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ABSTRACT
The need for instruments that detect and quantify small

amounts of chemical and biological agents has spurred the devel-
opment of micro-scale and nano-scale resonators. Most of these
sensors are variations of vibrating cantilever beams and rely on
resonant frequency shifts to quantify added mass. While very
sensitive in vacuum or low viscosity environments, these types of
sensors suffer performance degradation in viscous fluids, where
damping is significantly increased.

This paper presents a unique sensor architecture consist-
ing of an immersed micro-plate designed to vibrate rotationally
about an axis as fluid flows past it in a micro-channel. The idea
behind this design is that some of the energy in the incoming flow
can be harvested due to fluid-structure interaction, thereby re-
ducing the effective damping. Only a small outside energy input
is then required to obtain sustained, large amplitude vibrations.

We show how sensitivity vector techniques applied to such
a device can provide an alternate means of effectively detecting
small mass variations. A method of optimizing the feedback con-
trol in order to maximize sensitivity using a spline-based force
surface spanning the state space is also presented.

INTRODUCTION
Detecting and characterizing small amounts of chemical and

biological agents is important in many health and defense related
applications. Fast and reliable identification of trace amounts
of materials can be crucial for correct assessment and response
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in scenarios ranging from diagnosis of bacterial infections to
counter-terrorism screening.

One way of providing chemical and biological detection is
through the use of active, vibration-basedmicro-sensors. Typical
vibration-based sensing methods apply a system excitation to the
sensor and then monitor the dynamic response, which changes
when the substance of interest is present. Frequency-shift meth-
ods based on changes in resonant frequencies caused by parti-
cles binding to a vibrating microstructure are examples of this
approach [1, 2]. Unfortunately, when sensors exhibit nonlinear-
ity, significant damping, or when sensor properties are liable to
change over time (due to, for example, environmental changes or
sensor damage), these frequency-shift based methods can lead to
unsatisfactory results.

The case of vibration-based sensing in highly damped en-
vironments is of particular interest because detecting and quan-
tifying particles in liquids is often necessary. For instance, be-
ing able to quantify different types of particles in a lab-on-a-
chip environment could improve medical diagnosis. Resonant-
frequency based detection is often poor in such damped environ-
ments because the quality factor is diminished and the resonant
peak is no longer sharp. Burg and collaborators [3] constructed a
resonator where flow is channeled within the resonating structure
itself as one possible solution to this problem.

An alternate approach, taken here, is to minimize the effec-
tive damping by designing an immersed sensor which takes ad-
vantage of the flow to recover some of the energy lost to damp-
ing. This is challenging because only low Reynolds number
flows are practical in liquid MEMS [4, 5]. Work on rotational
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galloping of prismatic structures is of particular interest, as we
would like our system to be as near to this type of behavior as
possible [6, 7].

In order to measure changes in system properties, such as
added mass, we make use of an alternate metric known as sen-
sitivity vector fields (SVFs) which quantify how attractors de-
form [8, 9]. SVFs are constructed by sampling system trajecto-
ries that diverge due to parametric variations and using the result-
ing snapshots of the deformation as references when the system
changes under operating conditions. The SVF approach has sev-
eral advantages. In many cases, using SVF analysis means that
nonlinear features of the system can be enhanced and exploited
to increase sensitivity rather than hindering the interrogation. As
well, simultaneous sensing of multiple analyte properties with
a single sensor is sometimes possible since we are dealing with
vector, rather than scalar, features/quantities. Originally devel-
oped for structural health monitoring [10–12] in mechanical sys-
tems, SVF techniques have since been used to detect parameter
variations in a variety of dynamical systems, including tapping
mode atomic force microscopes [13].

The key to effectively utilizing SVF techniques is the design
of nonlinear feedback controllers. These controllers need to pro-
vide system excitation which maximizes attractor deformations
caused by changes in parameters of interest (thereby enhancing
sensitivity) while minimizing attractor deformations caused by
changes in other system parameters (thereby improving selectiv-
ity). We demonstrate how to design such controllers for a sen-
sor using spline surfaces of feedback force optimized to enhance
sensitivity.

