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ABSTRACT
This paper presents an analytic model for a mixing shaft

with a standard 45◦ pitched-blade impeller (PBI) in a baffled
mixing vessel. The vibrations and orbits are influenced by a com-
bination of structural and hydrodynamic forces which are sen-
sitive to geometric parameters, fluid properties and rotational
speed. Results are included for three water-glycerol mixtures
with viscosities of 50 cP, 100 cP and 500 cP and rotational
speeds up to 1.3 time the natural frequency of the shaft with
both tensile and compressive axial thrust loads resulting from
the pitched blades. Experimental results for the expected mean
squared vibration response, power spectral densities (PSD) and
orbit statistics are presented. A model is presented that explains
a number of trends that were experimental observed including
asymmetry of the shaft’s vibration amplitude with rotation direc-
tion.

NOMENCLATURE
C, C̄ Damping matrix, kg

sec
CT Thrust coefficient
D Impeller diameter, m
Dm Mean diameter, m
DT Tank diameter, m
E Expected mean squared response, m2

H Transfer function
H f Fluid height, m
I Moment of area m4

J Polar moment of inertia, kg∗m2

K, K̄ Stiffness matrix, N
m

L Rotor blade length, m
M, M̄ Mass, kg
My Moment at the shaft root, N*m
Mz Moment at the shaft root, N*m

S Power spectral density, ( )2

rad
sec

T Thrust, N
W Impeller blade width, m
Wb Tank baffle width, m
−V Impeller volume, m3

−Vs Shaft volume, m3

cs Structural damping, kg
sec

c f Viscous damping, kg
sec

di Shaft’s inside diameter, m
do Shaft’s outside diameter, m
fy,z Force in y and z, N
D Impeller diameter, m
ka Axial stiffness, N

m
kc Internal friction stiffness, N

m
kr Horizontal component of axial stiffness, N

m
ks Structural stiffness, N

m
kβ Alford’s stiffness, N

m
kτ Torquewhirl stiffness, N

m
l Shaft length, m
m f Added fluid mass, kg
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ms Impeller mass, kg
msu Mass eccentricity, kg∗m
r, r0 Radial deflection, m, geometric eccentricity, m
t Time, sec
t∗ tωnb

y Displacement in j-direction, m
y∗ y

D
z Displacement in k-direction, m
z∗ z

D
α Normalized damping factor
β Alford’s force coefficient
γ1 Skewness
γ2 Kurtosis
εy,z Strain in y and z planes at roots of cantilever
ζs, ζ f Structural damping ratio, viscous damping ratio
θ Angle between shaft and x-axis
λ Eigenvalue solution
µ Fluid viscosity, kg

m∗sec
τ Impeller torque, N ∗m
ψ Normalized natural frequency
Ω Rotational speed, rad

sec
Ω∗ Normalized rotation speed, Ω

ωnb

ω Frequency, rad
sec

ω∗ Normalized frequency, ω

ωnb

ωnb Bending natural frequency, rad
sec

INTRODUCTION
Industrial chemical reactors often include rotating agitators

with different impeller geometries and tank arrangements se-
lected for particular applications [1]. A general layout for a stan-
dard mixer design is shown in figure 1. The tank is a vertical
cylinder of diameter DT with four evenly spaced baffles that have
a width Wb within the range of T

12 < Wb < T
10 that extend the full

height of the tank. The shaft is typically a vertical cantilever with
an impeller mounted at the end. The shaft is supported at the root
of the shaft with a series of tapered and radial bearings and seals.

Efficient mixing requires complex, three dimensional fluid
flow within the reactor [2–6]. In such cases the impeller blades
experience random and periodic pressure forces that can excite
bending and torsional shaft vibrations. The life of shaft seals
and bearings depends on the amplitude and frequency of these
vibrations and therefore a practical predictive tool is required for
design and maintenance planning. This paper evaluates a rotor
dynamic model for the vibration of a cantilevered rotating mixing
impeller based on the extension of previous studies in the litera-
ture. Model predictions will be compared to experimental data.
Gyroscopic effects are neglected in the present case because of
the rotor’s relatively small mass polar moment of inertia.

The simplest model of rotor vibration is a linear one where
the motion of the impeller mass center is confined to a horizon-
tal plane. The differential equations describing the displacement
along perpendicular axes in the plane are coupled leading to a
4th order system [7, 8]. A model of this type can be used to de-
termine the limits of stability, natural frequency and magnitude
of the vibration when subjected to periodic or random excita-
tion forces. The assumption of linearity restricts the amplitudes
of vibration that may be considered but it has been observed by
Diken [9] in his study of Jeffcott rotors that a linear model can
adequately predict some important vibration characteristics even
in the presence of non-linearities.

