2
1

= , where M  is the mass of the 

conveyed fluid per unit length, U  the flow velocity, and EI  

and L  the flexural rigidity and length of the pipe respectively. 

 

The motion was visibly in the first beam-mode of the pipe, 

a fact confirmed by the frequency results. When estimated with 

a simple chronometer, the frequency of oscillation remained 

nearly constant, though with a slow decrease apparent as the 

flow velocity is increased, as shown in Fig. 3(b). When 

calculated using the Optron and processed in MatLab, the result 

was essentially the same, but with several small frequency 

jumps recorded as the flow velocity was increased. It is 

reasonable to suggest that these jumps are not a physical reality, 

but instead an artefact of an analysis that could only provide 

discrete values of frequency and not a continuum. 

 

Qualitatively, the substitution of one pipe for another or the 

addition of a profiled end-piece did not change the results. In 

general terms, the maximum amplitudes observed ranged from 

less than 1 mm (as small as 0.1 mm for the rms amplitude) at 

m/s 60≈U , to nearly 20 mm (or just over 5 mm for the rms 

amplitude) at m/s 150≈U . The conversion factor from 

dimensionless to dimensional flow velocity was calculated on a 

per run basis, and was based on an average fluid density taken 

over the entire run; generally m/s 2520 −≈uU . The 

observed frequency was approximately Hz 2.10.1 −≈f  for 

all cases, though universally following the trend presented in 

Fig 3(b). 



 

(a) 

(b) 

 
Figure 3. Typical experimental results, with displacements 

measured 5 mm above the free end of the pipe. 

versusu :  ruler estimate,  max amplitude,  

(b) frequency versusu :  chronometer estimate, 

windows),  PSD (16 windows).

 

 

Figure 4. Typical time history signal for experiments, for 

0.11=u , illustrating the characteristic shuddering motion 

commonly encountered during experiments.

shudder shudder
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Typical experimental results, with displacements 

above the free end of the pipe. (a) amplitude 

 rms amplitude; 

chronometer estimate,  PSD (8 

PSD (16 windows). 

 

Typical time history signal for experiments, for 

g the characteristic shuddering motion 

commonly encountered during experiments. 

At high flow velocities, the shell

shell-type collapse mentioned in Section 2.2 would take hold

and put an end to the experiment. With

instability would appear for flow velocities nearing 

m/s 120≈U . Unfortunately, the addition of an end

would only delay the effect, allowing for flow velocities 

nearing m/s 150≈U , but not prevent it.

 

Despite the evidence that the observed oscillation is

dynamic instability, the motion was 

flutter of a typical discharging pipe.

jump in amplitude, as there is with the discharging cantilever; 

rather the bifurcation curve follows a gradual increase. Second, 

the motion is irregular and inconsistent, switching between 

appreciable amplitude and a nearly quiescent phase irregularly

Third, and perhaps most important, the amplitude is, all things 

considered, quite small. All this prompts the inevitable 

question: is what we are witnessing 

actually flutter? 

 

In light of this troubling uncertainty, corroboration through 

numerical experiments became highly desirable, and is the 

subject of the next section. 

 

3. NUMERICAL SIMULATIONS
 

The purpose of the numerical simulations was to capture 

the instability, if it exists, in a more controlled setting, and 

corroborate the not yet altogether certain conclusion drawn 

from experiments that aspirating cantilevered pi

Numerical simulations involving a fully coupled ANSYS CSM

CFD model were therefore initiated by Giacobbi 

found that flutter did, in fact, emerge after a certain threshold

flow velocity was reached. 

 

However, the validity and sufficiency of the

though qualitatively interesting and not to be dismissed,

brought into question for several reasons, as follows:

pipes used in numerical simulation possessed unrealistic 

physical characteristics, most imp

elastic damping and a very small Young’s m

(ii) due to (i), direct corroboration of experiments was very 

difficult to obtain, even in non-dimensional terms; (iii) several 

simulation convergence criteria may ha

strict; (iv) displacements of over 0.02 m could not be captured 

due to mesh deformation limitations 

mesh stiffness  equation implemented

 

3.1 NUMERICAL SIMULATION METHODOLOGY
 

The basic elements of the sim

the current work are identical to th

al. [2]; refer also to Giacobbi [1

structure is modelled using finite elements in ANSYS

Mechanical, and the internal and surrounding fluid

in ANSYS CFX. A finite period of time

shudder

Copyright © 2010 by ASME 

, the shell-type flutter and eventual 

in Section 2.2 would take hold 

d put an end to the experiment. Without any end-piece, this 

appear for flow velocities nearing 

. Unfortunately, the addition of an end-piece 

delay the effect, allowing for flow velocities 

, but not prevent it. 

that the observed oscillation is a 

was considerably different from 

discharging pipe. First, there is no sudden 

jump in amplitude, as there is with the discharging cantilever; 

curve follows a gradual increase. Second, 

the motion is irregular and inconsistent, switching between 

nearly quiescent phase irregularly. 

