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ABSTRACT 
This study treats the nonlinear behaviour of cylindrical shells 

subjected to internal fluid flow and to an external periodic 

transverse point force. The shell is supported at both ends by 

axial and rotational springs capable of simulating boundary 

conditions ranging from clamped to simple supports. This 

complex boundary condition configuration is preferred in our 

analysis in order to be able to compare theoretical findings with 

water-tunnel experiments available in the literature. The 

external concentrated point force is applied at mid-length of the 

immersed shell structure acting in the radial direction and the 

excitation frequency values lie within the spectral 

neighbourhood of one of the shell’s lowest frequencies for 

different flow velocities. The structural model is based on the 

full nonlinear Donnell shell equations of motion including the 

effect of the in-plane inertia and accounting for geometric 

imperfections. The fluid is assumed to be incompressible and 

inviscid and the flow isentropic and irrotational; it is modelled 

using potential flow theory with the addition of unsteady 

viscous terms obtained from the time-averaged Navier-Stokes 

equations. The coupled system is discretized using a solution 

expansion based on trigonometric functions satisfying the shell 

boundary conditions exactly. Numerical results show the 

nonlinear response at different flow velocities for (i) a fixed 

excitation amplitude and variable excitation frequency, and (ii) 

fixed excitation frequency varying the excitation amplitude. 

Bifurcation diagrams of Poincaré maps obtained from direct 

time integration are presented, as well as the maximum 

Lyapunov exponent, in order to classify the system dynamics. 

In particular, periodic, quasi-periodic, sub-harmonic and 

chaotic responses have been detected. The full spectrum of the 

Lyapunov exponents and the Lyapunov dimension have been 

calculated for the chaotic response; they reveal the occurrence 

of large-dimension hyperchaos. 
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1. INTRODUCTION 

Large amplitude vibrations of thin shells containing fluids 

are a major safety concern due to excitations of many kinds, 

including flow excitation. In the early studies, linear shell 

theory has been used to describe the oscillation of thin shells, 

which is accurate only for vibration amplitudes significantly 

smaller than the shell thickness.  

Païdoussis and Denise [1] presented one of the first 

complete studies on the dynamics of shells conveying fluid for 

both clamped and cantilevered shells subjected to axial flow; a 

travelling wave type solution was utilized, nevertheless 

satisfying the pertinent boundary conditions, along with a 

separation of variables method to solve the boundary value 

problem for linear fluid-structure interaction. Additional studies 

by Weaver and Unny [2], utilizing the Fourier transform 

method predicted similar results for the stability of simply 

supported shells. Païdoussis et al. [3] extended this method to 

coaxial cylindrical shells. Another interesting study on the 

effect of the boundary conditions at the shell ends was 

presented by Horáček and Zolotarev [4]. In these four papers 

[1-4], not only shell stability but also the linear dependence of 

the natural frequencies of the system on the flow velocity are 

investigated. 

The literature related to nonlinear studies of shells coupled 

to flowing fluid is not large. Selmane and Lakis [5] studied the 

large amplitude vibration of shells with flow. They considered 

the nonlinear free vibrations of open and closed circular 

cylindrical shells with fluid flow by using a hybrid finite 

element method. The formulation is based on the nonlinear 

Sanders-Koiter shell theory, so that structural nonlinearities are 

taken into account. Results have been obtained for the free 

nonlinear vibrations of an open circular cylindrical shell with 

flowing fluid. 

In a recent series of papers, Amabili, Pellicano and 

Païdoussis [6-9] systematically studied the nonlinear dynamics 

and large-amplitude vibrations of simply supported, circular 

cylindrical shells, with and without quiescent or flowing fluid, 

by using as a basis the eigenfunctions of a simply supported 

beam. Moreover, the convergence of the solution was studied in 

Refs. [7, 8]. Amabili [10] investigated the effect of geometric 

imperfections and compared calculations and experiments, thus 

validating the theory. More accurate shell theories have been 

used by Amabili [11] to study the same problem. Results show 

that, for water-filled shells, Donnell’s nonlinear shallow-shell 

theory gives reasonably accurate results, provided n is not too 

small.  