Often the objective in rotor studies is to identify stability
limits for shaft whirl. Cohen and Porat [10] examined the stabil-
ity of a cantilever rotor driven by a flexible shaft. Khader [11]
studied cantilevered shaft stability for different load conditions.
Lee and Yun [12] studied the stability and natural frequency
of cantilevered rotors under non-conservative torques and axial
loads. The most often identified source of whirl instability is
cross coupling stiffness [8] that effectively acts as a damping
force that is tangent to the whirl orbit. This stiffness can orig-
inate from such sources as ”torque whirl”, internal damping of
the shaft, or fluid forces such as Alford’s force.

There has been considerable work done on modeling Al-
ford’s force acting on turbo-machinery impellers which has some
relevance to the present problem. The most significant differ-
ences between the mixer and turbomachinery being the large
clearances around the impeller and baffles of the mixing equip-
ment. Storace et al. [13] experimentally investigated the Alford’s
force on an axial-flow compressor impeller when the axis of ro-
tation is displaced from the static centerline of the engine struc-
ture. The resulting non-uniform clearance created a force tan-
gential to the impeller that results from an imbalance of pressure
loading on the blades. Storace et al. [13] cite it as a cause of
backward whirling over a large range of operating conditions and
synchronous/forward whirling near the design conditions of their
compressor. Alford’s force is also described by Vance [7] who
reports on experiments for an axial flow impeller.

There has been very few studies done on the fluid forces act-
ing on a mixing impeller undergoing vibrations. Exceptions are
the study of Berger [14] and Mohammed et al. [15] who used
finite element methods to simulate fully coupled fluid structure
interaction. This type of approach is computationally very de-
manding and currently does not make for a practical tool of rotor-
dynamic analysis for routine design and trouble shooting. Nev-
ertheless, CFD can provide estimates of the fluid forces acting
on the rotating impeller that can be used to formulate a practical
rotordynamic tool; this approach will be explored in the present
paper.

Model development requires experimental data for valida-
tion but there has been very little research done to explore the
relationship between the operating conditions and the shaft vi-
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bration of pitched-blade mixing impellers. An exception is the
previous study by the authors [16] which considered the effects
of geometry, fluid viscosity and operating speed on shaft vibra-
tion amplitude. It was reported that the impeller orbits are ran-
dom and the deflections are normally distributed. Furthermore
they found that the mean square vibration amplitude increases
beyond the critical speed of the rotor and that the direction of
the shaft rotation affects the results. Data from this study will be
presented to allow evaluation of the model formulation.

EXPERIMENTAL MIXING MODEL
Apparatus

A schematic of the model mixing tank is shown in figure 1
with dimensions given in table 1. The tank model is a standard
design with a flat bottom and evenly spaced removable baffles of
standard size that run the vertical length of the tank. The fluid
was constrained by a lid at a height HL = DT for all experimen-
tal trials. The impeller shaft was constructed out of a hollow
cast acrylic section and was mounted in the tank in an overhung
configuration and supported with two bearings at the upper end.
The shaft was partially filled with tungsten powder to increase
the mass and hence lower the natural frequency of the impeller
without altering the geometry. The tungsten powder was placed
inside the shaft with a mass center coincident with the mass cen-
ter of the impeller. The impeller was dynamically balanced to a
tolerance of 7.2∗10−6 kg∗m. The average geometric eccentric-
ity of the shaft was 0.53 mm with a standard deviation of 0.19
mm.

A standard pitched blade impeller with four blades and the
dimensions listed in table 2 was used. A schematic of the im-
peller is shown in figure 2.

The test fluids used were mixtures of glycerol and water
which provided a range of density between 1214 kg

m3 - 1222 kg
m3

and a dynamic viscosity ranging from µ = 42 cP - 552 cP.

Instrumentation
The cantilever shaft was fitted with three full bridge strain

gages at the root to measure the bending strain in the planes nor-
mal to the axial direction of the shaft and the torsional strain
about the shaft axis. The strain gages were mounted inside the
rotating shaft to protect them from the test fluid. The strain gage
measurements were used to infer bending and torsional deflec-
tion as well as the mean torque on the shaft. The shaft orbit
was directly observed using a high-speed camera (Dantec Nano
Sense MKIII) and a high intensity LED mounted at the end of
the shaft. The camera and strain gage measurements were both
initially triggered by the zero position of a rotary encoder. The
encoder was also used to measure the shaft’s rotational speed.

Data from the three strain gage channels were transmitted
from the rotating shaft to the data acquisition system using an

Figure 1. CROSS SECTION OF THE MIXING VESSEL WITH STAN-
DARD NOMENCLATURE

Figure 2. FOUR BLADE PITCHED-BLADE IMPELLER.

