
Proceedings of ASME 2010 3rd Joint US-European Fluids Engineering
Summer Meeting and 8th International Conference on Nanochannels,

Microchannels, and Minichannels
FEDSM2010-ICNMM2010

August 1-5, 2010, Montreal, Canada

FEDSM-ICNMM2010-30686

OUT-OF-PLANE VIBRATION OF A CURVED PIPE DUE TO PULSATING FLOW
(NONLINEAR INTERACTIONS BETWEEN IN-PLANE AND OUT-OF-PLANE

VIBRATIONS)

Kiyotaka YAMASHITA
Department of Mechanical Engineering

Fukui University of Technology
3-6-1 Gakuen,Fukui-shi
Fukui,910-8595 JAPAN

Email: yamashita@fukui-ut.ac.jp

Keita NAKAMURA∗
Hiroshi YABUNO

Department of Mechanical Engineering
Keio University

3-14-1,Hiyoshi,Kouhoku-ku
Yokohama,223-8522 JAPAN

Email: yabuno@mech.keio.ac.jp

ABSTRACT
A great deal of study has been done on the dynamics of

straight pipes conveying fluid. In contrast, only a few studies
have been devoted to the dynamics of curved pipe conveying
fluid. In this paper, a theoretical and experimental investiga-
tion was conducted into out-of-plane vibration of a curved pipe
for the case that the fluid flow contains a small time-dependent
harmonic component. The nonlinear out-of plane vibrations of
a curved pipe, which is hanging horizontally and is supported
at both ends, are examined when the frequency of the pulsat-
ing fluid flow is near twice the fundamental natural frequency
of out-of-plane vibration. The main purpose of this paper is to
investigate the nonlinear interactions between the in-plane and
the out-of-plane vibrations analytically and experimentally. The
partial differential equations of out-of-plane motions are reduced
into a set of ordinary differential equations, which govern the
amplitude and phase of out-of-plane vibration, using the method
of Lyapnov-Schmidt reduction. It is clarified that the excitation
of the in-plane vibration produces significant responses in the
out-of-plane vibrations. Finally, the experiments were conducted
with a silicon rubber pipe conveying water. The typical features
of out-of-plane vibration are confirmed qualitatively by experi-
ment.

∗Address all correspondence to this author.

NOMENCLATURE
u Displacement in the radial direction
v Out-of-plane displacement
w Displacement in the axial direction
χ Angle of rotation around the pipe axis
Π Combined force
Vs Dimensionless mean flow velocity
α Ratio of the flexural rigidity to the torsional rigidity
β Ratio of the fluid mass to the total mass
γ Ratio of the gravity force to the elastic force
µ Dimensionless polar moment of inertia
ε Dimensionless amplitude of the pulsating fluid flow
ν Dimensionless frequency of the pulsating fluid flow

1 INTRODUCTION
The vibration and stability of a flexible pipe conveying fluid,

which has been the subject to many investigations, is one of the
attractive phenomena from the viewpoint of nonlinear dynamics.
Presently, the vibration and stability of a flexible pipe convey-
ing fluid are a new paradigm in dynamics, providing a field to
search for new dynamical features and to develop mathematical
techniques [1]. Many of these examined the dynamics of straight
pipes, which was restricted in a plane. In contrast, only a few
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studies have been devoted to the dynamics of curved pipe con-
veying fluid although the heat exchanger tubes and system pip-
ing are vulnerable to flow-induced vibration, especially in the
U-bend regions. Geometrical considerations make the analysis
somewhat more difficult. There are many points which must be
clarified. In the present situation, the literature on nonlinear vi-
brations of fluid-conveying curved pipes is limited. Nonlinear
out-of-plane vibration is one of the problems to be solved.

Theoretical developments in the field of out-of-plane vi-
bration of a curved pipe conveying fluid started with the work
of Chen [2, 3]. Chen conducted a theoretical linear study into
in-plane and out-of-plane vibration of the curved pipe. Subse-
quently, Misra re-examined the linear dynamics and stability of
fluid-conveying curved pipes with the idea of the modified inex-
tensible theory [4]. The equations of motion could be derived
concerning a curved pipe by Dupuis and Rousselet [5]. These
equations were not written in the form of pipe displacements.
In recent years, some papers deal with nonlinear dynamics of
the curved pipe conveying fluid. Wang take up the problem of
the harmonic excitation at the free-end of the curved pipe [6].
Among a series of studies on the dynamics of the curved pipe
conveying fluid, mentioned above, some theoretical studies have
been carried out, especially on the linear stability analysis, but
only few have been followed up by experiments.