Not many studies on shells with clamped boundary 

conditions, empty or filled with fluid, subjected to external 

harmonic excitation are available due to the numerical 

problems related to satisfying the physical boundary conditions. 

Matsuzaki and Kobayashi [12] studied theoretically and 

experimentally the large-amplitude vibrations of clamped 

circular cylindrical shells using the Donnell nonlinear shallow 

shell theory predicting a softening type of nonlinear response. 

Chiba [13] conducted an experimental study of large-amplitude 

vibrations of clamped shells partially filled with water to 

different levels. The results indicated that when the shells are 

partially filled a more pronounced nonlinear response is 

produced. Amabili [14] investigated the nonlinear vibrations of 

circular shells with different boundary conditions subjected to 

radial harmonic excitation in the spectral neighbourhood of the 

lowest resonances; geometric imperfections were taken into 

account. Karagiozis et al. [15] presented two different 

theoretical models for the nonlinear oscillations of clamped 

shells, empty or fully filled with water, subjected to external 

harmonic excitation. Both models predicted, with excellent 

accuracy, the softening nonlinear response obtained in the 

experiments conducted by Chiba [13]. Additional case studies 

are included in Amabili [16]. 

In the present study the nonlinear stability of an aluminium 

shell clamped at both ends, subjected to internal water flow and 

to an external radial harmonic excitation in the spectral 

neighbourhood of one of the lowest natural frequencies, is 

investigated for different flow velocities. Karagiozis et al. [17] 

and Amabili et al. [18] investigated the nonlinear response of 

the same shell system subjected only to internal fluid flow, 

generating results in excellent agreement with the experimental 

results of Karagiozis [19]. Bifurcation diagrams of Poincaré 

maps obtained from direct time integration and calculation of 

the maximum Lyapunov exponent have been used to study the 

system. By increasing the excitation amplitude, the periodic 

solution changes to chaotic response. 

 

2. THEORY 
 The shell model consists of a circular cylindrical shell of 

length L, mean radius R, and thickness h, such that 1h R≪ , 

shown in Fig.1. The origin of the cylindrical coordinate 

system, ( );  , ,O x r θ , is positioned at the centre of one end of the 

shell. The shell is assumed to be of homogeneous, isotropic 

elastic material of Young's modulus E and Poisson ratio ν. The 

displacements of the shell middle surface are denoted by u, v 

and w, in the axial, circumferential and radial directions, 

respectively; w is taken positive outward.  

 The following boundary conditions are imposed at the shell 

ends: 

v = w = w
0
 = 0,              at x = 0, L,                                    (1a-c) 

x a
� k u= − ,                   at x = 0, L,                                       (1d) 

( )x rM k w x= − ∂ ∂ ,       at x = 0, L,                                        (1e) 

where �x is the axial load per unit length, Mx is the bending 

moment per unit length, ka is stiffness per unit length of the 

elastic, distributed axial springs at x = 0 and L and kr is the 

stiffness per unit length of the elastic, distributed rotational 

springs at x = 0 and L. Moreover, u, v and w must be continuous 

in θ. The boundary conditions (1a,b) restrain the radial and 

circumferential shell displacements at both edges. Equation 

(1d) gives and elastic axial constraint at the shell edges. 
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Different values of the axial spring ka are assume for 

asymmetric and axisymmetric deformation modes in the 

numerical calculations in order to simulate experimental 

boundary conditions.  
 

 
 

 

FIGURE 1. Shell geometry and boundary conditions 

 

 A base of shell displacements is used to discretize the 

system; the displacements u, v and w can be expanded by using 

the following expressions, which identically satisfy boundary 

conditions (1a,b): 
5

, , , ,

1

( , , ) ( ) cos ( ) ( ) sin ( ) cos( )m n c m n s m

m

u x t u t n u t n xθ θ θ λ
=

 = + + ∑  

3 4

,2 , 2 1,0 2 1

1 1

( ) cos (2 ) cos( ) ( )cos( ),m n c m m m

m m

u t n x u t xθ λ λ− −
= =

+∑ ∑
 

(2a)

 5

, , , ,

1

( , , ) ( ) sin ( ) ( ) cos ( ) sin( )m n c m j s m

m

v x t v t n v t n xθ θ θ λ
=

 = + ∑  

  