AccumetricsTMAT − 7000 telemetry system as a 12-bit digital
signal with minimal noise. Prior to transmission the signal is
filtered using a 250 Hz, 8-pole elliptical filter and amplified. The
strain gage signals were sampled at 500 Hz for a total of 135
revolutions. Images were recorded every 60◦ of rotation; at the
highest rotational speed (410 rpm) images were recorded at a
frame rate of 41 Hz. At this frame rate Nyquist criteria is satisfied
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Table 1. MODEL PARAMETERS

Symbol Parameter Unit Model

DT Tank Diameter m 0.356

Wb Baffle Width m 0.035

HT Tank Height m 0.774

H f Fluid Height m 0.31

l Length to Impeller m 0.616

do Outside Shaft Diameter m 0.038

di Inside Shaft Diameter m 0.0318

E Modulus of Elasticity N
m2 2.38∗109

I Moment of Inertia m4 5.36∗10−8

ms Shaft Mass kg/m 0.516

ks Shaft Stiffness N/m 1637

ωnb† Natural Frequency rad
sec 30.1805

ζ†
s Shaft Damping Ratio 0.045

ζ
‡
f Fluid Damping Ratio 0.061

† Note: Measured in air.

‡ Note: Measured in 50 and 500 cP test fluid.

Table 2. PROPERTIES OF THE PITCHED-BLADE IMPELLER

Symbol Parameter Unit Model

#B Blade # 4
D
T Diameter Ratio 5

7
c
T Clearance Ratio 0.047

D Impeller Diameter m 0.254

W Blade Width m 0.127

m†
s Impeller mass kg 1.798

Jx Polar Moment kg∗m2 4.863∗10−3

Jy = Jz Polar Moment kg∗m2 3.093∗10−3

†Note: Total mass of the tungsten powder and impeller

for any periodic orbit motion that has a frequency less than twice
the turning rate.

The viscosity and temperature of the fluid were measured
using a digital viscometer (Brookfield DV-II+) before and after
each trial.

Data Processing
The bending strain measured at the root of the shaft was used

to infer the impeller motion assuming a static deflection curve
corresponding to a massless cantilever beam with a point load
applied at the impeller’s mass center. The relationship between
the bending strain and deflection in the rotating frame of refer-
ence of the shaft was approximated by

ŷ =


√

M2
y +M2

z l2

3EI
+

Mcl2

6EI

cos(θM) (1)

ẑ =


√

M2
y +M2

z l2

3EI
+

Mcl2

6EI

sin(θM) (2)

where

My =
2EIεy

do
Mz =

2EIεz

do
(3)

while εy and εz are the measured strains, l is the shaft length,
do is the outside diameter of the shaft, Mc = −1.5Ω∗2 is a cali-
bration constant used to match the strain gage and camera mea-
surements and θM is the angle produced by the resultant moment
vector. Deflections, ŷ and ẑ, inferred from the strain gages were
transformed to a laboratory frame of reference using the angular
position, θE , provided by the encoder and the equations

y = ŷcosθE − ẑsinθE (4)

z = ŷsinθE + ẑsinθE (5)

The camera measures the position of the geometric center of the
shaft, y and z in a laboratory frame of reference directly. These
measurements are recorded with respect to its center of rotation.
An important difference between these measurements and the
values derived from the strain gages (ŷ and ẑ) is that the cam-
era measurements include the geometric eccentricity of the shaft
while the strain gages results do not. The geometric eccentric-
ity was determined for each trial by manually rotating the shaft
while taking a slow series of images. With both the camera and
strain gage measurements the data is adjusted to have a mean re-
sponse of zero. The deflection determined from the strain gage
signals and camera images were highly correlated.
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The normalized expected mean squared response, E[r∗2] of
the system is determined using

E[r∗2] = E[y∗2]+E[z∗2] (6)

where E[y∗2] and E[z∗2] are the expected mean squared deflection
in the y and z direction. The deflections are normalized by the
impeller diameter; y∗ = y

D and z∗ = z
D .

Experimental Results
Tests were conducted in various fluid mixtures with initial

viscosities: a) µ1 ≈ 50 cP, b) µ2 ≈ 100 cP and c) µ3 ≈ 500 cP.
Trials were conducted in both counter clockwise and clockwise
directions for rotational speeds ranging from 148 rpm to 410
rpm in 10 and 20 rpm intervals. Measurements were recorded in
series of increasing and decreasing rotation speed to identify if
there was a hysteresis effect. The reversal of radial direction has
the effect of reversing the axial thrust of the impeller from com-
pressive (counter clockwise, CCW) to tensile (clockwise, CW).

Table 3. FLUID VISCOSITIES FOR EACH TRIAL.