In this paper, the theoretical and experimental investigation
conducted herein deals with the nonlinear out-of-plane vibrations
of a curved pipe conveying fluid, from the view point of nonlin-
ear dynamics. The in-plane and out-of-plane vibrations for the
curved pipe are discussed under the influence of gravity. This
pipe, clamped both ends and situated vertically, conveys fluid,
whose velocity has a small time-dependent harmonic component.
For this case, the in-plane vibrations are forced excited due to
the pulsating component of the fluid flow and this flow may also
induce the parametric resonance of the out-of-plane pipe vibra-
tion. The out-of-plane vibration and a torsional vibration around
a pipe axis are coupled through linear and nonlinear terms. On
the other side, the out-of-plane vibration is coupled with in-plane
vibration only through nonlinear terms. The effects of the non-
linear interactions between in-plane and out-of-plane vibrations
are elucidated in this paper.

To begin, we discuss the effects of gravity on the static equi-
librium state of the curved pipe conveying fluid. The equations
govern the nonlinear dynamics around the static equilibrium state
are derived. The complex amplitude equation of the out-of-plane
pipe vibration in case of the principal parametric resonance is de-
rived by using the orthogonal condition between the eigenfunc-
tion and its adjoint function of the governing equation of the pipe
vibration. The out-of-plane vibration is excited by the pulsating
fluid flow and the nonlinear interaction between in-plane and out-
of-plane vibrations.

Finally, the spatial motions of a curved pipe due to the pul-
sating fluid flow were observed by using the image processing

system, which was based on images from two CCD cameras. The
flow velocities were also measured with the electro-magnetic
flow-meter. The deflections of the pipe were measured under
quasi-stationary sweep of the frequency of the pulsating fluid
flow, which was nearly twice the natural frequency of the out-
of-plane vibration for the first mode, i.e. principal parametric
resonance. The pipe motions resulting from the nonlinear analy-
sis and experiments were complex and had several bifurcations.

2 ANALYTICAL MODEL AND BASIC EQUATIONS
2.1 Analytical model

The system under consideration (Fig.1) consists of a flex-
ible curved pipe, built-in at both ends. The pipe conveys an
incompressible fluid which discharges to atmosphere from one
end. The pipe is flexible in bending yet inextensible. It also has
uniform circular cross section and a length far in excess of its
diameter. The pipe, of length �, flexural rigidity EI, torsional
rigidity GJ, mass per unit length mp and bore area S f is hung
vertically under the influence of gravity g in its static state. The
gravity force acting on the pipe is not neglected compared with
the restoring force due to the bending rigidity of the pipe. The
axial flow velocity v f relative to the pipe motion is assumed as
follows:

v f = vs +δv = vs(1+ ε sinNt) (1)

where vs is a mean flow velocity, ε is an amplitude of the pulsat-
ing flow component and N is the frequency of the pulsating flow.
The density of fluid is ρ f .

The pipe motions investigated herein are three-dimensional.
The coordinate system used has its origin O at the center of the
pipe at one of the built-in ends. The OX direction is along the
downward vertical axis. The OY is in a horizontal plane and
another built-in end is taken on the extension of the line OY. The
direction OZ completes the Cartesian set. The pipe is initially in
X-Y plane, having an arbitrary centerline shape, i.e. the radius
of curvature is R0.

We define the angle of rotation around the pipe axis χ and
combined force Π. The combined force Π=pSf − T involves
both axial pipe tension T and pressure force pSf . The pipe dis-
placements, angle of rotation and Π are expressed as functions
of coordinate s along the pipe axis and time t. The equations
governing the spatial behavior of the pipe are derived under the
assumption that the pipe axis is inextensible [7].