4

,2 ,

1

( ) sin (2 ) sin( ),m n c m

m

v t n xθ λ
=

+∑                         (2b) 

3

, , , ,

1

( , , ) ( ) cos ( ) ( ) sin ( ) sin( )m n c m n s m

m

w x t w t n w t n xθ θ θ λ
=

 = + + ∑  

4

2 1,0 2 1

1

( )sin( ),m m

m

w t xλ− −
=

∑                                      (2c) 

where j is the number of circumferential waves, m is the 

number of longitudinal half-waves, m m Lλ π= , and t is the 

time; um,j(t), vm,j(t) and wm,j(t) are the generalized coordinates, 

which are unknown functions of t; the additional subscript c or 

s indicates if the generalized coordinate is associated with 

cosine or sine function in θ, except for v, for which the notation 

is reversed (no additional subscript is used for axisymmetric 

terms). More terms in the expansion are necessary for in-plane 

than for radial displacements. Denoting with n the number of 

circumferential waves in the shape of the buckled mode, terms 

with j = 2n and 3n circumferential waves can be added to 

expansion, but they do not play an important role if geometric 

imperfections are not introduced. 

 Imperfections are expanded in the following Fourier series 

( ) ( ) ( )
ˆ ˆ

0 , ,

1 0

, , cos sin sin( / )
M �

m n m n

m j

w x t A j B j m x Lθ θ θ π
= =

 = + × ∑∑ .     (3) 

 

2.1 Fluid-structure interaction 

 The shell is assumed to be positioned within a large 

concentric solid tube filled with quiescent fluid to include the 

effect of the inertia of the surrounding fluid. The contained 

flowing fluid and the external quiescent fluid are assumed to be 

incompressible and inviscid and the flow isentropic and 

irrotational, so that potential theory can be used to describe 

fluid motion. The fluid model is based on the Païdoussis and 

Denise model [20]. Moreover, the steady-state viscous effects 

are added in the fluid model separately. These effects are 

evaluated using the time averaged Navier-Stokes equations.  

 Liquid-filled shells vibrating in the low-frequency range 

satisfy the incompressibility hypothesis very well. Nonlinear 

effects in the dynamic pressure and in the boundary conditions 

at the fluid-structure interface are neglected. The shell prestress 

due to the fluid weight is also neglected. The fluid motion is 

described by the velocity potential Φ, which satisfies the 

Laplace equation. The velocity potential is related to the scalar 

potential function by Ψ=Ux+Φ. Both ends of the fluid volume 

(corresponding to the shell edges) are assumed to be open, so 

that a zero pressure is assumed there; this physically 

corresponds to a long shell periodically supported (e.g. with 

ring stiffeners) or it approximates a can closed by very thin 

circular plates.  

 If no cavitation occurs at the fluid-shell interface, the 

boundary condition expressing the contact between the shell 

wall and the flow is  

r R

w w
U

r t x

∂ Φ
∂

=

   ∂ ∂
= +   ∂ ∂   

.                                                   (4) 

By using the method of separation of variables, Φ has the 

following form: 

, ,

1 0

I ( / )

I ( / )

M �
m n m nn

m n n

w wm r LL
U

m m R L t x

π
Φ

π π= =

∂ ∂ 
= + ′ ∂ ∂ 

∑∑                    (5) 

 

2.2 Energy associated with flow 

 By using the Green’s theorem, the total energy associated 

with the flow is given by 

 

1 1
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1
d

2
F

Ω Ω

Ψ
ρ Ψ Ω

ν
 ∂

=  ∂ 
∫∫ ,                   (6) 

where Γ and Ω are the cylindrical fluid volume inside the shell 

(delimited by the length L) and the boundary surface of this 

volume, respectively, and ν is the coordinate along the normal 

to the boundary, taken positive outward. Equation (6) shows 

that the energy EF can be conveniently divided into three terms 

having different  contributions of time functions and their 

derivatives: 

 
F F G F

E T E V= + − .                                            (7) 

The first and second of the three terms on the right-hand side 

can be identified as the kinetic and gyroscopic energies, 

respectively; an opposite sign is introduced for the potential 

energy VF for convenience. The time-mean Navier-Stokes 

equations [18] are employed to calculate the fluid steady 

viscous effects assuming that the flow is fully turbulent. The 

unsteady viscous forces [21] are neglected in this investigation.  