With Baffles

Compressive Axial Loading

a) µ≈ 40 cP b) µ≈ 100 cP c) µ≈ 500 cP

rpm 148-390 148-390 148-390

Ω∗ 0.45-1.19 0.45-1.19 0.45-1.19

Re 454-1319 3678-10185 1907-5769

Tensile Axial Loading

a) µ≈ 50 b) µ≈ 100 c) µ≈ 500

rpm 148-410 148-410 148-410

Ω∗ 0.45-1.25 0.45-1.25 0.45-1.25

Re 382-1348 4861-15413 1764-5874

Experimental results for E[r∗2] using a standard pitched
blade impeller with baffles are plotted in figure 3. The results
for a shaft with a compressive axial load, (Ω∗ > 0) show a peak
at a frequency ratio of Ω∗ = 0.74 for all three test fluids. This is
considered the first critical speed. The amplitude at the critical
speed decreases with increased viscosity. In the supercritical re-
gion the amplitude remained approximately constant. The results
for the tensile case shown in figure 3 (Ω∗ < 0) do not indicate a

critical speed and the mean squared amplitude continued to in-
crease as the frequency ratio was increased. Increased viscosity
caused the amplitude of the mean squared response to decrease.
Figure 3 b) also shows the results for a 4-blade impeller with-
out pitch. This impeller does not produce axial thrust and yields
symmetric results for both directions of rotation.

Figure 3. NORMALIZED SHAFT DEFLECTIONS FOR A 4 BLADE,

0.254 m DIAMETER IMPELLER WITH TENSILE (Ω∗ < 0) AND COM-

PRESSIVE (Ω∗ > 0) SHAFT LOADING IN THREE TEST FLUIDS: A)

µ ≈ 40 cP; B) µ ≈ 100 cP; and C) µ ≈ 500 cP. 4 BLADE, 0.254 M

WITHOUT PITCH; ◦.

Figure 4 shows the orbits for the impeller with tensile axial
loading in a test fluid with µ ≈ 50 cP at four rotational speeds.
Each data point is separated by 60◦ of rotation for 135 revolu-
tions. In both directions the displacements were normally dis-
tributed; the skewness and kurtosis of the deflections for each
orbit are listed in table 4.

Figure 5 shows the power spectral density (PSD) of the dis-
placement in the y-direction for the four trials shown in figure 4.
These PSD plots were normalized by their corresponding rota-
tional speeds and constructed from the strain gage data that was
sampled at 500 Hz and filtered at 250 Hz. These PSD diagrams
show that the majority of the energy was contained in the fre-
quencies ω∗ < 1. Each plot in figure 5 shows a rise in power
near a value that coincides with ω

2π
= 60 Hz that is thought to be

electrical noise.
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Figure 4. CAMERA DATA SHOWING THE ORBITS FOR A 4 BLADE,

0.254 m PITCHED BLADE IMPELLER WITH TENSILE LOADING IN

A TEST FLUID WITH A VISCOSITY OF 40 cP. DATA POINTS ARE

SPACED AT INTERVALS OF 60◦ OF IMPELLER ROTATION.

CFD SIMULATIONS
A Computational Fluid Dynamics (CFD) study was com-

pleted for the model geometry using the commercial solver, AN-
SYS CFX. This was done with the objective of supplementing
experimental results in regard to the fluid forces acting on the
rotating impeller. The computational domain included a rotating
frame attached to the impeller and a stationary frame attached to
the baffles and tank walls to permit ease of meshing. Time step-
ping was first order accurate with an increment of 1 ms or 1.4◦

of impeller rotation at 224 rpm. The unstructured finite element
mesh used in the study included 1.3M elements and 250K nodes.
Each revolution of the impeller required 24 hours of CPU time
on 8 parallel processors. Simulations were conducted for 30 rev-
olutions to establish a statistically steady state for the fluid forces
and then an additional 32 revolutions were computed to form the
basis of force spectral densities and average forces and moments
used in the present study. Current simulations had a Reynolds
number, Re = ρΩD2

µ = 270∗103. Simulations were performed for
no orbit, synchronous orbit and 3 subsynchronous orbit speeds.
The orbit amplitude was 10% of the blade baffle clearance. The
time series of force on the impeller was random and statistically
independent of the angular impeller location. A summary of the
simulation results for the no orbit simulation is shown in Table 5.
The average power number, Np, of this simulation matched the

Table 4. STATISTICS OF ORBITS.

Ω∗ Dir Skewness Kurtosis

0.44
y -0.088 2.864

z 0.377 2.973

0.74
y -0.05 2.615

z 0.106 2.804

1.03
y -0.06 2.84

z 0.039 2.786

1.18
y -0.244 3.257

z 0.091 2.677

experimentally determined value giving confidence in the aver-
age values of axial thrust and power spectral density of the hori-
zontal forces.