Third, and perhaps most important, the amplitude is, all things 

ll this prompts the inevitable 

question: is what we are witnessing in these experiments 

In light of this troubling uncertainty, corroboration through 

numerical experiments became highly desirable, and is the 

IONS 

The purpose of the numerical simulations was to capture 

more controlled setting, and 

corroborate the not yet altogether certain conclusion drawn 

from experiments that aspirating cantilevered pipes can flutter. 

Numerical simulations involving a fully coupled ANSYS CSM-

CFD model were therefore initiated by Giacobbi et al. [2], who 

found that flutter did, in fact, emerge after a certain threshold 

d sufficiency of the results in [2], 

though qualitatively interesting and not to be dismissed, can be 

brought into question for several reasons, as follows: (i) the 

numerical simulation possessed unrealistic 

physical characteristics, most importantly a very large visco-

very small Young’s modulus and density; 

(ii) due to (i), direct corroboration of experiments was very 

dimensional terms; (iii) several 

riteria may have been insufficiently 

; (iv) displacements of over 0.02 m could not be captured 

ormation limitations related to the inadequate 

implemented.  

TION METHODOLOGY 

The basic elements of the simulation methodology used in 

the current work are identical to those proposed by Giacobbi et 

14]. To summarize, the pipe 

ed using finite elements in ANSYS 

, and the internal and surrounding fluid is modeled 

in ANSYS CFX. A finite period of time and time step, 
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structural and fluid properties, and boundary conditions are 

prescribed; the total behaviour is then observed as the 

simulation progresses in real time. The interaction between 

fluid and solid is computed at the interface, where CFX sends 

forces to and receives displacements from ANSYS Mechanical. 

The communication between the two is continued until the 

desired convergence criteria are met for both sides and even 

more importantly for the load transfer itself, at each timestep. 

Altogether, the fully-coupled CSM-CFD model replicates 

experiments by simulating an aspirating cantilevered pipe 

submerged in air. 

 

The present work investigated the behaviour of two pipes. 

The first one, Pipe A, possessed realistic geometric and 

physical properties when compared to experiments, with the 

exception of density, which was again quite low. The second 

one, Pipe B, was a near-exact model of the experimental Pipe 1 

from Table 1, save for two distinctions: (i) the fluid was not 

modelled as an ideal gas with variable density, and therefore 

was not subject to compressibility effects, and (ii) the hysteretic 

damping , ∗µ , which is not available in ANSYS, was not 

modelled. Instead, the air density was set to a constant 1.18 

kg/m
3
, and an equivalent total viscoelastic damping was 

deduced by directly matching the decay of oscillations in 

numerical simulations to experiments. The effect of using a 

constant density should, in non-dimensional terms, be relatively 

small. Moreover, the effect of using an equivalent viscoelastic 

damping instead of a combined hysteretic-viscoelastic damping 

should also be small for the needs of this analysis, even in 

dimensional terms. Altogether, by being much more similar to 

experiments, these two cases – and particularly Pipe B – could 

be used to provide a much better test of agreement with 

experimental results. The specific geometrical and physical 

properties of Pipes A and B are presented in Section 5, when 

comparing with analytical results and experiments. 

 

In order to verify whether the approach was viable, a 

discharging pipe was simulated and the critical flow velocity 

obtained was compared with theory, and in the case of Pipe B, 

also with experiments. The emergence of flutter was well 

predicted. Qualitatively, a classical bifurcation curve emerged: 

negligible or no motion at low flow velocities, and a rapid jump 

to large and often unattainable limit cycles at higher flow 

velocities. More specifically, the non-dimensional critical flow 

velocities were found to be within 10% of the theoretical ones 

for Pipe A, and within 5% of both the experimental and 

theoretical ones for Pipe B. These results were obtained with 

relative ease despite dimensional flow velocities surpassing 100 

m/s, suggesting that these numerical experiments could be a 

viable means of simulating even a realistic aspirating pipe. 