 

2.3 Generalized forces 

In this analysis, the shell is subjected not only to flowing fluid 

but also to an external harmonic force excitation active only in 

the radial direction, as indicated in Figure 1. The external 

localized (point) force on the shell surface is directed inwards 

and is applied at a point ( ),x θɶɶ . The excitation force in the 

radial direction has the following general form  

 ( ) ( )cos( )rf f R R x x tδ θ θ δ ω= − −ɶ ɶ ɶ , (8) 

where δ is the Dirac delta function, and fɶ  is the magnitude of 

point force. It is important to note that in the present analysis 

the driving frequency (excitation frequency) is chosen to have 

values close to the natural frequency of the lowest modes of the 

shell. 

 The virtual work W done by the external force is written as 

 ( )( )
2, 0

cos
x L

W f t w θω
= =

= ɶ . (9) 

 Damping is considered to arise strictly within the shell 

material. It is assumed to be of the viscous type and is taken 

into account by using Rayleigh’s dissipation function [20]. 

 The generalized forces Qj are obtained by differentiation of 

the Rayleigh dissipation function F and of the virtual work W 

done by external forces: 

 

j
j j

F W
Q

q q

∂ ∂
= − +

∂ ∂ɺ
,                                   (10) 

where / j j jF q c q∂ ∂ =ɺ ɺ  and cj is the dissipation coefficient that 

has a different value for each mode.  

  

2.4 Lagrange equations of motion 

 The following notation is introduced: 

{ }T

, , , , , , , , , , , ,, , , , ,m n c m n s m n c m n s m n c m n su u v v w w=q , 

 1 21, , orm M M= …  and 0, ,n �= … .                       (11) 

The generic element of the time-dependent vector q is referred 

to as qj. The dimension of q is � , which is the number of 

degrees of freedom (dofs) used in the mode expansion. 
 In the present case, the Lagrange equations of motion are 

rewritten as 

( ) ( )d
2

d

S F G S F
j

j j j

T T E U V
Q

t q q q

 ∂ + ∂ ∂ +
− + = 

∂ ∂ ∂  ɺ
, 

                                                  1, ,j �= … .  (12) 

 

2.5 Equation of motion  

The equations of motion have been obtained by using the 
Mathematica 4 computer software [22], in order to perform 

analytical integrals of trigonometric functions. The generic 
thj  

Lagrange equation is divided by the modal mass associated 

with jqɺɺ  and is then transformed into the following two first-

order equations by using the dummy variable jy : 

( )

dofs dofs dofs

, , ,

1 1 1

dofs dofs dofs

, , ,

1 1 1

,

2

         cos ,    for 1...dofs,     (13) 

j j

j j j j j i i j i k i k

i i k

j i k l i k l

i k l

q y

y y z q z q q

z q q q f t j

ζ ω

ω

= = =

= = =

=

 = − − − −


 + =


∑ ∑∑

∑∑∑

ɺ

ɺ

where f=0 if ( ), ,j m j s
q u t=  and coefficients z have long 

expressions that include also geometric imperfections. 
The resulting first-order nonlinear nondimensionalized 

differential equations are studied by using (i) the software 
AUTO 97 [23] for continuation and bifurcation analysis of 
nonlinear ordinary differential equations, and (ii) direct 
integration of the equations of motion by using the DIVPAG 
routine of the Fortran library IMSL. The AUTO 97 software is 
capable of continuation of the solution, bifurcation analysis and 
branch switching by using arclength continuation and 
collocation methods. In particular, the shell response under 
harmonic excitation has been studied by using an analysis in 
two steps: (i) first the excitation frequency has been fixed far 
enough from resonance and the magnitude of the excitation has 
been used as bifurcation parameter; the solution has been 
started at zero force (where the solution is the trivial 
undisturbed configuration of the shell) and it has been 
continued upwards to reach the desired force magnitude; (ii) 
then, the solution was continued by using the excitation 
frequency as bifurcation parameter. 