Table 5. CFD RESULTS

NpCFD 1.51

CTCFD 0.018(
fyCFD

ρΩ2D4

)2
1.12∗10−6(

fzCFD
ρΩ2D4

)2
9.92∗10−7

DYNAMIC MODEL
Governing Equations

A free body diagram of a cantilever mixing shaft with a stan-
dard pitched blade impeller is shown in figure 6. This diagram
shows a simplified sketch of the forces that are caused by both the
dynamics of the shaft and the fluid flow surrounding the impeller.
The equation of motion for a rotating shaft can be represented
as [8]

[M]{r̈}+[C]{ṙ}+[K]{r}= { f (t)}+U{r0}+V{ṙ0} (7)
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Figure 5. POWER SPECTRAL DENSITY OF THE SHAFT POSITION

(y∗ = y
D ) IN THE y DIRECTION FOR A 4 BLADE, 0.254 m DIAME-

TER PITCHED-BLADE IMPELLER WITH TENSILE AXIAL LOADING IN

A TEST FLUID WITH A VISCOSITY OF 40 cP.

where vector {r} is the displacement from the axis of rotation in
the horizontal plane

{r}=
{

y
z

}
(8)

and |r0| is the geometric misalignment which is taken to be the
distance from the geometric center of the impeller to the center
of rotation at zero rotational speed.

Expanding equation 7 into matrix form leads to the follow-
ing [8]

[
ms +m f 0

0 ms +m f

]{
ÿ
z̈

}
+
[

cs + c f 0
0 cs + c f

]{
ẏ
ż

}
(9)

+
[

ks + ka− kr kc + kβ− kτ

−kc− kβ + kτ ks + ka− kr

]{
y
z

}
= msuΩ

2
{

cos(Ωt)
sin(Ωt)

}
+
[

cs 0
0 cs

]{
ẏ0
ż0

}
+
[

ks + ka kc
−kc ks + ka

]{
y0
z0

}
+
{

fy
fz

}

The non-diagonal terms in the stiffness matrix of equation 9 rep-
resent coupling between the two systems of equations. The forc-

Figure 6. ROTATING MIXING SHAFT WITH FORCES AND MOMENTS.

ing function on the right side of the equation includes contribu-
tions from mass imbalance, misalignment and fluid forces.

Mass Matrix
Following the dictum of Adams [8] no non-diagonal terms

are included in the mass matrix since they would produce insta-
bilities at high rotational speed which are not consistent with ob-
servation [8]. Experiments conducted by Walston [17] reported
that fluid damping and added mass had an effect on the ampli-
tude of the shaft vibration. The author also showed that the criti-
cal speed will be noticeably lower for a rotating disk that entraps
fluid within itself.

The mass of the impeller, ms and the added fluid mass, m f
both contribute to the mass matrix. The added fluid mass was
modeled as

m f = ρ−V (10)

where −V is the displaced volume of the impeller. The ratio m f
ms

=
0.11 for the present case.
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Damping Matrix
The damping matrix includes the internal damping of the

shaft and bearing system and the hydrodynamic damping. The
structural damping factor is cs = 4.8824 N∗sec

m or ζs = 0.045 and
was directly measured using a bump test (without rotation) in air.
Vance [18] models the hydrodynamic damping on the impeller as

Fdv =−c f

{
ẏ
ż

}
(11)

Note that the hydrodynamic damping is independent of {r0}. To
determine the value of c f a non-rotating impeller was bumped in
40 cP and 519 cP fluid. The result was a fluid damping of c f =
3.32 N∗sec

m and a fluid damping ratio of ζ f = 0.06. A non-rotating
impeller in test fluid experienced a total damping factor of ζs +
ζ f = 0.11. Vance [18] also describes a nonlinear ”aerodynamic”
model that will not be considered in this study.

Stiffness Matrix
Diagonal Components The elastic force due to the de-

flection of the shaft from {r0} was determined using the struc-
tural stiffness. The stiffness for the present shaft was ks = 1649
N
m which was measured in a static horizontal position.

The presence of axial loads on the shaft can alter the struc-
tural stiffness [14]. The axial loads result from the vertical com-
ponent of the impeller thrust, T = CT ρD4Ω2 cos(θ), and the net
weight. The additional stiffness is represented by ka and is cal-
culated as [14]

ka = ks

(
4l2(CT ρD4Ω2 +(ms−ρ−V +0.5ρs−Vs)g)

π2EI

)
(12)

where cos(θ) ≈ 1, ρ is the fluid density, CT is the coefficient
for axial thrust produced by the impeller, ρs is the density of the
shaft, −Vs is the volume of the shaft, D the impeller diameter, l
is the length of the shaft, I is the moment of area and E is the
modulus of rigidity. The thrust coefficient, CT , may be either
positive or negative depending on the direction of rotation. It
was determined from computational fluid dynamic simulations
to have a magnitude of CT =±0.018.