 

 

 

3.2 NUMERICAL SIMULATION RESULTS FOR THE 
ASPIRATING PIPE 

 

Predictably, simulation of the aspirating cantilevered pipe 

proved to be a much more demanding undertaking. The 

challenges of using a more realistic pipe, avoided by Giacobbi 

et al. (2) at the expense of satisfactory corroboration, became 

clear when the necessarily higher flow velocities invariably 

translated into significant convergence difficulties. More 

specifically, unlike the discharging pipe where one force acting 

exclusively on the inner wall of the pipe generally dominates, 

the aspirating pipe is subject to competing forces on the inner 

pipe wall and at the free end. These forces tend to partially 

cancel each other out, such that the aspirating pipe is quite 

sensitive to any inaccuracy in the computations; in particular, 

even the effect of viscous damping due to the surrounding air 

becomes relatively important, whereas it plays a negligible role 

for the discharging case. Given the history of disagreement 

surrounding the aspirating cantilevered pipe, this sensitivity 

came as no revelation, but it nevertheless made obtaining 

completely satisfactory results difficult. 

 

To begin with, Pipe A proved the easier to analyze. First, a 

reduced stiffness relaxed the necessity for elevated flow 

velocities and facilitated numerical convergence. In addition, 

and perhaps more importantly, a diminished density increased 

the relative importance of the flow velocity vis-à-vis amplitude, 

making the relationship between increasing amplitude and 

increasing flow velocity more obvious. Despite these 

advantages, obtaining clear-cut limit cycle oscillations proved 

difficult. The rate of energy flow into the system is evidently 

slow, resulting in slow convergence to the phase-plane 

trajectories towards a definite limit cycle. Instead, therefore, for 

each flow velocity, lower and upper bounds were estimated for 

the amplitude of the anticipated limit cycle oscillation. To 

accomplish this, initial perturbations of differing strengths were 

applied to the pipe aspirating at a given flow velocity, and the 

motion carefully observed for several cycles of oscillation. 

Generally, the amplitude of oscillation would either 

consistently increase or decrease, indicating a lower or upper 

bound respectively. By carrying out many such simulations, an 

approximate bifurcation curve was obtained, as shown in Fig. 

5, in which the estimated amplitude is plotted versus flow 

velocity. 

 

Subsequently, the more important case, Pipe B, was 

analyzed. A similar approach as with Pipe A was sought, but 

clean results remained elusive. More concretely, for a given 

flow velocity, when given no initial perturbation, the pipe 

would always begin to oscillate at a small, yet very slowly 

increasing amplitude. For the same flow velocity, when given a 

small initial push, the pipe would then generally begin to 

oscillate at an essentially constant amplitude, determined by the 

size of the push, exactly like a frictionless pendulum. 

Eventually, in some cases, a large enough perturbation would 

create an initial amplitude that the fluid flow could not sustain, 
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and the pipe motion would begin to decay, though again very 

slowly. Specifically, for flow velocities below approximately 

70≈U  m/s (in dimensionless terms, 5.2≈u ),  the range 

between the lower and upper bound was extensive to the point 

that estimating the anticipated limit cycle oscillation amplitude 

was unfeasible. Even more distressing, for higher flow 

velocities, the upper bound was altogether impossible to 

determine! In light of this, it was proposed that no perturbation 

be given, and that instead the simulations be left to run long 

enough that the slowly increasing amplitudes eventually reach a 

limit cycle, so as to finally obtain the elusive bifurcation curve. 

Unfortunately, the relatively low frequency of oscillation, the 

necessity for a small timestep and the difficulties associated 

with convergence in spite of everything, meant that a single run 

could potentially require months of computation time. Instead, 

a minimum amplitude
†
 bifurcation curve was obtained, given in 

Fig. 5. This curve most definitely suggests an emerging 

instability, with amplitudes on the same order as the time-

averaged rms amplitudes seen in experiments for the same pipe. 

With such a curve, the critical flow velocity was estimated by 

observing at which point the slope steepened and extrapolating. 

 

. 
Figure 5. Aspirating bifurcation curves captured in numerical 

simulations. Pipe A: estimated limit cycle amplitude; Pipe B: 

minimum limit cycle amplitude. 

