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ABSTRACT 
Human aortas are subjected to large mechanical stresses and 

loads due to blood flow pressurization and through contact with 

the surrounding tissue and muscle. It is essential that the aorta 

does not lose stability for proper functioning. The present work 

investigates the buckling of human aorta relating it to dissection 

by means of an analytical model. A full bifurcation analysis is 

used employing a nonlinear model to investigate the nonlinear 

stability of the aorta conveying blood flow. The artery is 

modeled as a shell by means of Donnell’s nonlinear shell 

theory retaining in-plane inertia, while the fluid is modelled by 

a Newtonian inviscid flow theory but taking into account 
viscous stresses via the time-averaged Navier-Stokes equation. 

The three shell displacements are expanded using trigonometric 

series that satisfy the boundary conditions exactly. A 

parametric study is undertaken to determine the effect of aorta 

length, thickness, Young’s modulus, and transmural pressure 

on the nonlinear stability of the aorta. As a first attempt to study 

dissection, a quasi-steady approach is taken, in which the flow 

is not pulsatile but steady. The effect of increasing flow 

velocity is studied, particularly where the system loses stability, 

exhibiting static collapse. Regions of large mechanical stresses 

on the artery surface are identified for collapsed arteries 

indicating possible ways for dissection to be initiated.  
 

1. INTRODUCTION 
The mechanisms leading to static collapse and flutter of 

arteries, veins and pulmonary passages may be said to be well 

understood, though the means of prediction are not yet fully 

satisfactorily explained, mainly because of the large 

deformations involved. Nevertheless, there are numerous 

studies on the collapse and flutter of collapsible tubes 

modelling blood flow in veins, pulmonary passages and the 
urethra; see for example the reviews by Kamm & Pedley [1], 

Bertram [2] and Païdoussis [3]; and the papers by Luo and 

Pedley [4], and Heil [5,6], for instance.  

Furthermore, with the introduction of classical bifurcation 

theory in applied mechanics, advanced mathematical models 

were conceptualized producing new theoretical findings for the 

nonlinear response of shells under external loading. It is 
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important to distinguish the notion of word the “bifurcation” 

used as a mathematical concept to the use in the medical 

community. In general, bifurcation in medical science is 

associated with the split of an artery (or a vein) and the 

generation of new arterial branches. However, in the 

mathematical interpretation, bifurcation signals the qualitative 
change of a solution and the generation of new solution 

branches that describe new dynamical behaviour of the system 

[7, 8]. A significant advantage of using bifurcation analysis 

compared to a finite element analysis is that bifurcation theory 

identifies all possible stable and unstable solutions of the 

system for a range of the critical parameter of the system (i.e., 

flow velocity or the transmural pressure in the present analysis) 

vis-á-vis results obtained from finite element analysis (FEA) 

models which tend to produce results for only a specific value 

of the critical parameter.  In a series of benchmark theoretical 

papers Amabili et al. [9-12] used bifurcation theory to analyze 

simply supported shells subjected to external force or fluid 
flow. It was found that the shells lose stability by divergence, 

exhibiting a strong subcritical behavior. These findings were 

confirmed by experiments for clamped shells [13].  

One of the most catastrophic cardiovascular diseases is 

associated with the dissection of the upper aorta by a sudden 

rupture of the internal layer of the aortic wall [14]. It is 

assumed that the mechanical stresses applied on the aorta wall, 

due to specific pressure-flow conditions, exceed some critical 

value, resulting in local rupture of the artery tissue that 

propagates in the axial direction following a helicoidal path in 

the inner two-thirds and outer one-third of the media [15, 16]. 

According to recent studies, the prevalence of the aortic wall 
dissection occurs for 2.6-3.5 per 100,000 person-years, with a 

mortality increase of up to 2% per hour after symptoms have 

been detected [17, 18]. Even though the general assumption is 

that high mechanical stresses causing inner tissue rupture in the 

aorta are a significant factor for the total rupture of aorta, the 

underlying mechanism of aorta dissection is poorly understood. 

The main reason that the rupture mechanism has not yet been 

clearly determined is that direct measurements of the risk 

factors in vivo are not feasible [19]. The aorta is a complex part 

of the circulation system, changing dramatically in shape and 

size according to the systolic and diastolic pressure field, as 
well as in material properties due to mechanical stresses and 

age; accordingly, simulation of aortic dynamics is extremely 

difficult [20].  