As the shaft deflects there is an angle between the bearing’s
axis of rotation and the impeller’s axis of rotation which projects
the impeller thrust onto the horizontal plane. This horizontal
component of the impeller thrust, CT ρD4Ω2 sin(θ), contributes
to the effective stiffness of the shaft and is defined as

kr = CT ρD4
Ω

2
(

3
2l

)
(13)

where sin(θ)≈ 3r
2l to be consistent with a static deflection curve.

This assumption regarding the angle, θ, is rather uncertain and
deserves closer scrutiny.

Non-Diagonal Components The first contribution to
the non-diagonal stiffness is due to internal shaft friction [7]
which is calculated as

kc = csΩ (14)

where cs is the structural damping coefficient measured in air.
The second contribution to the non-diagonal stiffness is due

to torquewhirl [18] which is produced by the misalignment of the
torque vector at the root of the shaft and the torque vector applied
to the impeller by the fluid resistance. The added stiffness is
calculated as [7]

kτ =
τ

2l2 (15)

where τ is the torque applied to the impeller. This torque is de-
termined using the power number as follows

τ =
NpρΩ2D5

(2π)3 (16)

where the value of Np was determined by direct experimental
measurement for the present impeller to be 1.37 which was con-
sistent with the CFD results.

Alford’s force is another contributor to the non-diagonal
stiffness and is produced by the uneven pressure distribution on
diametrically opposite impeller blades when the tip clearance is
non-uniform. These forces act orthogonal to the deflection vector
and can cause backward or forward whirl. The added stiffness is
calculated as [8]

kβ =
βτ

DmL
(17)

where β is an experimentally determined value in the range
−7 < β < 5 [7,8,13] and can vary with operating conditions [13].
Dm is the the mean diameter of the compressor stage blade row
and L is the radial length of the blades. It is unclear how to
generalize this equation for mixing applications where the clear-
ances are substantially larger and the baffles are periodic rather
than continuous as in the case of turbomachinery casing. For
the present study −0.5 < β < 0.3 provided stability in the range
−1 < Ω∗ < 1. A value of β =−0.1 was chosen somewhat arbi-
trarily for the present simulations.
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Excitation Force Matrix
The excitation force in this model includes the centrifugal

forces due to mass eccentricity and geometric eccentricity and
the fluid forces arising from the impeller rotation. The mass and
geometric eccentricity were measured directly, these values are
reported in table 6. The fluid forces were evaluated using a CFD
simulation of the experimental model geometry, see table 5. The
simulated fluid motion in the mixer and the resulting forces act-
ing on the impeller were random with a typical sample power
spectral density for the y component of force shown in figure 7.
This sample was based 32 shaft revolutions. It was also observed
that this random fluid force is statistically equal and uncorrelated
in the y and z directions. The power spectral density was modeled
as

S fy,z(ω) =

 6.43∗10−9
(

ρ2Ω4D8

(msΩD)2

)
if |ω| ≤ |3.0Ω|

(|ω|)−4
(

6.43∗10−9

3.0Ω−4
ρ2Ω4D8

(msΩD)2

)
if |ω|> |3.0Ω|

(18)

which corresponds to the dashed line in figure 7. It is assumed
that S fy,z is independent of Re and therefore the amplitude in-
creases as Ω4 and the bandwidth increases as Ω.

Figure 7. NORMALIZED POWER SPECTRAL DENSITY OF THE RAN-

DOM FLUID FORCE IN THE y DIRECTION ON AN IMPELLER AT

Ω = 23.45 rad
sec , CFD: —, MODEL EQ. 18: - - -.

Normalized Equation of Motion
Equation 9 was normalized by dividing by ms and substitut-

ing: ωnb =
√

ks
ms

, 2ζ f ωnb = c f
ms

, 2ζsωnb = cs
ms

, t∗ = tωnb, y∗ = y
D

and z∗ = z
D . Where ωnb is the measured natural bending fre-

quency ( rad
sec ) and ζs, ζ f are the damping ratios without shaft ro-

tation in air and liquid respectively. The normalized system of
equations have the form

[M̄]{r̈∗}+[C̄]{ṙ∗}+[K̄]{r∗}= f̄ (19)

where

[M̄] =
[

1+n1 0
0 1+n1

]
(20)

[C̄] =
[

2ζs + p1 0
0 2ζs + p1

]
(21)

[K̄] =
[

K̄11 K̄12
K̄21 K̄22

]
(22)