 

For both pipes, the frequency results were essentially the 

same as what was found by Giacobbi et al. [2], and therefore 

are not elaborated upon here. In summary, similarly to 

experiments, the oscillation frequency is that of the first beam-

mode and, as the flow velocity is increased, the frequency tends 

to decrease very slightly. Again, this is reminiscent of a 

pendular motion, and it would not be characteristic of flutter 

were it not for the non-negligible increasing amplitude 

previously described. 

                                                           
† The minimum amplitude here refers to the amplitude of the first peak 

observed during the motion of the pipe when no initial perturbation is given. 

The actual limit cycle is far greater; however, to obtain a reliable and consistent 

baseline for comparison, it is always this minimum amplitude which was 

considered rather than any other.  

When taken together, these numerical simulation results do 

seem to indicate a flutter instability appearing at low flow 

velocities. However, as the numerical study of Pipe B most 

clearly demonstrated, this is an excessively weak instability – 

completely dissimilar to the sharp amplitude rise most often 

seen with the discharging cantilever. In fact, rather than flutter, 

in the case of a reasonably heavy and stiff pipe, the motion 

resembles that of an undamped pendulum. However, it is there: 

the fact that the motion does not ever damp out completely 

indicates that the flow is feeding energy into the system, and 

that that energy is sufficient to counteract the viscous and 

viscoelastic damping, and maintain a certain amplitude. Finally, 

when paired with the earlier results of Giacobbi et al. [2] that 

appeared to indicate a much sharper bifurcation for unrealistic 

pipes, it now seems clear that the numerical simulations agree 

with experiments in predicting that aspirating cantilevered 

pipes can and do, indeed, flutter. 

 

4. THEORETICAL ANALYSIS 
 

The new evidence presented in the foregoing suggests that 

perhaps a new attempt should be made to obtain a sound 

analytical model. However, the current work does not present a 

full derivation of the model; rather it focuses on new insights 

brought forth by the CFD analysis, the assumptions that have 

consequently been made and the ensuing results. 

 

4.1 NEW THEORETICAL MODEL 
 

The system under consideration consists of a uniform pipe 

of length L , flow area A , mass per unit length m , and 

flexural rigidity EI , conveying a constant property fluid of 

mass per unit length M , with constant mean axial flow 

velocity U  from the free end to the clamped end, as illustrated 

in Fig. 1. The flow is assumed to be fully developed and 

turbulent. Furthermore, it is assumed that the pipe is slender, 

i.e. is long compared to the diameter, and undergoes only small 

lateral motions ),( txw , where x is in the axial direction (with 

origin at the clamped end) and t  is time. Under these 

assumptions, and without yet considering the effect of the 

intake dynamics, the simplified linear equation of motion can 

be gleaned directly from the equation for a discharging 

cantilever as originally derived by Païdoussis & Issid [15], and 

is 
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Here, α  is the Kelvin-Voigt type viscoelastic damping, ∗µ  is 

the hysteretic damping [16], Ω  is the circular frequency of 

oscillation, T  is an external tension, p  is an external 

pressurization, 
aM  is an added fluid mass per unit length 

accounting for the surrounding fluid, g  is standard gravity, 

and c  is the viscous damping coefficient. For an unconfined 

system such as this one, the viscous damping coefficient, c , is 

given by 

,
St

22
ef Ac ρΩ=  (2) 

 

where ν2

oSt rΩ=  is the Stokes number, 
o2

1
o Dr = , 

oD  is 

the outer diameter of the pipe, and ν  is the kinematic viscosity 

of the surrounding quiescent fluid [3, 17]. Equation (1) is 

nearly identical to that for the discharging cantilever, save for 

the fact that U  has been replaced with U− . From this point 

on, however, the special nature of the intake flow dynamics will 

be considered, and some changes to the equation will result. 

 

First of all, the CFD simulations represented in Fig. 6 

demonstrate that the flow in the vicinity of the free end for (a) 

the discharging pipe and (b) the aspirating pipe is quite 

different. In particular, Fig. 6(b) illustrates that the incoming 

flow at the inlet does not behave as a reverse jet; however, it is 

also clear that the aspirating inlet does not behave quite like a 

sink either. More concretely, Table 1 provides the values of the 

flow velocities and pressures just below, at, and just above the 

inlet, for a stationary cantilevered pipe aspirating air at 100 m/s. 