Direct integration of the equations of motion by using Gear's 
BDF method (routine DIVPAG of the Fortran library IMSL) 
has also been performed to check the results and obtain the time 
behaviour. The Adams-Gear algorithm was used due to the 
relatively high dimension of the dynamical system.  

 

2.6 Maximum Lyapunov exponent and dimension 

In order to evaluate the maximum Lyapunov exponent, 
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which is useful to characterize regular or chaotic motion of the 
shell, it is necessary to assume a reference trajectory xr(t) in the 

phase plane ( ),  planeq qɺ  and observe a neighbouring trajectory 

originated at infinitesimal initial perturbation ( )0tδ x  from the 

reference trajectory (see Argyris et al. [24]). The evolution of 

the perturbation during time, ( )tδx , is governed by the 

following variational equations: 

( )

( )

dofs dofs dofs

, , , , ,

1 1 1

dofs dofs dofs

, , , , , ,

1 1 1

d

d

d
2

d

 for 1...dofs,

j j

j j j j j i i j i k n k n i i n k

i i k

j i k l n k n k l k n i l l n k i

i k l

q y
t

y y z q z q q q
t

z q q q q q q q j

δ δ

δ ζ ω δ δ δ δ δ

δ δ δ δ

= = =

= = =

 =

 = − − − +



− + + =


∑ ∑∑

∑∑∑
                                                                                               (14) 

where ,k nδ  is the Kronecker delta. Taking jqδ  and jyδ  as new 

variables, the simultaneous integration of the 4 × dofs first-
order differential equations has been performed (equations (13) 
are nonlinear and are integrated by using DIVPAG IMSL 
routine, and equations (14) are linear, but with time-varying 
coefficients, and are integrated by using the adaptive step-size 
4th/5th order Runge-Kutta method). The excitation period has 
been divided into 104 integration steps in order to have 
accurate evaluation of the time-varying coefficients in 
equations (14) that are obtained at each step by integration of 
equations (13). To find a reference trajectory, sufficient steps 
are taken to eliminate the transient for both sets of equations 
(13) and (14). Then, 1 × 10

6
 steps are used for evaluation of the 

maximum Lyapunov exponent for the reference trajectory 

( )r tx , which is given in its simplified form by

 

 ( )1

1
lim sup lnt t

t
σ δ→∞= x . (15) 

Then, by restoring at each integration time step k the 

amplitude of ( )tδx  to its original unitary measure via the re-

normalisation ( ) ( ) kt t dδ δ=x x  where ( ) kk
t dδ =x , the 

following formula for the maximum Lyapunov exponent, 
evaluated at step k, is obtained: 

 1,

1

1
ln

 

k

k i

i

d
k t

σ
=

=
∆ ∑ . (16) 

In the numerical calculation of the maximum Lyapunov 
exponent, the non-dimensional time previously introduced has 
been used.  

 
The Fortran computer program developed to calculate 

2 × dofs numbers designating the spectrum of the Lyapunov 
exponents is described in reference [25] and has been properly 
validated. 

The long-term behaviour of dissipative systems is 
characterized by attractors with different characteristics if the 
trajectories are not drawn towards infinity. After a transient 
state, in which some modes of motion finally vanish due to 
damping, the state of the system approaches an attractor where 
the number of independent variables, which determine the 
dimension of the phase space, is generally reduced considerably 
[18]. The fractal dimension is a measure of the strangeness of 

an attractor and indicates the number of effective independent 
variables determining the long-term behaviour of a motion. 
There exist several measures of the fractal dimension, including 
the well-known Lyapunov dimension, which is defined as [25] 

 1

1

s

L r s

r

d s σ σ +
=

= + ∑ , (15) 

where the Lyapunov exponents are ordered by their magnitude, 
and s is obtained by satisfying the following conditions: 

 
1

0
s

r

r

σ
=

>∑  and 
1

1

0
s

r

r

σ
+

=

<∑ . (16) 

 
 

3. NUMERICAL RESULTS 
 

This numerical analysis is an extension of the study 
presented by Karagiozis et al. [17] and Amabili et al. [18] that 
compared succesfully numerical models with the experimental 
results of Karagiozis [19]. The aluminium shell is assumed to 
have the following dimensions and material properties: 

L=0.1225; R=0.041125; h=0.000137 m; 
s

ρ =2720 
3kg m ; 