The present paper proposes to study aortic dissection by 

means of an analytical model – thus following in the path of 

Heil’s [5] and Heil & Pedley’s [21] studies. The artery is 

modelled as a shell by means of Donnell’s nonlinear shell 

theory, while the fluid is modelled by a Newtonian inviscid 

flow theory but taking into account viscous stresses via the 

time-averaged Navier-Stokes equations. As a first attempt to 

describe the nonlinear behaviour of the aorta, a quasi-steady 

approach is taken, in which the flow is not pulsatile but steady. 

The effect of increasing flow velocity is studied, particularly in 
the neighbourhood of the system losing stability by static 

divergence. Bifurcation theory is used to analyze the system of 

equations of motion for the aortic wall. 

 

2. THEORY 
 The model of the aortic segment consists of a circular 

cylindrical shell of length L, mean radius R, and thickness h, 

such that 1h R , shown in Fig.1. The origin of the cylindrical 

coordinate system,  ;  , ,O x r  , is positioned at the center of 

one end of the shell. The shell is assumed to be of 

homogeneous, isotropic elastic material of Young's modulus E 

and Poisson ratio ν [22]. The displacements of the shell middle 

surface are denoted by u, v and w, in the axial, circumferential 

and radial directions, respectively; w is taken positive outward. 

The mathematical details are given in [23]. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

  

FIGURE 1: The configuration of the cylindrical shell section 

used to simulate the ascending aortic segment. 

 The nonlinear Donnell equations for a shell were used to 

describe the shell motion [24],  
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here M is the mass matrix (including the effect of the fluid), C 

the damping matrix, K the linear stiffness matrix which does 

not include the displacement effects, N2 a matrix that gives the 

quadratic nonlinear terms for the displacements, N3 a matrix 

that involves the cubic nonlinear terms for the displacements, 

and Ptm the transmural pressure on the artery in the radial 

direction.   
 The following boundary conditions are imposed at the shell 

ends: 

 v = w = w
0
 = 0,                 at x = 0, L,                            (2a-c)    

 x aN k u                         at x = 0, L,                               (2d) 

 ( )x rM k w x    ,          at x = 0, L,                               (2e) 

where Nx is the axial stress resultant per unit length, Mx the 

L 

R 
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u v 
w 

h 

;  (1) 



 3 Copyright © 2010 by ASME 

bending moment per unit length, ka and kr are stiffness per unit 

length of the axial and rotational constraints, respectively.  

 A base of shell displacements is used to discretize the 

system; the displacements u, v and w can be expanded by using 

the following expressions, which identically satisfy boundary 

conditions (2a,b): 
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where n is the number of circumferential waves, m is the 

number of longitudinal half-waves, m=m/L, and t is the time; 
um,j(t), vm,j(t) and wm,j(t) are the generalized coordinates, which 

are unknown functions of t; the additional subscript c or s 

indicates if the generalized coordinate is associated to a driven 

mode (i.e. a mode directly excited by the external excitation) or 

a companion mode (i.e. a mode not directly excited and 

contributing to the system response due to nonlinear coupling);  

no additional subscript is used for axisymmetric terms. The 

total number of degrees of freedom used in the present model is 

42. 

 The kinetic energy of the shell is given by 

 
2

2 2 2
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1
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where S is the mass density of the shell. The potential energy 
of the shell US is made up of two contributions: the elastic 

strain energy Ushell of the circular cylindrical shell and the 

potential energy Uspring stored by the axial and rotational 

distributed springs at the shell ends; therefore, 

                                     shell springSU U U  .                        (5) 

The elastic strain energy Ushell of a circular cylindrical shell is 

given by [24] 
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where the stresses x,  and x are related to the strains x,  

and x  for homogeneous isotropic material ( 0z  , case of 

plane stress). Donnell’s nonlinear shell theory [24] retaining in-

plane inertia is used in order to evaluate equations (4)-(6). The 

model has been developed and validated in [23].  

 The potential energy stored by the axial and rotational 

springs at the shell ends is given by 
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where ua is the axial displacement given by equation (3a) 

without the axisymmetric terms um,0(t). 