In the table, ( )
avexV  is the average flow velocity in the negative 

x -direction; 
totV , on the other hand, is the average total flow 

velocity. In addition, p  is pressure, whereas totp   is total (or 

stagnation) pressure. By comparing the velocity at different 

locations, it can be seen that, as it enters the pipe, the fluid 

undergoes two distinct changes, translating into two distinct 

depressurizations. 

 

Figure 7 illustrates more explicitly the different changes 

that occur as the flow enters the pipe, on a normalized scale. 

First, as the total flow velocity increases along a given 

streamline, a pressure drop occurs due exclusively to 

Bernoulli’s equation. In Fig. 7, this can be seen by comparing 

the average total velocity (curve (2)) with the pressure loss 

calculated from Bernoulli’s equation (curve (5)), and noticing 

that they reach their maxima simultaneously, just outside the 

inlet. This first depressurization, intakep , is completed when the 

average total velocity becomes U , such that 2
2

1
intake Up ρ−=

. At this location, however, Fig. 7 also shows that the average 

flow velocity in the negative x -direction (curve (1)), 

( ) vVx ≡
ave

, has not yet reached its maximum. More 

specifically, it is not U , but rather a large fraction of it, this 

because a certain portion of the flow is still entering from the 

sides. Consequently, as the final cross-flow components are 

eliminated between the inlet proper and a location just 1 mm 

further in, a second depressurization occurs, this time 

corresponding to a loss in total pressure (curve (4)), which is 

independent of the Bernoulli loss, as shown by Fig. 7. From the 

foregoing, it is clear that, although the average pressure (curve 

(3)) decreases at a fairly constant rate as the flow enters the 

pipe, the two pressure loss mechanisms are distinct and can be 

decoupled in order to model the inlet dynamics. 

 

(a) 

(b) 

 

Figure 6. (a) Streamline plot for a discharging cantilevered pipe, 

near the free end. Inset: Streamline plot of the discharging jet-

like flow, as seen from further away. (b) Streamline plot for an 

aspirating cantilevered pipe, near the free end. Inset: Streamline 

plot of the aspirating sink-like flow, as seen from further away. 

Note: The z -direction used in the plots corresponds to the 

negative x -direction in the theoretical model. 

 

Table 1.  Properties of the intake and inlet flow  

Location 
versus 

inlet 

( )
avexV  

(m/s) 

totV  

(m/s) 

p  

(Pa) 

totp  

(Pa) 

2
2

1 Vρ−  

(Pa) 

3 mm 
above 99 99 -1.1E+04 -3.9E+03 -5.8E+03 

1 mm 
above 102 104 -1.1E+04 -3.4E+03 -6.4E+03 

Inlet 88.1 102 -6.6E+03 -4.4E+02 -6.1E+03 

1 mm 
below 28.8 48.7 -1.6E+03 2.4E+01 -1.4E+03 

3 mm 
below 13.7 28.8 -5.0E+02 4.6E+01 -4.9E+02 
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. 

 

Figure 7. Normalized intake and inlet flow characteristics 

plotted versus position inside the pipe. 

 

From the perspective of a 1-D approximation, based on the 

CFD analysis outlined above, we therefore state the following 

for the oscillating aspirating pipe: there exists a reduced 

velocity, v , tangential to the pipe and just facing the inlet, 

where a depressurization in accord with Bernoulli’s equation, 
2

2
1

intake Up ρ−= , as had been suggested by Kuiper and 

Metrikine [7], has already occurred. The pipe is, in general, 

inclined at an angle ( ) ( )
LL

xwxw ∂∂≈∂∂≡ −1tanχ  with the 

vertical, as shown in Fig. 8(a), and the forces acting on the free 

end can be determined in both the ( )yx,  and ( )ζξ ,  coordinate 

systems as shown in Fig.8(b). Moreover, as illustrated in 

Fig.8(c), the incoming flow velocity, v , is, in general, at an 

angle, ϑ , from the vertical, where we define ψ  such that 

ψχϑ = . In the case of air – and therefore in the present work 

– CFD analysis suggests that the two angles will be very close, 

satisfying 00.190.0 −≈ψ . 