ν=0.33 and E=
9

70 10× Pa;. The assumed stiffness of axial and 
rotational springs distributed around the shell ends at x = 0 and 
L are ka1= 1×10

7
 N/m

2
, ka2= 1×10

5
 N/m

2
 and kr= 0.3×10

3
 N/rad. 

The axial springs ka1 that restrain asymmetric modes are more 
rigid than ka2 which are set to restrain the axiasymmetric 
modes. In the experiments the shell was glued with epoxy to 
solid rings at the boundaries, represented here by springs with 
stiffness ka1, but the rings were also connected to the water 
tunnel using a softer silicone material, represented by springs 
with stiffness ka2. Therefore, the shell boundary conditions lie 
between simply supported and clamped ends. The assumed 
fluid (conveyed and quiescent in the external confinement) is 

water with mass density
F

ρ = 1000 3kg m . The quiescent fluid 

in the external space was confined by a rigid cylinder with 
internal radius of 0.1015 m. A nondimensional fluid velocity V 
is introduced for convenience, defined as in Weaver and Unny 

[2] ( ) ( ){ }2 1 2V U L D hπ ρ=    , where U is the flow velocity 

and 
3 2/ [12(1 )]D E h ν= − . 

The critical wavenumber observed in the experiments is n=6, 
with quite a regular shape (see Karagiozis [19] and Karagiozis 
et al. [26]); calculations confirm that this is the first mode 
reaching divergence. Therefore, all the results shown here are 
for n=6. The damping ratio ζ1,6 used in the calculations was set 
to 0.005. In addition, the solution expansion involved forty-two 
symmetrical driven and companion modes. 
 

3.1 Stability analysis and periodic response 

Figure 2 shows the stability diagram for the aluminium shell 
in a bifurcation plot of the amplitude of the first generalized 
coordinate w1,6,c versus the non-dimensional flow velocity. As 
the flow velocity increases, the shell remains undeformed until 
the pitchfork bifurcation at V=3.69, at which point the system 
loses stability by static divergence according to linear theory. 
The solution bifurcates into two unstable branches; these 
branches fold at V=1.28 and become stable thereafter. As 
shown for the first time in Amabili et al. [6] for simply-

5 Copyright © 2010 by ASME
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supported shells, and later by Karagiozis et al. [17] for clamped 
shells, there is a range of flow velocities between the point of 
the linear onset of instability and the folding point in which the 
shell may jump from its undeformed state to a deformed state 
of large amplitude if sufficiently perturbed. The perturbation 
may be in the form of an external force acting on the shell wall 
or it may be a flow perturbation. In our case, this critical flow 
range is quite enormous: over 65% of the range 
(1.28 3.69V≤ ≤ ) from zero flow velocity to the point of linear 
loss of stability!  

 

 
FIGURE 2: Bifurcation diagram of the non-dimensional 

amplitude of the first driven mode 
1,6,cw h versus the non-

dimensional flow velocity V of a clamped aluminium shell with 
internal water flow:              , Stable solution branches;             , 
unstable solution branches. A is the point of interest with V=1 
and LP are the limit points of the solution branches. 

 
To further study the forced response of the aluminium shell, 

point A on the bifurcation diagram is chosen to be investigated. 
Here the forced response is obtained spanning the frequency 
range around the fundamental resonance. Point A lies before 
the folding points (LP in Figure 2), thus only one stable 
solution on branch 1 exists, namely that of zero shell 
deformation. The response-frequency relationship of the 
fundamental mode for a shell subjected to water flow and a 

harmonic excitation of magnitude 0.0165 N at 2x L=ɶ  and 

0θ =ɶ  is shown in Figures 3(a,b). In all cases the shell exhibits 
a softening type of nonlinearity that is more pronounced as the 
flow velocity is increased. As the frequency of excitation is 
increased the solution loses stability by a pitchfork bifurcation. 
This pitchfork bifurcation point gives rise to unstable solutions 
for branch 1, where only the driven mode is active (the 
companion mode is zero). It also gives rise to an initially stable 
branch 2 with companion mode participation (as shown in 
Figure 3(b)). It is interesting to note that the stable Branch 2 
loses stability through two Neimark-Sacker (torus) bifurcations 
The shell behaviour is complicated, as secondary Neimark-
Sacker bifurcation points exist along the stable periodic 
solutions, producing periodic and quasi-periodic oscillations on 
branch 2. As the flow velocity increases, the region for quasi-
periodic responses also increases. 