 

2.1 Fluid model 

The shell is assumed to be positioned within a large 

concentric solid tube filled with quiescent fluid to include the 

effect of the inertia of the fluid surrounding the aorta. The 

contained flowing fluid and the external quiescent fluid are 

assumed to be incompressible and inviscid and the flow 

isentropic and irrotational, so that potential theory can be used 

to describe fluid motion. Nonlinear effects in the dynamic 
pressure and in the boundary conditions at the fluid-structure 

interface are negligible [25]. The shell prestress due to the fluid 

weight is also neglected. The fluid motion is described by the 

velocity potential , which satisfies the Laplace equation. A 
very long shell periodically supported at distance L is assumed 

in order to use the separation of variables method. The fluid 

model is based on the mathematical formulation given in 

Païdoussis and Denise [26] and later elaborated by [9]. 
The irrotationality property is the condition for existence of 

a scalar potential function , from which the velocity may be 
written as 

 v .                                                           (7) 

 By using the Green’s theorem, the total energy EF 

associated with the flow can conveniently be divided into three 

terms with different contributions of time functions and their 

derivatives: 

 F F G FE T E V   ;                                            (8) 

the first and second of the three terms on the right-hand side 

can be identified as the kinetic and gyroscopic energies, 

respectively; an opposite sign is introduced for the potential 

energy VF, for convenience. 

 The time-mean Navier-Stokes equations are employed to 

calculate the steady viscous effects assuming that the flow is 

fully turbulent [23, 27]. This type of hybrid model is 

particularly efficient from the computational point of view.  

 The final Lagrange equations of motion maybe written as:   

( ) ( )d
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d
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j j j
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where TS and TF are the kinetic energy of the shell and the fluid, 

respectively, US and VF are the potential energy of the shell and 
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the fluid, respectively, EG is the gyroscopic energy, and jQ  are 

the generalized external forces, including the transmural 

pressure Ptm and damping.  
 The resulting forty-two, second-order nonlinear ordinary 

differential equations are divided by the modal mass and further 

simplified to first-order differential equations. Once 

nondimensionalized, the resulting ODEs are studied via a 

continuation method to perform a full bifurcation analysis. The 

software AUTO employs the pseudo-arclength continuation 

and collocation methods for continuation of the solution, 

bifurcation analysis and branch switching [28].  

 
3. NUMERICAL RESULTS 

The aorta wall is simulated by a single-layered shell with 

specified thickness ranging from 47 10h   m to 31.5 10 m 

[29, 30]. The average diameter of the aorta is between 20 and 

30 mm [31]. The length of the simulated aorta ranged from 

0.126 to 0.40 m. In most of the simulations an average shell 

radius of R=0.01575 m was used along with different length-to-

radius ratios L/R ~ 8, 12, 19, and 25, However, additional 

results were obtained also for R/h= 10.5 and 22.5.  

The value of Young’s modulus was assumed to take the 

following values, representing different material stiffnesses 

corresponding to different pathological cases that affect the 

rigidity of the aortic wall [22, 32]: 100, 400 and 800 kPa. The 
mass density of aorta was assumed to be 1200 kg/m3 and the 

Poisson’s ratio was set to =0.49 [22].  
The fluid in our analysis is considered Newtonian with a 

density of 1050 kg/m3 and a kinematic viscosity of 64 10  

m2/s (4 centi-stokes). A Newtonian approximation has been 

considered to be acceptable for calculations related to large 

arteries like the aorta [32, 33, 34]. In addition, the flow is 
considered to be fully turbulent which is a valid assumption for 

the straight cylindrical shell at sufficiently high flow velocities 

(for these simulations, the range of interest of the Reynolds 

number is 4103-7103 for which a fully developed turbulent 

velocity profile is expected). The roughness of the arterial wall 

used in the Colebrook equation was set equal to 52 10  m 

which corresponds to the thickness of the endothelial cells 

lining the wall [35, 36]. 

The flexible boundary conditions at the shell ends were 

assumed to simulate relatively stiff axial and radial constraints 

not allowing for any displacements but allowing rotations. The 

axial and radial spring constraints were set to ka1= 1107 N/m2, 

ka2= 1105 N/m2 and kr= 0 N/rad. The critical circumferential 
wavenumber at the onset of instability was found to be n=2 in 

all simulations. The value of the transmural pressure Ptm 
simulated different pressure loadings ranging from 0 Pa to 4 

kPa (typical values observed in the lower abdominal aorta). In 

the present model both the flow and the pressure are assumed to 

be constant, although it is well known that they are both 

periodic functions with a phase delay between them [37]. Here 

it is assumed that instability could be triggered by an 
unfavourable combination of these two parameters, irrespective 