 

 
 

Figure 8. The free end of the pipe: (a) definition of the 

coordinate systems and the angle χ ; (b) definition of the 

forces exerted by the fluid on the pipe; (c) definition of the 

mean flow velocity v  and the angle ϑ ; see Païdoussis et al. [8] 

Under these assumptions, the force exerted by the pipe on 

the fluid in the x-direction is equal to the change in momentum 

of the fluid right at the inlet ( )UMU ∆ , added to the effect of 

the pre-existing inlet depressurization, as follows: 

 

( )[ ]
.cos              

coscos

intake χ

ϑχ

Ap

vUMUFx

+

−−−=
 (3) 

 

In the y-direction, the force exerted by the pipe on the fluid is 

similarly due to the change in momentum, added to the lateral 

component of the inlet depressurization force, and can be 

written as 

 

( )[ ] ( ){ }
.sin                      

sinsin

intake χ

ϑχ

Ap

vUtwMUF
Ly

+

−−−∂∂=
 (4) 

 

Furthermore, assuming small deflections and therefore a small 

deflection angle, χ , we can approximate 1coscos ≈≈ ϑχ , 

( )
L

xw ∂∂≈≈ χχsin  and ( )
L

xw ∂∂≈=≈ ψψχϑϑsin , and 

Eqs. (3) and (4) simplify into  

 

( ),2
32 α−−= MUFx

 (5) 

 

( ) ( )( ) ,2
32

LLy xwMUtwMUF ∂∂−−∂∂= αψ  (6) 

 

where 2
2

12
2

1
intake MUAUAp −=−= ρ  has been invoked, and 

Uv /≡α .  Subsequently, Eqs. (5) and (6) may be manipulated 

in order to obtain the forces in the tilted ( )ζξ ,  reference frame, 

and the signs inverted to express the forces exerted by the fluid 

on the pipe, *

ξF  and *

ζF , as follows: 

 

( ),2
32** αξ −=−=≈ MUFFF xx  (7) 

 

 

( )

( ) ( )( ) .1

   

2

*

LL

Lxy

xwMUtwMU

xwFFFF

∂∂−+∂∂−=

=∂∂+−≈−=

ψα

ζζ  (8) 

 

It is now supposed that the depressurization force at the inlet is 

equal to the force exerted by the fluid on the pipe at the inlet in 

the ξ-direction, expressed as 

 

( ).2
32* αξ −≈=− MUFAp  (9) 

 

Moreover, CFD analysis confirms the existence of a non-

negligible average negative pressure on the lip of the pipe, 

related to the inlet depressurization and exerting a tension 

force, T ,  on the pipe, as follows: 

 

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

-3 -2 -1 0 1 2 3

Position inside the pipe (mm)

(1) Average axial velocity (2) Average total velocity
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( ) ( )

( )[ ],                2
32

2
32

αγ

αγγ

−=

=−=−−=

MU

MUfAApT e  (10) 

 

where pp lip=γ , γγ f= , ( ) AAAf −= e
, and 

eA  is the 

total cross-sectional area of the pipe and fluid, as introduced by 

Païdoussis et al. [8]. Consequently, the term, ( )ApT − , from 

Eq. (1), can be expressed as 

 

( ) ( )( ) .1 2
2

3 MUApT αγ −+=−  (11) 

 

We next consider the boundary conditions on the aspirating 

pipe. At the clamped end, i.e. at 0=x , the boundary conditions 

are simply 0=∂∂= xww . At the free end, i.e. at Lx = , the 

force in the lateral direction, *

ζF , must be accounted for, 

resulting in 

 

( )

( )( ) ;01

,0         

2

33

22

=∂∂−−

∂∂+∂∂

=∂∂

L

L

xwMU

twMUxwEI

xwEI

ψα

 (12) 

 

the shear force boundary condition can be incorporated into the 

equation of motion via a Dirac delta function, ( )Lx −δ  [3]. 

 

Finally, by combining Eqns. (1), (11) and (12), the 

equation of motion for a cantilevered pipe aspirating fluid can 

be obtained as follows: 
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(13) 

 

This equation can be rendered non-dimensional through the use 

of the dimensionless parameters 
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yielding the dimensionless equation of motion 
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(15) 

 

in which the following non-dimensional parameters have 

arisen: 

 

 

(16) 

 

Finally, the equation is solved numerically using the Galerkin 

method in the form proposed by Païdoussis [3]. 