 

 

 
(a) 

 
(b) 

FIGURE 3. Maximum amplitude of vibration of the first 

asymmetric mode versus the excitation frequency for three 

different values of the nondimensional velocity and a force  

amplitude equal to 12.5[N].              , stable solution;            , 

quasi-periodic solution;            , unstable solution; ■, Torus 

bifurcation points; ●, bifurcation points. (a) Maximum 

amplitude of the first driven asymmetric modes versus the 

excitation frequency; (b) maximum amplitude for the first 

asymmetric companion modes versus the excitation frequency. 

A 
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It is also noted that, as the flow velocity increases, the quasi-
periodic solution branch (Branch 2 between the two torus 
bifurcation points) interferes with the unstable Branch 1 
(unstable solution between the limit points) allowing for 
amplitude-modulated responses. These results were obtained 
using the AUTO 97 software package. 

  

3.2 Stability analysis and periodic response 

In this section the response of the shell for the flow 
condition at point A (see Fig.2, V=1) was investigated by 
increasing the force amplitude from 0 to 17 N while keeping 

the frequency of excitation at 
1,6 1.00ω ω = . Specifically, the 

DIVPAG Fortran routine was used to integrate the equations of 
motion when V=1 with 200 frequency steps; at each step, a 
Poincaré map and the maximum Lyapunov exponent were 
calculated. This required a large computational effort, and the 
computer codes had to be optimized for speed, computational 
cost and accuracy. 

The rich dynamics of the response is shown in Fig. 4(a) 

below. The results in Figure 4(a) for the first driven mode show 

that there is a complex periodic response with jumps and phase 

changes along with sub-harmonic responses for low excitation 

values. The first companion mode goes through similar 

intervals of sub-harmonic response for low excitation load 

values. For higher excitation values the system becomes 

chaotic. The second asymmetric mode, ( )2,6,cw t , is activated 

when the system becomes chaotic. Therefore, for flow 

conditions at point A (V=1), both driven and companion 

components of the first and second modes are very active, 

contributing large displacements when the system experiences 

chaos. The presence of a flowing fluid amplifies the complexity 

of the system response. 

 

 
(a) 

 
(b) 

 
(c) 

FIGURE 4: Bifurcation diagram of Poincaré points for 

increasing force amplitude from fɶ =0 to 17.0 N, with 

1,6 1.0ω ω =  and V=1. (a) Bifurcation diagram for the driven 

mode; (b) bifurcation diagram of the companion mode; (c) 

bifurcation diagram of the second driven mode. S denotes sub-

harmonic responses and C denotes the chaotic response of the 

system. 
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The chaotic nature of the system can be seen in Figure 5(a), 

in a plot of the maximum Lyapunov exponent versus the 

excitation force magnitude. For fɶ =15.67 N the Lyapunov 

exponent becomes very large and positive. The Poincaré map is 

shown in Figure 5(b) for fɶ =11.99 N. 

 

 

 
(a) 

 
(b) 

FIGURE 5: Bifurcation diagrams and Poincaré maps for the 

fundamental driven mode when the force fɶ  is increased to 

17.0 N, with 
1,6 1.0ω ω = and V=1. (a) Dynamic load versus the 

maximum Lyapunov exponent; (b) Poincaré map for the 

fundamental driven mode for fɶ =11.99 N. 

 

4.  CONCLUSIONS 
This paper summarizes the complex dynamical behaviour 

of shells conveying fluid under external radial harmonic 

excitation. It was shown that periodic, sub-harmonic and 

chaotic responses are possible, depending on the flow velocity, 

amplitude and frequency of the harmonic excitation.  

The present study showed that when the flow velocity is 

nonzero the second asymmetric mode significantly contributes 

in the chaotic oscillations of the excited shell. This model is a 

first successful step in the development of reliable semi-

analytical methods with low computational cost to describe the 

nonlinear behaviour of clamped shells conveying fluid and 

excited by a harmonic force. 
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