Shown in figure 2, ez0,ex0 and ey0 are tangential, normal and
binormal unit vector. A position vector d of any point on the pipe
axis is expressed as follows:

d = uex0 + vey0 +wez0. (2)
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FIGURE 2. Deformation of a Curved Pipe

2.2 Basic equations
We take up the spatial behavior of the pipe under the as-

sumptions that u(s, t), v(s, t) and w(s, t) are small but finite.
Some dimensionless variables are introduced (denoted with *):
s = R0s∗, u = R0u∗, v = R0v∗, w = R0w∗, Π = EIΠ∗/R2

0, t =√
(mp +ρ f S f )/EIR2

0t∗. The equations governing the spatial
pipe motion under the influence of gravity are expressed in the
dimensionless form as follows [7]:

ü−µ(ü
′′
+ ẅ

′
)+2

√
βV (u̇

′
+ ẇ)+(Π +V 2)(1+u

′′
+w

′
)

+γ
{

coss(u
′
+w)+ sins

}
+u

′′′′
+w

′′′
= n1(u,v,w,χ ,Π) (3)

v̈−µ v̈
′′
+ v

′′′′ − χ
′′ −α (χ

′′
+ v

′′
)+2

√
βV v̇

′
+(Π +V 2)(v

′′

−χ)+γ
{

v
′
coss− χ sins

}
= n2(u,v,w,χ ,Π) (4)

Π = Π(0)−
∫ s

0
ẅds−µ

∫ s

0
(ü

′
+ ẅ)ds+u

′′
+w

′ −u
′′
(0)

−
√

βV̇ s+γsins−γ
∫ s

0
sins(u

′
+w)ds+n3(u,v,w,χ ,Π)(5)

v
′′ − χ +αχ

′′
+α v

′′ −2µχ̈ = n4(u,v,w,χ ,Π) (6)

w
′ −u = n5(u,v,w,χ ,Π) (7)

where ˙(·) and (·)′ denote derivatives with respect to t and s, re-
spectively. n1, n2, n3, n4 and n5 represent the nonlinear terms and
are omitted on account of limited space [7]. Except for section 4,
the astrisks indicating the dimensionless variables in Eq.(3) are
hence forward omitted. Each of the Eq. (3) ∼ Eq. (6) could be
identified as being related to one of the co-ordinates. Eq. (3) cor-
responds to the radial transverse deformation, Eq. (4) to out-of-
plane transverse deformation, Eq. (5) to longitudinal displace-
ment, and the last to the twist of the pipe. Eq. (7) express the
in-extensible condition. The boundary conditions for both ends
of the pipe are expressed: u = u

′
= v = v

′
= w = w

′
= χ = 0.

As a result, the spatial behavior of the curved pipe is de-
scribed by five equations and fourteen boundary conditions with
respect to the unknown variables u, v, w, χ and Π. In-plane vibra-
tions can be expressed with u and w and Out-of-plane vibrations
can be expressed with v and χ . From Eq. (3) through Eq. (7), it
is clear that the in-plane and the out-of-plane vibrations are only
coupled with nonlinear terms.

There are seven dimensionless parameters involved in Eqs.
(3) through (7), i.e., the dimensionless mean flow velocity Vs =
R0vs

√
ρ f S f /EI, the ratio of the flexural rigidity to the torsional

rigidity of the pipe α = GJ/EI, the ratio of the fluid mass to the
total mass β = ρ f S f /(mp +ρ f S f ), the ratio of the gravity force to
the elastic force to the pipe γ = (mp +ρ f S f )R3

0g/EI, the dimen-
sionless polar moment of inertia µ = ρpI/R2

0(mp +ρ f S f ), the di-
mensionless amplitude of the pulsating fluid flow ε = max|δv|/vs

and dimensionless frequency of the pulsating fluid flow ν =
N

√
(mp +ρ f S f )/EIR2

0.

2.3 Static equilibrium state
In order to understand the nonlinear spatial behavior of

the curved pipe around the static equilibrium state, first static
equilibrium states under the gravity are discussed. In the case
of steady flow velocity V = Vs, we assume that the pipe rests
slightly away from a semicircle, under the gravity g. Neglect-
ing the time depending terms and the nonlinear terms in Eqs.
(3) ∼ (7) and assuming u = ug, w = wg, v = χ = 0, Π = Πs,
Πs(0) = −V 2

s +Πg(0), the following equations are obtained.

u
′′′′
g +w

′′′
g +(Πs +V 2

s )(1+u
′′
g +w

′
g)+γ

{
coss(u

′
g +wg) +
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FIGURE 3. Static equilibrium state of the curved pipe (Vs=3.68,γ=
4.22,solid line:static equilibrium state, broken line:semicircle)

sins} = 0, (8)

w
′
g −ug = 0, (9)

Πs = −V 2
s +Πg(0)+u

′′
g +w

′
g −u

′′
g(0)+γsins

−γ
∫ s

0
sins(u

′
g +wg)ds. (10)

This boundary value problem describes small static deflec-
tions of a curved pipe being pulled downward by a gravitational
force. This boundary value problem are solved using a power se-
ries of s satisfying the Eqs. (8) ∼ (10). Πg(0) is a reaction force
acting on the origin O and is estimated to match the amount of
sag ug(π/2) with experimental one.