of pulsation, which is a reasonable assumption. It is important 

to mention that in the numerical calculations the aorta was 

assumed to be confined within a larger solid cylinder with a 

diameter equal to ten times the diameter of the aorta. Therefore, 

the effect of the inertia of the fluid surrounding the aorta was 

also taken into consideration in the numerical experiments. A 

non-dimensional fluid velocity     1 2
2V U L D h      is 

introduced for convenience, defined as in [38], where U is the 

dimensional flow velocity and 3 2/ [12(1 )]D E h   . A 

damping ratio 1,2 = 0.012 is taken into account in all the 
calculations. All calculations were performed with a kinematic 

viscosity of 53.5 10  m2/s and aorta inner surface roughness of 

0.0686. Additional results for a critical circumferential 

wavenumber n=3 revealed similar trends as for n=2. 

 

3.1 Collapse of aortic segment conveying blood  

For this numerical experiment, R/h=22.5 was taken, 
simulating a thin aorta. Table 1 summarizes the geometry and 

material properties used in this simulation.  

 

Geometry Structure Fluid 

L(m) R (m) h (m) E (Pa) v s(kg/m3) f(kg/m3) 
0.126 0.01575 0.0007 800000 0.49 1200 1050 

Table 1: System properties for an aorta conveying blood with 
n=2. L is the length of the aorta, R the mean radius, h the 

thickness, E the Young’s modulus,  the Poisson ratio, s the 

density of the aorta, and f the density of the flowing fluid. 

 
The flow velocity was increased gradually from 0 to 2.1 m/s 

with Ptm=0. Figure 2 shows the resulting bifurcation diagram 
as a plot of the (maximum radial deformation)/h versus the 

flow velocity for mode n=2, m=1 (two circumferential waves 

and half axial wave), denoted as w1,2.  

The results in Fig.2 display the nonlinear behaviour of an 

aorta conveying blood. The deformation follows solution 

branch 1 with zero amplitude (meaning that the aorta 

maintained its original circular shape). However, when the 

blood flow velocity reaches 1.55 m/s the system loses stability 

by static divergence (this is the point of the linear onset of 

instability), generating the new solution branches 2. Divergence 
(buckling) in this case means that a new static solution emerged 

with a distinctive circumferential wavenumber of n=2 (the aorta 

wall moved inwards creating two lobes, thus n=2). Solution 

branch 2 is initially unstable (dotted lines), the locus moving to 

the left. It is stabilized for a small range of flow velocities from 

0.5297 to 0.5354 m/s. The solution then remains unstable until 

it reaches the folding points at U=0.5063 m/s, whereupon 

branch 2 folds and becomes stable, increasing its amplitude 

with increasing flow velocity.  
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FIGURE 2: Bifurcation diagram of dimensional flow velocity 

versus nondimensional radial displacement for the first 

asymmetric mode.             Stable solutions;            unstable 

solutions.  
 

These results indicate that an aorta may lose stability by 

divergence and exhibit a highly subcritical nonlinear behaviour, 

such that there is a large range of flow velocities in which 
multiple stable aorta configurations coexist for the specific flow 

and pressure conditions. This result means that, in this flow 

range (0.5063<U<1.55 m/s) – the subcritical range – the aorta 

may jump from one stable configuration to another (and vice 

versa), if enough perturbation is given to the system in the form 

of a flow spike, transmural pressure perturbation or external 

force (trauma case); this clearly results in increased mechanical 

stresses on the aortic wall. This also means that a catastrophic 

failure may occur (aorta wall collapses with deformation that is 

large enough for inner-wall contact and complete folding or 

kinking of the aorta). This in turn may cause significant 
material damage (aorta wall dilation) in pathological situations, 

weakening transverse aorta wall stiffness and perhaps leading 

to the initiation of aneurysm or dissection (delamination of the 

wall layers). 

As the blood flow velocity increases or decreases in the 

diastolic-systolic cycle, it is evident that the deformation of the 

aorta may follow any of the stable branches, increasing or 

decreasing the mechanical stresses acting on the aortic wall, 

making it prone to failure due to microscopic fatigue [39]. 

The result shown in Fig.2 is a simplified two-dimensional 

representation of the actual aorta behaviour. In fact, the 

buckling could occur in any direction due to the axial symmetry 
of the system. Once buckling has been initiated at a specific 

angle , it propagates (i.e. increases in amplitude) as the flow 
velocity increases following a helicoidal path [9]. The solution 

branches shown in Fig. 2 represent the generatrix of the 

axisymmetric surface on which the helicoidal path. 