 

4.2 QUALITATIVE ANALYTICAL RESULTS 
 

In the context of this study, parameters describing the inlet 

flow dynamics are assumed to fall into a limited range of values 

that are general for a wide range of pipes and flow velocities, 

established  based on the CFD analysis; they are 9.07.0 −≈α  

and 40.030.0 −≈γ . Moreover, the parameters used to model 

each pipe analytically are given in Table 2. In the case of the 

numerical simulations, the properties provided for Pipes A and 

B are exactly those modelled in ANSYS. In the case of the 

experiments, the fluid properties provided that depend heavily 

on density (  , , aMM and β ) are based on local densities 

averaged over an entire run; the actual fluid properties vary 

with flow velocity. It should also be stressed that, although the 

numerical Pipe B was meant to replicate experiments as closely 

as possible, there are still small discrepancies between the two, 

as illustrated by Table 2. Therefore, quantitatively, they should 

not be directly compared; rather, results for each one must be 

compared with the analytical model. 

 

Figure 9 displays the stability behaviour of the system for 

an illustrative set of fluid parameter choices. The top Argand 

diagram, which plots the imaginary part of the eigenfrequency 

versus the real part, shows that even very slight changes in the 

choice of parameters (in this case, varying ψ
 
from 0.94 to 

1.00) have a substantial effect on the behaviour of the system. 
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However, key trends do emerge. In the bottom right diagram, it 

can be seen that as the flow velocity is increased, the imaginary 

part of the eigenfrequency – and therefore the damping – at first 

remains relatively constant and near zero, suggesting the 

possibility for the same pendular motion captured in numerical 

simulations. Eventually, depending on the specific 

characteristics of the pipe under study, a flutter instability can 

occur through a Hopf bifurcation in the first mode. However, 

even past this point, the amount of negative damping 

(synonymous with an influx of energy) remains small, 

suggesting that the oscillations will be very weak, and easily 

damped out by any extraneous factors. 

 

Table 2. Properties of the experimental and numerical 

simulation pipes, and critical flow velocities for the discharging 

case 

Properties Pipe 1 Pipe A Pipe B 

Do (m) 0.0159 0.0150 0.0159 
Di (m) 0.00934 0.0100 0.00934 
L (m) 0.401 0.300 0.401 
EI (N·m

2
) 7.63×10

-3
 1.99×10

-3
 7.63×10

-3
 

m (kg/m) 0.144 9.82×10
-3
 0.144 

M (kg/m) 8.81×10
-5
 9.31×10

-5
 8.12×10

-5
 

Ma (kg/m) 3.01×10
-4
 2.09×10

-4
 2.34×10

-4
 

β  ( - ) 6.10×10
-4
 9.20×10

-3
 5.63×10

-4
 

γ  ( - ) 11.9 11.9 11.9 

∗α  ( - ) 0.00030 2.40×10
-3
 1.57×10

-3
 

∗µ  ( - ) 0.03578 0 0 

f1 (Hz) 1.27 4.43 1.27 
δ1 ( - ) 0.0423 N/A 0.0423 

( )
theocritu  ( - ) 4.91 4.89 4.91 

( )
num / expcritu  ( - ) 5.31 5.06 4.96 

 

Therefore, in general terms, Fig. 9 demonstrates that the 

theoretical results for the numerical simulation Pipe B, agree 

with experiments and numerical simulations in predicting a 

very weak flutter instability. In particular, according to the 

theoretical model, the extremely limited amount of energy 

flowing into the system could explain why, in experiments, 

only an intermittent motion has been observed. Only for much 

greater flow velocities does the negative damping eventually 

increase considerably, potentially allowing for large 

oscillations; such velocities were not investigated in either 

experiments or numerical simulations, although larger 

oscillations were just beginning to emerge in both cases. 

 

Similarly, for a sufficiently low value of ψ   ( 98.0≤ψ  for 

Pipe B, 35.0=γ  and 8.0=α ) agreement is equally good when 

considering the real part of the eigenfrequency, i.e. the actual 

frequency of oscillation. Specifically, in both experiments and 

numerical simulations the frequency was found to stay 

relatively constant and decrease very slightly with flow 

velocity. Likewise, for an appropriate choice of parameters such 

as those used for Fig. 9, the theoretical model predicts that the 

frequency will indeed slowly decrease with flow velocity. 

Overall, experiments, numerical simulations and theory all 

predict the same type of behaviour. 