Figure 3 shows the static equilibrium state of the curved pipe
under the influence of gravity (Vs=3.68, γ= 4.22). The solid and
broken lines show the static equilibrium state and a semicircle,
respectively. At the middle of the span, the pipe deflects down-
ward. Since an in-extensible condition is assumed, the pipe de-
flects inside the semicircle around s = π/4 and s = 3π/4. In this
case, even though under the influence of gravity, the pipe holds
almost a semicircular shape from sagging.

2.4 Equations of motion around the static equilibrium
state

The dynamics of small deformation of the curved fluid-
conveying pipe is investigated around its static equilibrium state.

The unknown variables u, v, w, χ and Π of the Eqs. (3) through
(7) are assumed as u = us + ud , v = vs + vd , w = ws + wd ,χ =
χs + χd and Π = Πs + Πd . Keeping the nonlinear terms up to
the third order with respect to ud , vd , wd , Πd and χd in Eqs. (3)
∼ (7), the differential equations of ud , vd , wd , Πd and χd are
derived as follows:

üd −µ(ü
′′
d + ẅ

′
d)+u

′′′′
d +w

′′′
d +2

√
βV u̇

′
d +2

√
βV ẇd

−
∫ s

0
ẅdds+u

′′
d +w

′
d −µ

∫ s

0
(ü

′
d + ẅd)ds−

√
βV̇ s

−γ
∫ s

0
(u

′
d +wd)sinsds+(Πg(0)−

√
βV̇ s+γsins)(u

′′
d +w

′
d)

+γ(u
′
d +wd)coss−u

′′′′
d (0)−w

′′′
d (0)−Πg(0)u

′′
d(0)+ µ ü

′
d(0)

−u
′′
d(0) = N1 (11)

v̈d + v
′′′′
d − χ

′′
d −α (χ

′′
d + v

′′
d)−µ v̈

′′
d +2

√
βV v̇

′
d +(v

′′
d − χd)

(Πg(0)− s
√

βV̇ +γsins)+γ(v
′
d coss− χd sins) = N2 (12)

Πd = Πd(0)− s
√

βV̇ −γ
∫ s

0
(u

′
d +wd)sinsds+w

′
d +u

′′
d

−u
′′
d(0)−

∫ s

0
ẅdds−µ

∫ s

0
(ü

′
d + ẅd)ds+N3 (13)

v
′′
d − χd +αχ

′′
d +α v

′′
d −2µχ̈d = N4 (14)

w
′
d −ud = N5 (15)

where N1, N2, N3, N4 and N5 are nonlinear terms and can be
expressed with ud , vd , wd and χd . In these equations, it was as-
sumed that the influence of the polar moment of inertia was small
(µ=0). Out-of-plane vibration and torsional vibration described
by vd and χd are only coupled through nonlinear terms with in-
plane vibrations described ud and wd .

From the physical discussion of the Eqs. (11) ∼ (15), pul-
sating fluid flow excites the in-plane vibration and may also in-
duce the parametric resonance of the out-of-plane pipe vibration.
Forced excitation term of the in-plane vibration is −√

βV̇ s in
Eq. (11). Terms, which may induce parametric resonance of
out-of-plane vibration are 2

√
βV v̇

′
d and −s

√
βV̇ (v

′′
d − χd).

The out-of-plane vibration is coupled with in-plane vibra-
tions through nonlinear terms. Therefore, the forced excita-
tion of the in-plane vibration most likely affects the behavior
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of the out-of-plane vibration through nonlinear terms. In the
case that ν is nearly twice the natural frequency of out-of-plane
vibration since the in-plane and out-of-plane vibrations could
be excited with frequency of ν and ν/2 respectively, the sec-
ond order nonlinear terms in N2 and N4 affects the occurrence
of out-of-plane vibration and torsional vibration. Some char-
acteristic terms in N2 and N4 are indicated as follows: N2 =
−2wdv

′
d − 2χ ′

dw
′′
d − 10αχ ′

du
′′′
d + · · · − χdv

′2
d /2 − 3v

′
dv

′′
dv

′′′
d + · · ·,

N4 = −wdv
′
d/2+ χdw

′
d + · · ·.