Interestingly, these results are in qualitative agreement with 

clinical observations regarding the propagation of dissection in 

human aortas [40]. 

Figure 3 shows a graphical interpretation of the aorta 

deformation for different blood flow velocities within the 
subcritical flow range (here all the modes were considered 

when computing the total displacement w in the radial 

direction). It is evident that at the neighbourhood of maximum 

deflection large stresses are generated due to the high 

curvature, which could lead to dissection [41]. 

 

 
FIGURE 3: Deformation of the aortic wall segment for 

U=0.531 m/s indicating regions of high stress at midlegth. 
 

3.2 Nonlinear response of aorta for different L/R 

ratios  

The boundary conditions at the shell ends for these cases 

were set to allow for axial and circumferential displacements at 

the aorta ends (ka1= ka2= 0 N/m2 and kr= 0 N/rad). These 

calculations were performed for E=100 kPa, n=2, and zero 
transmural pressure.  

The results, shown in the bifurcation diagram in Fig. 4, 

indicate that the critical flow velocity for the onset of instability 

(linear limit) decreases as expected with increasing the length 

of the aorta. It actually decreases in half if the aorta length 

triples in length. Nevertheless, the effect of L/R ratio on the re-

stabilization velocity (folding point) is even more augmented 

with increasing the L/R ratio. In fact, the change on the folding 

velocity value is 2.5 times smaller for a length three times 

larger. The frequency is also reduced with increasing the length 

of aorta.  
The aorta in all cases lost stability by divergence, generating 

two unstable solutions (branches denoted by number 2) that 

become stable after folding. This subcritical behaviour 

generates regions of multiple stable solutions at blood flow 

velocities much smaller than the one predicted by linear theory. 

It is also evident that for longer aortas the subcritical behaviour 

is more profound and the solution branches 2 become stable 

Linear onset of instability 

Folding point 

Folding  

point 

stable 

stable 

Subcritical region 
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(after folding) with much higher deformation amplitudes (in 

some cases critical inner wall contact might occur right after 

folding) than in cases with shorter aortas.  

 

 
FIGURE 4: Nonlinear bifurcation analysis of the 

nondimensional blood flow versus the nondimensional aorta 

radial deformation for different length-to-radius ratios with n=2 

for the first asymmetric modes and Ptm=0.                , Stable 
solutions;              , unstable solutions. 1 and 2 indicate different 

solution braches.  

 

3.3 Nonlinear response of aorta for different E values  

The aorta system was tested for different Young’s modulus 

values to determine the effect of stiffness on the stability of the 

system. In addition, the axial springs were stiffened to model 

clamped boundary conditions (enabling tension forces at the 

end of the aortic segment) and the rotational spring was set to 

zero to allow for radial rotations at the aorta ends. Fig. 5 shows 

a comparison of aortas with L/R=8 and n=2 for different values 
of E [32]. For the single-layered shell model the effect of E on 

the stability of the system was investigated by choosing the 

following values: 100, 400, and 800kPa [42, 43]. The results 

show that lower E values significantly reduce the critical flow 

for instability. However, higher E values result in smaller 

deformation amplitudes once folding occurs. Nevertheless, it is 

evident that the aorta amplitude is rather large for the cases 

shown in Fig. 5. In all cases the aorta loses stability by 

divergence exhibiting strong nonlinear subcritical behaviour. 

Additional results for different length-to-radius ratios are 

shown below in Fig. 6 for a circumferential wavenumber n=3. 
All systems lose stability by divergence, followed by a strong 

subcritical behaviour.  

 

 
FIGURE 5: Comparison of aorta systems with L/R=8 and 
different E values for the first asymmetric mode with n=2. 

 

 
FIGURE 6: Comparison of aorta systems for different L/R 

ratios and different E values, Ptm=0 for the first asymmetric 
mode with n=3. 

 

3.4 Nonlinear response of aorta for different Ptm  

Fig. 7 shows a series of comparisons obtained from 

numerical experiments for different aortas with variable 

transmural pressurization. Once more the system loses stability 

by divergence exhibiting strong subcritical behaviour. 

Evidently, an increase in the transmural pressure value delays 

the linear onset of instability and produces larger displacements 

once the solution branch folds and becomes stable again. 