NOMENCLATURE
A nominal trajectory Jacobian
A harmonic excitation magnitude
B nominal trajectory parameter derivative
E silicon elastic modulus
G silicon shear modulus
H channel height
I section moment of inertia
W channel width
b damping parameter
k torsional spring stiffness
p perturbed parameter
po nominal value of perturbed parameter
δ p variation in perturbed parameter
q normalized sensitivity vector
x position
x velocity
xn state component n
x state vector
δx variation in state vector
ΔT trajectory evolution time

Φ state transition matrix
α plate angle
θ angular displacement
ρ fluid density
ρs silicon density
ω harmonic excitation frequency
ωn natural frequency
ζ damping coefficient

SENSOR DESIGN STRATEGY
The primary challenge in designing an effective vibration-

based micro-sensor for a liquid environment is overcoming, as
much as possible, the high level of damping due to the viscosity
of the liquid. Unlike in a near-vacuum or gas environment where
damping can often be neglected, in liquids damping effects are
not negligible and make frequency-shift based measurement dif-
ficult. In order to combat damping, the sensor must be designed
in such a way that the effects of damping are reduced or mea-
surements must be made using an alternate method that is more
sensitive to the desired analyte. Here we explore both of these
options.

One strategy to try and overcome the high level of damping
in a liquid is to harvest some energy from the oncoming flow to
make up for the energy lost to damping. Examples of this type of
energy gain include vibration-based energy harvesters [14, 15].
In some of these systems, the energy harvested from the flow
reduces the effective damping experienced by the harvester until
it is negative, and sustained motion ensues.

It is unclear if this type of energy harvesting is possible in an
enclosed channel on the micro-scale. Simulations of rotational
galloping found in the literature do not deal with high blockage
ratios [6]. Additionally, inertial forces are small relative to vis-
cous forces, and thus flows are restricted to low Reynolds num-
bers. If we consider a sensor in a square cross-section channel
with dimensions on the order of tens of micrometers, we can ex-
pect pressure losses to be calculated similarly to a macro-scale
system [4]. Using relevant micropump data [5] we can estimate
the range of practical Reynolds numbers and pressure losses for
channels of different cross-sections and lengths. For example,
Figure 1 shows a plot of uniform velocity and pressure drop over
a 1mm length channel for a micropump with a maximum flow
rate of 4.4 mL/min [5]. The acceptable pressure drop in this case
is 21 kPa so we would consider cross-sections larger than 100
um by 100 um. For these sorts of dimensions, Reynolds num-
bers based on a 10 um face dimension will only be on the order
of hundreds.

FLUID SYSTEM SIMULATIONS
To investigate the potential for energy harvesting, we con-

sider two different sensor geometries. The first geometry consists
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FIGURE 1. UNIFORM VELOCITY AND PRESSURE DROP FOR
A 1 mm CHANNEL

of a flat plate that pivots about its geometric center with its pivot
centered in the channel flow. Its largest face is parallel to the
upper and lower channel walls when there is no flow as shown
in profile in Figure 2. The channel considered is this case has
H = 100 um and W = 100 um. The other relevant dimensions
are D = 10 um and L = 40 um. The second geometry is also a
flat plate, but its largest face is nominally at an angle of α to the
upper and lower walls. Its pivot point is offset far from the geo-
metric center of the plate and is also away from the center of the
channel as shown in profile in Figure 3. The channel considered
has H = 75 um andW = 150 um. Here D= 10 um, L= 90 um,
and the angle α is 12◦. The surrounding channels are 600 um
long. These geometries were selected as test cases because they
are known to produce galloping-type instabilities under certain
flow conditions [16].

D

L

H

FIGURE 2. FIRST SYSTEM FLOW GEOMETRY

The plates were considered to be made of silicon with
nominal properties of E = 150 GPa, G = 64 GPa, and ρs =
2330 kg/m3. The liquid was treated as water with ρ =
998.2 kg/m3. The geometries of these sensors were generated
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FIGURE 3. SECOND SYSTEM FLOW GEOMETRY

in two forms for simulation in ANSYS CFX. One version was
essentially two dimensional, consisting of a mesh a single ele-
ment thick, while the other contained the full system geometry,
including the plates meshed as solid bodies, and took advantage
of the symmetry at the channel midline. These systems were pri-
marily meshed with tetrahedral elements. A close-up view of the
mesh around one of the bodies is shown in Figure 4.