 

 
Figure 9. First mode Argand diagram, frequency and damping 

results produced by the theoretical modelling of numerical Pipe 

B; 8.0=α , 35.0=γ , ψ = 0.94, 0.96, 0.98 and 1.00. 

 

5. QUANTITATIVE COMPARISON BETWEEN THE 
EXPERIMENTAL, NUMERICAL AND ANALYTICAL 
MODELS 

 

Sections 2 to 4 have shown that, for the aspirating case in 

general, the exact value of the critical flow velocity is of lesser 

importance than in the discharging case, since the change in 

oscillation amplitude is not as dramatic, nor as potentially 

catastrophic. The theoretical model can indeed predict specific 

values for the threshold of flutter, but because of the flatness of 

the damping curve illustrated in Fig. 9, even a very large jump 

in critical flow velocity will only be reflected in a very small 

change in the dynamical behaviour. Consequently, in contrast to 

the discharging pipe, it is the qualitative behaviour of the 

aspirating pipe which is most important. 

 

This contrast between the two configurations is made 

evident by comparing Figs. 10 and 11, which focus on the 

damping of the discharging and aspirating cases respectively. 

Figure 10 shows that, immediately after the pipe begins to 

flutter in its 2
nd

 mode, the damping, )Im(ω , soon decreases 

from 0 to approximately -30. On the other hand, in the case of 

the aspirating pipe, Fig. 11 illustrates that the damping of the 

unstable 1
st
 mode decreases from only 0 to just under -0.03, 

over a comparable range of flow velocities. Clearly, any small 

modification to the damping characteristics of the aspirating 

pipe makes a large quantitative difference that is not mirrored 

in the discharging case. 

 

ψ = 0.94 

ψ = 1.00 
ψ = 0.94 

ψ = 1.00 

u = 0 

ψ = 1.00 ψ = 0.94 
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. 
 

Figure 10.  Theoretical eigenfrequency damping of the 

unstable 2
nd

 mode plotted versus dimensionless flow velocity, 

for a discharging cantilever having properties similar to Pipe B. 

 

Nevertheless, a limited choice of acceptable flow 

parameters produces a corresponding range of critical flow 

velocities which can be compared with estimates for the critical 

flow velocities obtained from the bifurcation curves for 

experiments and numerical simulations in Figs. 3(a) and 5 

respectively. It must be noted, however, that this range is very 

large. Table 3 provides this comparison, illustrating adequate 

agreement, given the qualitative context: the extent of 

theoretical critical flow velocities encompasses the ranges 

estimated using the other two approaches. Furthermore, they 

are in the same mode, which is the first. From the foregoing, it 

therefore seems clear that, in the absence of sufficient damping, 

aspirating cantilevered pipes do indeed flutter at lower flow 

velocities than their discharging counterparts. 

 

 
Figure 11.  Theoretical eigenfrequency damping of the first 

two modes plotted versus dimensionless flow velocity, for an 

aspirating cantilever having the properties of Pipe B. 

 

 

Table 3. Comparison of experiments and numerical 

simulation estimates for critical flow velocities with theoretical 

predictions 

Pipe 
Experimental 

Pipe 1 
Numerical 

Pipe A 
Numerical 

Pipe B 

( )
alexperimentcritu  2.0 – 4.0 - - 

( )
numericalcritu  - 2.0 – 3.0 1.5 – 2.5  

( )
analyticalcritu  

,0.50.2 −≈  

)35.0   ,001960   ,900800( =−== γ..ψ.-.α
‡
  

 

6. CONCLUSION 
 

This paper presented findings from experimental, 

numerical and analytical approaches to elucidate the question 

of whether aspirating cantilevered pipes flutter. This question, 

of a fundamental interest, has exercised researchers in the field 

of fluid-structure interactions for several decades, but has 

become all the more important with new applications emerging. 

 

The evidence presented indicates that aspirating pipes do 

undergo a dynamic instability. However, because the instability 

is a very weak one, the strength of the conclusion can come 

only from corroboration between all three approaches. Indeed, 

the results all indicate that the aspirating pipe does flutter, but 

that the energy influx is very small, and therefore so too is the 

motion. The fact that numerous previous experiments did not 

suggest any self-excited oscillations reinforces this point. 

Altogether, it seems that, even though aspirating cantilevered 

pipes do indeed flutter at relatively small flow velocities, they 

clearly do not flutter very vigorously. 
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by Fig. 9.  
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