Therefore, even though pressurizing the aorta seems to delay 
the instability from occurring at low blood flow velocity values, 
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in reality it yields a highly subcritical system (the range 

between the linear onset for instability and the re-stabilization 

flow velocity is larger for higher Ptm) with large stable radial 
deformation after folding. The results in Fig. 7 are for a 

circumferential wavenumber n=3.  Additional results on the 

effect of the transmural pressure for different E values and n=2 

are summarized in Fig. 8 below. 

 
FIGURE 7: Effect of transmural pressure on the subcritical 

behaviour of aorta conveying blood flow for L/R=19 with 

h=0.0015 m for the first asymmetric mode with n=3. 

 

 
FIGURE 8: Effect of transmural pressure on the subcritical 

response of an aorta for L/R=25, R/h=10 and n=2. 

3.5 Nonlinear response of aorta for different R/h 

ratios  

It is well known that the measured total thickness of the 
human aorta depends on the individual’s health, age, 

geographical location, and also measurement technique used 

[22, 44, 45]. A feature of living tissue is its ability to change in 

size (thickness) with increasing mechanical loading [46]. As 

expected, the thickness value of the aorta plays an important 

role in dissection [47]. A typical set of results for different R/h, 

L/R and E values is shown in Fig. 9. The mean R/h ratio for the 

human aorta is between 9 and 14; however, there is data 

available in literature that propose much higher ratios: 20 to 25. 

Thinning of the aorta due to age, pathological (aneurysm, 

Marfan disease, diffuse cystic medionecrosis for example) and 

genetic reasons has been recorded in literature [48]. 
The results indicate that all systems lose stability by 

divergence following a subcritical response. The thinner aorta 

restabilizes at much lower flow velocities, and in the shorter 

aorta case islands of stable solutions are produced before 

reaching the folding point velocity. Furthermore, the amplitude 

of the thinner aorta when the solution of branch 2 is stable is 

larger than the one predicted for thicker aortas for both L/R 

ratios. In addition, the point of the linear onset of instability is 

higher for thinner aortas than for thicker aortas.  

 

 
FIGURE 9: Effect of thickness on the aorta response for 

different L/R ratios and Ptm=0 kPa, L/R=8, E=800 kPa and 
n=2. 

 

4.  CONCLUSIONS 
A new theoretical framework for the nonlinear fluid-

structure interaction of human aortas conveying blood flow is 

presented in this study. Large arteries like the aorta are 
continuously subjected to significant mechanical loads from 

internal blood flow and surrounding tissue and muscle, making 

them prone to small-scale oscillations and probable wall 

thinning, which in pathological cases might lead to aorta 

dissection.  

The results showed that flow-induced buckling (or even 

collapse) of the aorta is possible under specific flow and 

pressure conditions. Furthermore, the aorta under these critical 

conditions is characterized by a highly subcritical nonlinear 

behavior, with multiple stable solutions (zero deformation 
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cylindrical shape, buckled aorta, or total collapse) coexisting 

for a large range of blood flow velocities. Even partial collapse 

of the aorta might cause catastrophic failure because it would 

constrict the blood flow or induce dynamic divergence as 

observed in experiments [49, 50]. 

It was found that a longer aortic segment (larger L/R) loses 
stability at smaller critical flow velocity (linear onset of 

instability), reduces the natural frequency and increases the 

subcritical range of flow velocities. A stiffer material delays the 

onset of instability but, exhibits a similarly strong subcritical 

response. The effect of reducing the thickness of the aorta is to 

induce instability earlier and reduce the subcriticality of the 

system; however, it produces larger aorta deformation. 

Increasing Ptm renders the system more stable with respect to 
the onset of divergence, and it induces a ballooning effect. It is 

here conjectured that the pressurization-depressurization of the 

aorta due to systolic-diastolic cycle or a strenuous exercise 

regime might be responsible for the constant oscillation of the 

aorta, which coupled with a cardiovascular disease or other 
pathological problems might induce material deterioration and 

thus the appearance and growth of aneurysms and dissection.  

This study presents for the first time the possibility of 

subcritical collapse of aortic segments which could be of 

critical importance in human health. In addition, for the first 

time, a global analysis tool, namely classical bifurcation 

analysis has been used to obtain all stable and unstable 

solutions associated with aortas conveying blood flow, thus 

allowing for the full set of results for a range of flow velocities 

to be investigated.  
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