K̄11 =1+q1Ω
∗|Ω∗|+q2−q3Ω

∗|Ω∗| (23)
K̄12 =q4Ω

∗+q5Ω
∗|Ω∗|−q6Ω

∗|Ω∗|
K̄22 =K11

K̄21 =−K12

[ f̄ ] =

[
u
D Ω∗2 cos(Ω∗t∗)+(1+q1Ω∗|Ω∗|) |r0|

D cos(Ω∗t∗)+ fy
msω2

nD
u
D Ω∗2 sin(Ω∗t∗)+(1+q1Ω∗|Ω∗|) |r0|

D sin(Ω∗t∗)+ fz
msω2

nD

]
(24)

and

{r∗}=
{

y∗

z∗

}
(25)

Values for input parameters and coefficients are listed in table 6
while equations for n, p and q are listed in table 7. Values for ms,
cs, ks, c f , msu r0 and Np were all experimentally measured but
the thrust coefficient, CT was determined through CFD simula-
tions. The viscous damping coefficient, c f was an average value
measured for a stationary impeller during a bump test in 50 cP
and 500 cP test fluids.
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Table 6. MODEL PARAMETERS

Symbol Model Value Symbol Model Value

ms 1.8 (kg) msu 7.2∗10−6 (kg∗m)

cs 4.9
(N∗sec

m

)
Np 1.37

ks 1637
(N

m

)
CT 0.018

y0 0.0 (m) c f 2.7, 3.3, 4.0 N∗sec
m

z0 0.0005 (m) β -0.1

Table 7. MODEL COEFFICIENTS

Parameter Definition Value

n1
m f
ms

0.1146

p1
2c f

msωn
0.049, 0.061, 0.073

q1
4l2CT ρD4ω2

n
πEI ±0.3202∗

q2
4l2(mg+0.5ρsAlg)

πEI 0.073

q3
3CT ρD4

2lms
±0.1257∗

q4
2cs

msωnb
0.09

q5
βNpρD5

DmL(2π)3ms
-0.052

q6
NpρD5

2l2(2π)3ms
0.0052

* Note: Sign of constant depends on slope of

impeller blades: negative for positive sloped

blades and positive for negatively sloped blades

Stability and Natural Frequency

Transforming equation 19 into state space allows for an an-
alytic solution for the eigenvalue problem. The eigenvalue prob-
lem is defined as

Ur∗ = λr∗ (26)

where

U =
[

0 I
−M̄−1K̄ −M̄−1C̄

]
(27)

The eigenvalues λ are complex in the form

λ = α+ψi (28)

where α is the damping and ψ is the natural frequency. The
system is only stable if all of the real values of the eigenvalues
are negative, α < 0. Note that since K is a function of the shaft
turning rate Ω the eigenvalues as well and the natural frequency
depends on Ω.

Frequency Response
H(ω) is the transfer function of the system in the frequency

domain and was found by taking the Laplace transform of equa-
tion 19 and arranging it in the form

[A]{R(iω)}= Ff (iω) (29)

with

A11 =− M̄11ω
2 +C̄11ωi+ K̄11 (30)

A12 =K̄12

A22 =− M̄22ω
2 +C̄22ωi+ K̄22

A21 =K̄21

Rearranging equation 29 as

R(iω) = A−1Ff (iω) = H(iω)Ff (iω) (31)

defines the transfer function as

H(iω) =
1

det(A)

[
A22 −A12
−A21 A11

]
(32)

Mean Squared Response
For two uncorrelated random inputs [19]

E[y∗2] =
Z

∞

−∞

|H11(ω)|2S f y(ω)dω (33)

+
Z

∞

−∞

|H12(ω)|2S f z(ω)dω
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E[z∗2] =
Z

∞

−∞

|H21(ω)|2S f y(ω)dω (34)

+
Z

∞

−∞

|H22(ω)|2S f z(ω)dω

The power spectral density of the forcing function in the y and z
direction are S f y(ω) and S f z(ω) respectively.

Model Results
Figure 8 shows the model damping and natural frequency

results for three viscous damping coefficients: c f = 2.7, 3.3 and
4.0. This range was selected to show the sensitivity to the fluid
damping. Figure 8 a) shows the real part of the eigenvalues to be
entirely negative which indicates stability within −2 < Ω∗ < 2.
Figure 8 b) shows that the natural frequency decreased for Ω∗> 0
and increased for Ω∗ < 0. This is a direct result of the axial
loading caused by the pitched blades. For Ω∗ = 0, ψ < 1 because
of the fluid added mass.