FIGURE 4. COMPUTATIONAL DOMAIN FOR SIMULATION

Initial solutions of this FSI problem were carried out by ex-
amining the system in a quasi-static manner, evaluating the mo-
ments the fluid flow applied to the cross-sections at various an-
gles from their nominal positions. Later, using the built in solid-
fluid coupling in CFX, the models were simulated transiently
with various inlet flow velocities in order to ascertain the effect
of increased flow speed on the effective damping. The simula-
tion was allowed to establish a steady-state condition, and then
the section was perturbed by an applied moment to a position be-
tween 5◦ and 10◦ away from the nominal position. Some time
later the moment was then removed. The recorded time series of
the angular displacement θ (shown in Figure 3) for such cycles
was then used to determine approximate values of the damping
and the damped-vibration frequency of the system, using either
fractional overshoot or logarithmic decrement techniques. Fig-
ure 5 shows a times series taken just after a moment has been
applied to the cross-section, demonstrating its underdamped na-
ture. Notice the decay envelope is not perfectly symmetric due
to the fluid forces involved.
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FIGURE 5. SYSTEM RESPONSE AFTER A MOMENT PERTUR-
BATION

The transient analyses conducted using our 3D models
showed displacements that are quickly damped in our two sys-
tems, with nominal damping coefficients ζ of approximately 0.2
and 0.18, respectively. As the flow rate is increased from zero
flow rate to a large (and likely unrealistic value) of 5 m/s, the
reduction in these damping coefficients is only about 10%.

PARAMETER EXTRACTION
Whether the damping can truly be reduced via careful sen-

sor design in order to take advantage of the oncoming flow, the
second part of our strategy remains the same: measuring sen-
sor changes using an alternate method, not based on frequency-
shifts, that is more sensitive. In order to explore this further,
the fluid-structure models previously discussed are recast as one
degree of freedom (DOF) systems by making use of the damp-
ing properties calculated from simulations. With damping coef-
ficient determined, each sensor can be modeled approximately
as

ẍ+bẋ+ωn2x= N(x, ẋ,t) , (1)

where ωn =

√

k
I

, (2)

and b= 2ζωn . (3)

The natural frequency is calculated by summing the moment of
inertia of the section I and some ‘added mass’ based on the en-

trained fluid. Details on ‘added mass’ can be found in many
hydrodynamics references [18]. N(x, ẋ,t) represents the overall
non-linear feedback force used to excite the system. By consid-
ering states of the form

x=

[

x1
x2

]

=

[

x
ẋ/ω

]

, (4)

this system can be converted to a standard state space form ẋ =
f(x,t) in order to apply SVF methods.

SVF THEORY
SVFs are a way to quantify attractor deformations. If two

different systems with initially coincident state space trajectories
are compared, one system having a nominal set of parameters
and the other having some parametric variations, the trajectories
of these two systems will diverge over time. By sampling the
diverged trajectories a specified period of time ΔT after coinci-
dence, a vector can be generated connecting the sampled point
on the nominal trajectory with the sampled point on the varied
trajectory. This is a sensitivity vector (SV). An SVF is a collec-
tion of SVs computed over a system attractor for some param-
eter variation. This field characterizes how the varied attractor
deforms with respect to the nominal attractor.