3 SOLUTION METHOD
3.1 Eigenvalue problem

Letting ε = 0 and Neglecting the nonlinear terms in Eqs.
(11) ∼ (15), vd and χd are independent of ud and wd . Eliminat-
ing variable ud from two equations for ud and wd , we obtained
following linearlized equation about wd .

ẅ
′′
d − ẅd +w

′′′′′′
d +(2+Πg(0)+γsins)w

′′′′
d +(1−γsins

+Πg(0))w
′′
d +2

√
βVs(ẇ

′′′
d + ẇ

′
d)−2γwd sins+2γw

′′′
d coss

+2γw
′
d coss = 0 (16)

Letting wd = ΦweΛt , vd = Φveλ t and χd = Φχ eλ t , we can
form the eigenvalue problems. In order to understand the non-
linear spatial behavior of the curved pipe, in the next section, a
bifurcation analysis is to be carried out. In this analysis, the lin-
ear system and its solution play an important role. We give an
outline of an eigenvalue problem for out-of-plane vibration. The
eigenvalue problem associated with the out-of-plane vibration is
described as follows:

λ 2Φv +2
√

βVsλ Φ
′
v +Φ

′′′′
v −Φ

′′
χ −α (Φ

′′
χ +Φ

′′
v)+(Πg(0)

+γsins)(Φ
′′
v −Φχ )+γ(Φ

′
v coss−Φχ sins) = 0, (17)

(1+α )Φ
′′
v −Φχ +αΦ

′′
χ = 0. (18)

Boundary conditions for both ends of the pipe are: Φv = Φ′
v =

Φχ = 0.
The eigenvalues Λ and λ are the roots of the com-

plex characteristic equations, symbolically represented f (Λ :
Vs,β ,γ,Πg(0))=0 and g(λ : Vs,α ,β ,γ,Πg(0))=0, and can be
found numerically. The eigenvalues Λ and λ are equal to
i(Ωr + iΩi) and i(ωr + iωi) respectively; Ωr and ωr is the lin-
ear natural frequencies and Ωi and ωi are the damping ratio. The
complex eigenfunction Φw, Φv and Φχ are Φwr +iΦwi, Φvr +iΦvi

and Φχr + iΦχ i respectively.

Figure 4 shows the natural frequency Ωr and ωr as a function
of Vs for the first mode of the system in the case of α = 0.667,
β = 0.401 and γ = 0,4.22. The solid line denotes the theoretical
results in the case of γ=4.22. The points • denote the experimen-
tal results. The theoretical results are good agreement with the
experimental ones. The parameter values used in this calculation
corresponds to the experimental ones. In the case of Vs=3.7, Ωr

and ωr are 4.7 and 2.5, respectively. These values are used in the
following section, are corresponding to the experimental data.

These theoretical results and results obtained from modified
inextensible theory [4] show similar tendencies. Flow tends to
reduce the first-mode natural frequencies of in-plane and out-of-
plane vibrations, but does not cause divergence in the flow range
investigated.

The following section uses the eigenfunctions Φv and Φχ
for the first mode. These are represented using a power series of
s. Figure 5 and Figure 6 shows the first mode shape Φv and Φχ .
The eigenfunctions φv and φχ are the complex functions. φv and
φχ are unsymmetric. Since Eq. (17) and Eq. (18) are non-self-
adjoint equations, to obtain the periodic solution of the nonlinear
problem we need the adjoint to the linear problem.

0 1 2 3 4 5
0
1
2
3
4
5
6

Vs

ω
r

0 1 2 3 4 5
0
1
2
3
4
5
6

Vs

Ω
r

FIGURE 4. The natural frequency Ωr and ωr as functions of flow
velocity for the first mode(α = 0.667, β = 0.401, solid line: theoreti-
cal result γ = 4.22, broken line: theoretical result γ=0, •:experimental
result)
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FIGURE 6. First mode shape Φχ (Vs=3.68, solid line:γ = 4.22, bro-
ken line: γ=0)

3.2 Forced excitation of in-plane vibration
We focused on the case where the natural frequency of the

in-plane vibration slightly off from twice the natural frequency of
the out-of-plane vibration. Therefore, it is not necessary to con-
sider the influence of the out-of-plane vibration on the in-plane
vibration at the first approximate solution, from the physical es-
timation and ordering of the governing equation.