Figure 8. RESPONSE CHARACTERISTICS FOR A) SYSTEM DAMP-

ING, B) NORMALIZED NATURAL FREQUENCY. LINES REPRESENT

FLUID DAMPING COEFFICIENTS c f = 2.7 kg
sec ,−−, c f = 3.3 kg

sec , —

AND c f = 4.0 kg
sec , – - –

Values for |H11(iω)| and |H12(iω)| for three values of Ω∗

and fluid damping coefficients are shown in figures 9 and 10 re-
spectively. The transfer function for zero rotation (—) is repre-
sentative of the response of the shaft experiencing plane bending

while the transfer function for Ω∗ =−1 (−−) represents a rotat-
ing shaft with a tensile axial load and Ω∗ = 1 (– - –) represents
a shaft with a compressive axial load. For the zero rotation case
|H11(iω)| peaks at |ω∗| slightly below 1 and |H12(iω)|= 0. Peaks
were produced at values |ω∗|> 1 for Ω∗ =−1 while the transfer
function for Ω∗ = 1 produced peaks at values below |ω∗|< 1 for
all damping coefficients.

Figure 9. H11 FOR THREE DAMPING COEFFICIENTS: a) c f = 2.7
kg
sec , b) c f = 3.3 kg

sec AND c) c f = 4.0 kg
sec . LINES INDICATE THREE

ROTATION SPEEDS: Ω∗ = 0, –, Ω∗ =−1,−− AND Ω∗ = 1, – - –.

The expected mean squared response of the system calcu-
lated from equations 33 and 34 and using the random fluid force
model of equation 18 is shown in figure 11.

DISCUSSION
The experimental results show that the impeller displace-

ments are normally distributed random variable with a strong
subsynchronous frequency content. The distribution of the dis-
placements are also statistically axisymmetric. The mean square
displacement shown in figure 3 depends strongly on shaft rota-
tional speed but is asymmetric with respect to the direction of the
shaft rotation. This asymmetry results from the 45◦ blade pitch
and the change in direction of the axial thrust which accompanies
a change in rotation direction.

The linear model presented used a combination of exper-
imentally determined coefficients and fluid forces determined
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Figure 10. H12 FOR THREE DAMPING COEFFICIENTS: a) c f = 2.7
kg
sec , b) c f = 3.3 kg

sec AND c) c f = 4.0 kg
sec . LINES INDICATE THREE

ROTATION SPEEDS: Ω∗ = 0, –, Ω∗ =−1,−− AND Ω∗ = 1, – - –.

from CFD simulations. These forces are random functions of
time and are largely statistically axisymmetric which is con-
sistent with experimentally observed displacements. Figure
11 compares the mean squared displacements predicted by the
model to the data of figure 3 shows that the predictions are quali-
tatively correct. This includes the asymmetry of the critical speed
for CW and CCW shaft rotation. This asymmetry in the natural
frequency of the shaft increases with the square of rotation rate.

There are a number of assumptions that have been made
in the derivation of the model that deserve closer scrutiny. Pri-
mary among them are the fluid mass, damping and stiffness co-
efficients. In particular the mass and damping coefficients were
determined without consideration for the shaft rotation and as
figures 8 and 11 show, the results are sensitive to the fluid damp-
ing coefficient. The fluid stiffness was based on Alford’s force
and did not consider any radial stiffness (diagonal component)
that may be caused by the confinement due to the baffles and
tank wall. However the model prediction proved to be relatively
insensitive to the fluid stiffness as presently formulated.

A more rigorous approach to determining the hydraulic co-
efficients associated with impeller displacement would be to use
CFD simulation results; research along these lines is ongoing.
The main difficulty with this approach is the random nature of
the fluid forces, even for the case of periodic orbits. This ran-
dom nature requires a statistical approach to correlate the forces
to displacements, velocities and acceleration that is very slow to

Figure 11. EXPECTED MEAN SQUARE RESPONSE FOR FLUID

DAMPING COEFFICIENTS: c f = 2.7 kg
sec , −−, c f = 3.3 kg

sec , — AND

c f = 4.0 kg
sec , – - –. EXPERIMENTAL RESULTS FROM FIGURE 3 b); •.

converge. Given the demanding nature of CFD simulations new
methods will have to be found to improve convergence rates.

SUMMARY

This paper presented experimental mean squared shaft de-
flections, sample orbits and power spectral density plots for a
standard 45◦ pitched-blade impeller in a baffled mixing vessel as
well as an analytical model for the stability, natural frequency
and the expected mean squared response. The experimental re-
sults show that the deflection amplitude is asymmetric for CW
and CCW shaft rotation and that the displacements were nor-
mally distributed in both the y and z directions. The power spec-
tral density of the orbits shows that the majority of the energy is
confined to subsynchronous frequencies.

CFD results were successfully used to estimate the power
spectral density of the fluid forces on the impeller.

Model results for the mean square displacement were pre-
sented for a range of rotational speeds and produce similar trends
to those found in the experimental results such as the effect of the
shaft rotation rate and direction on the mean squared response
and the first critical speed.
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