This can be formalized mathematically by considering a
state space flow described by ẋ = f(x, p,t) where x is the state
vector and p is the sensor readout, i.e. the parameter of interest
that can be perturbed. Using a Taylor series to expand this flow
about the nominal trajectory x(t) = xo(t) and a nominal parame-
ter po one obtains

δ ẋ= A(t)δx+B(t)δ p , (5)

where A(t) =
δ f
δx

∣

∣

∣

∣ x=xo
p=po

, (6)

and B(t) =
δ f
δ p

∣

∣

∣

∣ x=xo
p=po

, (7)

where only the linear terms are retained. Here δx is the state vari-
ation from the nominal trajectory, and δ p is the parameter vari-
ation from the nominal parameter. Eq. (5) is valid as long as the
discarded higher order terms remain small compared to the first
order terms. For linear systems, this is always true since Eq. (5)
is exact, and has no higher order terms. However, for nonlinear
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systems, both the parameter variation and the state variation must
remain much less than one for Eq. (5) to hold. Thus, for nonlin-
ear systems with specified initial variations there is a limit on
the evolution time for which Eq. (5) is appropriate. Integrating
Eq. (5) over the evolution time results in the equivalent map

δx(to+ΔT) =Φ(to+ΔT,to)δx(to)+qδ p, (8)

where Φ, the state transition matrix for the dynamical system
(sensor), depends only on A(t), while q depends on both A(t)
and B(t). For two trajectories which are truly initially coinci-
dent, δx(to) = 0. Thus, any separation of the trajectories that
develops over the evolution time is equal to the sensitivity vector
qδ p. As long as the evolution time is short (in order to ensure
the resulting changes to system behavior are locally linear with
respect to the parameter variations) the sensitivity vectors will
be linearly dependent on the parameter variation. Consequently,
a change in a given system parameter will elicit a proportional
change in the measured attractor deformation. When examining
attractor deformations, this proportionality serves as the basis for
quantifying parameter changes. Often, we refer to the normal-
ized sensitivity vector q, which is the sensitivity vector divided
by the parameter variation. As normalized sensitivity vectors are
independent of the level of parameter variation, they can be help-
ful in comparing results.

FEEDBACK DESIGN
The next question is how to maximize a system’s SVs. Ob-

viously, the nature of the dynamical system and the choices in-
volved in how sensitivity vectors are sampled, including things
such as the evolution time ΔT , will impact the overall sensitiv-
ity. However, by changing the system through feedback, it is
also possible to augment or amplify a system’s natural sensitiv-
ity. Choosing an appropriateN(x, ẋ,t) in Eq. (1) has the effect of
changing the system and thereby the sensitivity.

N(x, ẋ,t) will typically be subject to some constraints in a
real physical system. Examples of such constraints are limits
on the range of motion or velocity or the amount of force the
controller can output. In this work, we also consider a limit on
attractor size and penalize attractors that are too big, or too small,
since SV magnitude is closely related to attractor size. Within
such constraints, we can ask the question: what is the best form
of feedback to maximize a specfic SVF?

Previous work by the authors [19] helped to establish some
basis for answering this question by considering an N(x, ẋ,t) of
the form

N(x, ẋ,t) = bcẋ− kcx−αcx3+Asinωt . (9)

With N(x, ẋ,t) specified, Eqs. (1) and (5) can be integrated si-

multaneously to find SVs. Using this method, we were able
to show the advantages and disadvantages of chaotic and non-
chaotic regimes for generating SVFs with respect to parameter
ωn for different evolution times ΔT and phases of the harmonic
excitation. We were also able to optimize the control parameters
in the fixed controller form given by Eq. (9).

However, having a controller of fixed form, especially one
with a relatively low number of polynomial terms, greatly re-
duces the possible distributions of feedback force across the state
space. For this reason, we examine feedback that is based on
control points distributed over the state space which can be in-
terpolated with splines to arrive at an overall feedback law. This
arrangement allows for a feedback force distribution that can take
on a different variety of surface shapes than one based on poly-
nomials alone. We specifically consider the case where

N(x, ẋ,t) = R(x, ẋ)+Asinωt (10)

and R(x, ẋ) is given by a spline surface of forces distributed over
the state space.

The form of R(x, ẋ) can be optimized by adjusting the force
values at certain control points. The positioning and number of
control points may also play an important role. For our investiga-
tion, we consider a force surface that is required to be symmetric
about the origin and has a total of nine unique control points.
We consider the harmonic excitation to have fixed parameters,
and sample SVs four times each excitation period, each sample
taken after an evolution time of half a period. These conditions
match those for the earlier optimization of the controller that has
polynomial terms in Eq. (9).