Therefore, the influences of a pulsating fluid flow on the in-
plane vibrations will briefly be considered first. In the case of ε �=
0, forced in-plane vibration is governed the following equation:

ẅ
′′
d − ẅd +w

′′′′′′
d +(2+Πg(0)+γsins)w

′′′′
d +(1−γsins

+Πg(0))w
′′
d +2

√
βVs(ẇ

′′′
d + ẇ

′
d)−2γwd sins+2γw

′′
d coss

+2γw
′
d coss− cwẇd =

√
βV̇ (19)

where the term of right hand side Eq. (19) produce a excitation
term. Boundary conditions for both ends of the pipe are: wd =
w

′
d = w

′′
d = 0. In the presence of pulsating fluid flow V = Vs(1+

ε sinνt), we assume that wd is expressed as follows:

wd = A(s)sinνt +B(s)cosνt. (20)

Substituting Eq. (20) into Eq. (19), a set of equations associated
A and B are obtained. A and B are determined using a power
series of s. Figure 7 shows the frequency response of the in-
plane vibration. The in-plane vibrations are excited at its own
characteristic frequency (Ωr = 4.7) due to pulsating fluid flow.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

A
m

p.
of

 

FIGURE 7. Frequency response curve of amp. of wd (Vs=3.68,ε
=0.05,cw=0.091)

3.3 Equations in vector form and adjoint vector
By defining v = t [vd ,χd ], the governing equations of the out-

of-plane vibration are expressed in the vector form as follows:

[
v̈d

0

]
= Lv+Rv+N (21)
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where

L =
[

L11 L12

(1+α )(·)′′ −1+α (·)′′
]
, (22)

R =
[
−2

√
βVd

˙(·)′ + s
√

βV̇d(·)′′ −s
√

βV̇d

0 0

]
, (23)

N =
[

N2(ud ,vd ,wd ,χd)
N4(ud ,vd ,wd ,χd)

]
, (24)

and L11 = −(·)′′′′ + {α − Πg(0) − γsins}(·)′′ − 2
√

βVs
˙(·)

′
−

γcoss(·)′ , L12 = (1+α )(·)′′ +{Πg(0)+2γsins}. L and R are the
linear operators and vector N represents nonlinear terms. R con-
tains the parametric resonant terms due to pulsating fluid flow.
The boundary conditions for both ends are vd = v′d = χd = 0.

The following section uses the foregoing eigenfunctions q =
t(Φv,Φχ ) for the first mode. These are represented using a power
series of s satisfying the condition < q,q >=1 . Here, the brackets
denote the inner product < x,y >=

∫ π
0

txȳds.
Moreover, from the condition:< Lq,q∗ >=< q,L∗q∗ >, we

can determine the adjoint vector q∗ = t(ψv,ψχ ) of q. This,
expressed as a power series of s, also satisfies the condition
< q,q∗ >=1.

3.4 Nonlinear stability
In this section, the nonlinear first-order ordinary differen-

tial equations, which govern the amplitudes and phases of the
parametric resonance for the out-of-plane vibrations, are derived.
The analysis is performed by Lyapunov-Schmidt reduction. In
order to analyze the parametric resonance of out-of-plane vibra-
tions, it is assumed that the frequency ν is near twice the natu-
ral frequency of the out-of-plane vibration. Therefore, ν is ex-
pressed as follows:

ν = 2ωr(1+ εσ). (25)

The Banach space, which includes unstable vibration mode
component v, is expressed as Z = X⊕M [8]. X is the eigenspace
spanned by the eigenvectors q , which correspond to the linear
vibration mode parametrically excited. M is the subspace of X.
Therefore v can be expressed as follows:

v = A(t)q(s)+ y+ c.c. (26)

where y is the elements of M. So y, which is spanned by the linear
stable vibration modes, become zero with time. We assume that
all other mode vibrations are not parametrically excited, since
ε << 1. So, although the system may be unstable, the growth-
rate of the unstable vibrations is so small that the system could
be treated by the weakly nonlinear theory. The schematic image
of the adjoint operator is shown in Figure 8. Using the projection
P onto X, Eq. (21) with boundary conditions, decomposes as
follows:

P

[
v̈d

0

]
= PLv+PRv+PN (27)

where Px =< x,q∗ > q.
From Eq.(27), the complex amplitude equation of the out-

of-plane pipe vibration in the case of the principal parametric
resonance are derived. Letting the amplitude A(t) be C(t)eiνt/2,
ωr is the natural frequency of the first mode of a out-of-plane
vibration, to transform in autonomous system, the complex am-
plitude equation is derived as follows:

Ċ = −iεσωrC +(εζ + ξ1)C̄ + ξ2|C|2C. (28)

The resonant terms εζ C̄ in Eq. (28) is arisen from the preceding
resonant terms due to pulsating fluid flow. Another resonant term
ξ1C̄ is arisen from the second order nonlinear interaction terms
between in-plane and out-of-plane vibration. The coefficient ξ2

is determined by the third order nonlinear terms.
Letting C = aeiφ/2, separating the real and imaginary parts

of Eq. (28), and averaging them by the period 4π/ν , we obtain
the nonlinear first-order ordinary differential equations which
govern the amplitude a and the phase φ as follows:

ȧ = (εζr + ξ1r)acos2φ+(εζi + ξ1i)asin2φ+ ξ2r
a3

4
(29)

φ̇ = −εσωr − (εζr + ξ1r)sin2φ+(εζi + ξ1i)cos2φ+ ξ2i
a2

4
(30)

The pipe deflection v is expressed as follows:

v(s, t) = a|Φv|cos

(
1
2

νt +φ+ψ
)

(31)

where ψ = tan−1(Φvr/Φvi). The out-of-plane vibrations are
parametrically excited with half of the frequency of pulsating
flow.

7 Copyright c© 2010 by ASME



q

Aq v

y

FIGURE 8. Schematic image of the adjoint operator

Figure 9 shows the stability boundaries of the trivial solu-
tion of the out-of-plane vibration and torsional vibration. The
solid and broken line each represents the stability boundaries
of the trivial solution when nonlinear interactions are neglected
and considered, respectively. Alternate long and short dash line
represent the frequency response of the in-plane vibration. As
shown in this figure, the amplitude of in-plane vibration greatly
depends on εσ . In the vicinity of εσ = -0.5, the amplitudes of
the in-plane vibration are so large that unstable regions of out-of-
plane vibrations are widely spread. It must be emphasized that
the in-plane vibration are enough that non-linear interactions do
come into play and change the stability limit predicted by a linear
analysis.

Figure 10 shows the steady-state amplitude of the out-of-
plane vibration. The solid and broken lines represent stable and
unstable steady state. Nonlinear interactions increase the ampli-
tude of out-of-plane vibration.

As shown in the figure above, the nonlinear interaction be-
tween in-plane and out-of-plane vibrations greatly affects the un-
stable region and the steady-state amplitude of the out-of-plane
vibration. In the vicinity of εσ = -0.5, primary excited in-plane
vibrations parametrically excited out-of-plane vibrations in spite
of ν being apart from 2ωr. As shown in figure 9, the ampli-
tudes of in-plane-vibrations become small with εσ . As the value
of εσ increased, the influences of in-plane vibrations on out-of-
plane vibrations become smaller and a approaches the values for
the case of neglecting nonlinear interactions.

4 EXPERIMENT
4.1 Experimental apparatus

The results of the theoretical analysis and the numerical cal-
culations were qualitatively verified experimentally. The experi-
mental setup is shown in figure 11. The experiments were con-

-0.2 -0.1 0 0.1 0.2
0

0.02

0.04

0.06

0.08

ε

εσ

FIGURE 9. Neutral curves of the principal parametric resonance due
to pulsating flow

-0.2 0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6
considering nonlinear
interactions

neglecting nonlinear
interactions

FIGURE 10. Frequency response curves of the out-of-plane vibration

ducted with the silicon rubber pipe of 6 mm external diameter,
4mm internal diameter and 550mm length. The distance between
the both ends is 350mm. The equivalent bending rigidity EI was
3.66×10−4Nm2.The mass density ρ f of the water was 1.0g/cm3.
The mean flow velocity vs was 3.89 m/s. The values of α , β ,
γ and Πg(0) were determined experimentally as 0.067, 0.401,
4.22, and -7.12, respectively.