Next, we present one case of these optimizations as an
illustration of the effectiveness of the spline-surface feedback
method. For a system having b = 0.1 and ωn = 1, a maximum
force output of 3, and no attractor penalties between 1 and 5,
the polynomial controller in Eq. (9) was optimized by adjusting
the parameters (A,bc,kc,αc) in increments of either 0.05 or 0.025
with possible initial values of A in the set [0.1,0.5], bc in the set
[0,1], and αc in the set [0,1] for 150 different initial cases. (The
value of kc was left un-initialized because it is always optimized
first in our particular algorithm.) The parameter sets resulting in
the highest magnitude SV are highlighted in Table 1.

When we consider the system under the same constraints but
having its feedback of the form found in Eq. (10), we observe
greater SV magnitudes. By initializing the spline surface over
many different random initial surfaces that are symmetric about
the x− ẋ line and optimizing, we can arrive at a SV magnitude
of 11.06 for the system shown in Figures 6 and 7, where the
attractor is shown as the thickened black line superimposed over
the spline surface.

This specific example is not an isolated case of higher sen-
sitivity. When using spline force surfaces for state feedback,
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TABLE 1. HIGH SENSITIVITY PARAMETER COMBINATIONS
FOR POLYNOMIAL CONTROL

Set kc αc A bc SV Magnitude

1 -2.3 0.2 0.2 0 7.03

2 0 0 0.5 0 7.01

3 -1.3 0.05 0.4 0 6.95

4 0.35 -0.05 0.5 0 6.78

5 -2.1 0.15 0.2 0 6.61

6 -1.7 0.1 0.35 0 6.00
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FIGURE 6. HIGH SENSITIVITY SPLINE FORCE SURFACE: AN-
GLED VIEW

almost all the initial parameter sets that we optimized resulted
in higher sensitivities than in the case of a polynomial force
controller. Part of this comparison is undoubtedly unfair since
the polynomial controller has fewer adjustable parameters with
which to begin. Nonetheless, it seems clear in examining the
topology of the optimized spline force surfaces, that this type of
feedback surface would be difficult to construct with a low num-
ber of polynomial terms. When the constraint on the symmetry
of the force surface is removed, we can generate even higher
sensitivities when all the other constraints are fixed. Table 2
shows the values of the three highest sensitivity regimes for a
non-symmetric controller.

This is somewhat expected, since giving the optimizer more
freedom in the parameter space should result in improved solu-
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FIGURE 7. HIGH SENSITIVITYSPLINE FORCE SURFACE: TOP
VIEW

TABLE 2. HIGH SENSITIVITY RESULTS FOR NON-
SYMMETRIC SPLINE SURFACE

Set Sensitivity Improvement Multiplier

1 17.31

2 15.71

3 15.32

tions, but it does highlight how significantly the assumed form of
the controller function can effect its ability to provide the high-
est sensitivity regimes. We also attempted to optimize sensitivity
using a larger number of control points to determine whether in-
creasing the number of points could lead to large improvements
in sensitivity. When the number of points was doubled for the
case of the symmetric controller, this sometimes did not lead
to significantly improved sensitivities; however, in the case of
greatest improvement the sensitivity roughly doubled. Thus, we
believe a more varied or ”wavy” surface can sometimes yield
significantly higher sensitivity regimes.

APPLICATION TO FLUID SENSOR SYSTEMS
The techniques in the section above are directly applicable to

fluid sensor systems once they have been reduced to 1 DOF, first-
order state space systems as previously outlined. As a specific
example, consider the inclined plate geometry and x = θ . The
suitably transformed system will have values of b= 2.5 ·104s−2
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and ωn = 6.4 · 104s−1. Bounding the spline surface between
±1 · 108s−2 while considering several different combinations of
A and ω allows for the calculation of various optimal controllers.
Initial conditions for the spline surface were generated by divid-
ing the total possible range by five and assigning a certain level
of feedback for each of the nine control points in a specified pat-
tern or at random. One example of a specific pattern has all of
the inner points closest to the origin assigned one value (either
positive or negative) and all of the outer points farther from the
origin assigned another value (again, either positive or negative).
The parameter of interest, to which we want to increase the sen-
sitivity, can be either I or ωn.

Results obtained while specifying ωn as the parameter of
interest have shown that, in some cases, the optimization can re-
sult in SV magnitudes improving several times over the initial,
pseudo-random feedback surface. In the best cases, we were able
to improve sensitivity tenfold. Almost all of the returned results
are limit cycle attractors; this is expected based on our previous
work. However, these limit cycles sometimes do not have the
same period as the forcing harmonic due to the influence of the
spline surface feedback.

A larger set of optimizations was also conducted for the
same system with completely random initial conditions selected
on an interval centered on zero. Various combinations of sur-
face constraints and harmonic forcing magnitudes and frequen-
cies were explored. One hundred trials were carried out for each
specific combination. Depending on the case, the individual ini-
tial values were constrained to be between ten and fifty percent of
the allowable range. We saw much more diversity in the result-
ing optimal attractors for this larger set of simulations, including
some chaotic attractors. Again, we found that sensitivity could
be improved over the base value by about ten times for cases
which were already quite sensitive due to the forcing frequency
approaching the natural frequency.

Even greater sensitivity improvements are possible when ei-
ther the spline surface magnitude constraint is relaxed or a larger
number of points are used to define the surface. When the al-
lowable magnitude is doubled, and for a driving frequency of
ωd = 6.0 · 104s−1, Table 3 lists the three greatest improvements
in sensitivity over the initial values.

Both chaotic and limit cycle cases are included in these at-
tractors. Figures 8 and 9 show plots of two of the locally optimal
surfaces and their attractors. If instead of increasing the allow-
able moment, the number of points used to define the surface
is increased, sensitivity can also be greatly improved. In these
cases, most of the high sensitivities are generated by chaotic at-
tractors. Table 4 lists the three surfaces showing the greatest im-
provement in sensitivity over the initial conditions and Figure 10
shows one of these high sensitivity surfaces and its attractor.

If we instead consider the parallel plate geometry, the suit-
ably transformed system will have values of b= 3.9 ·105s−2 and
ωn = 9.8 ·104s−1. We bound the spline surface as before and then

TABLE 3. SENSITIVITY IMPROVEMENTS DUE TO CHANGES
TO SURFACE CONSTRAINTS

Set Sensitivity Improvement Multiplier

1 21.7

2 11.6

3 11.3
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FIGURE 8. HIGH SENSITIVITY LIMIT CYCLE ATTRACTOR
FOR THE ANGLED PLATE SENSOR

consider simulations, again choosing completely random initial
conditions selected from an interval centered on zero and con-
strained to be between ten and fifty percent of the overall con-
straint range. We can again generate improvements in sensitivity
that are several tens of times what was seen in the base case.
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FIGURE 9. HIGH SENSITIVITY CHAOTIC ATTRACTOR FOR
THE ANGLED PLATE SENSOR

TABLE 4. SENSITIVITY IMPROVEMENTS DUE TO A HIGHER
NUMBER OF INTERPOLATION POINTS

Set Sensitivity ImprovementMultiplier

1 28

2 24.8

3 19.4

CONCLUSIONS AND FUTURE WORK
We have demonstrated that for the low Reynolds number and

high blockage ratio regimes involved in enclosed micro-system
channel flow, it is difficult to design a geometry which will har-
vest energy from the oncoming flow and thereby reduce the ef-
fective damping ratio. Work involving a fluctuating incoming
flow shows that we can generate motion in this case.
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FIGURE 10. HIGH SENSITIVITY CHAOTIC ATTRACTOR
BASED ON A FINER SURFACE MESH

Using spline surfaces to define feedback forces over the state
space and then optimizing these surfaces in order to maximize
SV magnitude was shown to be an effective technique. We have
illustrated how SVF techniques in conjunction with spline sur-
faces can be applied to our immersed sensors if they are mod-
eled as simple 1 DOF systems. We have furthermore shown how
this feedback can be optimized, leading to large improvements in
sensitivity. Thus, we have shown SV techniques are effective in
improving sensitivity, and may allow sensing in highly damped
environments where traditional frequency-shift methods are not
an alternative.
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