The spatial displacements of the flexible pipe were mea-
sured by the image processing system, is shown in figure 12,
which could be performed measurements of the marker in a three
dimensional space, based on the images from two CCD cam-
eras. The pulsating flow velocity was measured by the electro-
magnetic flow meter.

4.2 Experimental results
The natural frequencies of the in-plane vibration and the

out-of-plane vibration were 2.48Hz and 1.32Hz, respectively, at
the flow velocity vs=3.89m/s. The deflections ud , vd and wd of
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(1)Flexible pipe
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(4)Pressure control valve
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FIGURE 11. Diagram of experimental setup
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FIGURE 12. Measurement system of spatial pipe displacements

the pipe were measured under quasi-stationary sweep of the fre-
quency of the pulsating fluid flow. In order to observe the prin-
cipal parametric resonance, the frequency of the pulsating flow
N was determined as near twice the natural frequency of the out-
of-plane vibration for the first mode. Concerning the planned
experimental verification of the nonlinear interactions between
in-plane and out-of-plane vibrations, care was taken to make sure
that the pipe initially is in one plane only. We conducted the ex-
periment under quasi-stationary sweep of ν . The amplitudes of
wd and vd settle at a constant value after a sufficiently long time
and are measured.

(a) (b)

FIGURE 13. Photographs of the spatial behavior of the curved pipe,
(a): in-plane vibration, (b): out-of-plane vibration

Figure 13 shows the photographs of in-plane and out-of-
plane pipe vibrations at N/2π=2.68Hz. The pipe deflects in a
binormal direction with a twist. Figure 14 shows the time histo-
ries of ud , vd , wd and δv and their spectra analyses at s = π/3,
N/2π = 2.68Hz. The dominant frequency of the out-of-plane
vibration of the curved pipe was coincident with half of the fre-
quency of the pulsating component of the internal fluid flow.

Figure 15 and Figure 16 show the frequency response curves
of the steady-state amplitudes of the in-plane and the out-of-
plane vibration. ◦ represents the result obtained for forward
sweep of ν . • represents the result obtained for downward
sweep of ν . As shown in Figure 16, the out-of-plane vibra-
tion shows characteristics of the principal parametric resonance,
as predicted in the theory. The in-plane vibrations were con-
stantly excited, while the out-of-plane vibrations were only ex-
cited when the excited frequency was near twice the natural fre-
quency. Unstable region of the trivial solution was much greater
than the results of linear stability analysis for neglecting nonlin-
ear interactions. Furthermore, when out-of-plane vibrations were
excited, the amplitude of in-plane vibration decreases. From con-
sidering these results, the nonlinear interaction between in-plane
and out-of-plane vibrations was confirmed, qualitatively.

5 CONCLUSION
Out-of-plane vibration of a curved pipe has been investi-

gated theoretically and experimentally in this paper. First, the
nonlinear equations of motion around the static equilibrium state
for the curved pipe are described under the influence of grav-
ity. Second, the complex amplitude equation of the out-of-plane
pipe vibration in the case of the principal parametric resonance,
are derived by using the orthogonal condition between the eigen-
function and its adjoint function of the governing equation of the
pipe vibration. From the analytical investigation, the following
conclusions may be drawn.
(1)The parametric excitation of the out-of-plane vibration and
forced excitation of the in-plane vibration most likely occur by
the presence of pulsating fluid flow. The out-of-plane vibra-
tions are only coupled with in-plane vibrations through nonlinear

9 Copyright c© 2010 by ASME
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FIGURE 14. Time histories and their spectra at N/2π=2.68Hz

terms.

(2)The nonlinear interaction between in-plane and out-of-plane
vibrations greatly affects the out-of-plane vibration for the prin-
cipal resonance case. The excitation of the in-plane vibration
produces significant responses in the out-of-plane vibration.

Finally, we conducted the experimental based on the ana-
lytical model. The deflections of the pipe were measured un-
der quasi-stationary sweep of the frequency of the pulsating fluid
flow. The frequency of the pulsating flow was near twice the nat-
ural frequency of the out-of-plane vibration for the first mode.
We confirm that the in-plane vibration affects the out-of-plane
vibration from the frequency responses.
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FIGURE 15. Frequency response of the in-plane vibration (◦:forward
sweep of ν ,•:downward sweep of ν )
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FIGURE 16. Frequency response of the out-of-plane vibration
(◦:forward sweep of ν ,•:downward sweep of ν )
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