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ABSTRACT

This work is concerned with the modelling of the interac-
tion of a fluid with a rigid or a flexible elastic cylinder in pres-
ence of axial or cross-flow. A partitioned procedure is involved
to performe the computation of the fully-coupled fluid solid sys-
tem. The fluid flow is governed by the incompressible Navier-
Stokes equations and modeled by using a fractional step scheme
combined with a co-located finite volume method for space dis-
cretisation. The motion of the fluid domain is accounted for by a
moving mesh strategy through an Arbitrary Lagrangian-Eulerian
(ALE) formulation. Solid dyncamics is modeled by descrete or
beam elements in the linear elasticity framework and systems are
solved through a finite element method. The resulting strongly
coupled fluid solid set of non linear equations is solved by means
of a partitioned solution procedure. A fixed point method com-
bined with under-relaxation is involved to ensure the optimal
convergence of the iterative procedure. In the present work two
examples are presented to show the methodology robustness and
efficiency. The purpose is to attempt to simulate a fluid structure
interaction resulting in the development of a dynamic instability
induced by a positive damping generation of the system. Both
flutter of a flexible cylinder conveying an internal fluid and fluid-
elastic instability of a tube array submitted to an external cross
flow are investigated numerically. According to first results the
partitioned procedure relies on consistant numerical methods en-
suring energy conservation at the interface and describing with a
sufficient accuracy the mechanical energy transfer between fluid
and solid systems through the interface with a limited numerical

diffusion. Therefore it seems to be qualitatively convenient for
simulation of flutter. For a quantitative evaluation of the method-
ology further complementary simulations validating these devel-
opments from a physical point of view will be required in order
to confirm these first trends.

INTRODUCTION
Fluid structure interaction occur in a wide range of indus-

trial applications involving vibrations of mechanical structures
excited by complex flows. In the nuclear domain, multi-physics
problems such as those encountered in heat exchangers or fuel
assembly in reactor cores are often investigated through global
empiric modeling due to the large number of degrees of freedom
of the systems that are considered. The purpose of the present
work is to propose an optimization of these global modeling in
terms of vibration risks by using a new class of local numeri-
cal approaches. The proposed methodology consists in building
a fully-coupled fluid solid system and solving it through a par-
titioned procedure. The article outlines computational methods
for calculating the full coupled system. Multi-physics compu-
tation is performed by using a devoted platform developed by
EDF R&D teams calledSaloḿe1 ensuring the coupling between
fluid and solid system computations by usingCodeSaturne2 and
CodeAster3. An implicit integration of the set of non linear

1http://www.salome-platform.org
2http://www.code-saturne.org
3http://www.code-aster.org
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equations of motion is involved. Examples shown deal with
simulation of flutter in a duct conveying fluid and a tube array
submitted to cross flow featuring possible dynamically unstable
behaviour.

PARTITIONED PROCEDURE FOR COMPUTATION OF
FULLY-COUPLED FLUID SOLID SYSTEM

The purpose is to solve a fully-coupled fluid solid system by
preserving the compatibility of the subdomain and the interface
modeling in the full domain. Numerical methods are presented
below.

Solid dynamics
In the solid domain the task is to determine deformations

of solid bodies, which arise due to the action of various kinds
of forces. From this, stresses in the body can be determined.
For the different material properties there exist a large num-
ber of material laws, which together with the balance equations
lead to diversified complex equation systems for the determina-
tion of deformations (or displacements). In principle, for struc-
tural mechanics problems one distinguishes between linear and
non-linear models, where the non-linearity can be of geometrical
and/or physical nature. Geometrically linear problems are char-
acterized by the linear strain-displacements relation for the strain
tensorεi j defined by :

εi j = 1
2

(

∂ui
∂xj

+
∂u j
∂xi

)

with the displacement vectorui , whereas physically linear prob-
lems are based on a material law involving a linear relation be-
tween strains and stresses. In the present work we restrict our-
selves to the formulation of the equations for the linear elasticity
theory but the coupling strategy has been developed in the gen-
eral case. The theory of linear elasticity is a geometrically and
physically linear one. In the following the spatial coordinates are
denoted byxi . The equations of the linear elasticity theory are ob-
tained from the linearized strain-displacement relations and the
momentum conservation law formulated for the displacements.
In the framework of structural mechanics the equation of motion
may be written :

ρ ∂ 2ui
∂ t2

=
∂Ti j
∂xj

+ ρ fi

and the assumption of a linear elastic material behavior is char-
acterized by the constitutive equation known as the Hooke’s law:

Ti j = λεkkδi j +2µεi j

λ and µ are the Lamé constants, which depend on the corre-
sponding material. The elasticity modulus (or Young modulus)
E and the Poisson ratioν are often employed instead of the Lamé
constants. The relations between these quantities are:

λ = Eν
(1+ν)(1−2ν)

and µ = E
2(1+ν)

Possible boundary conditions for linear elasticity problems are:
− Imposed displacement: ui = ubi on Γu

− Imposed stress: Ti j n j = tbi on ΓT
Parts of boundaryΓu andΓT must be disjointed and cover

the whole domain boundaryΓ, i.e.,Γu∩ΓT = /0 andΓu∪ΓT = Γ.
In the case of a single-degree-of-freedom system, the solid is
modeled through a discrete element where a mass, a damping
and a stiffness are imposed. In the case of a multi-degree of free-
dom system, in the present work, only beams are investigated
and they are modeled by beam elements in the framework of lin-
ear elasticity theory. Linear systems are solved by using a finite
element method and time discretisation is ensured by an implicit
Newmark algorithm of second order unconditionaly stable.

Computational fluid dynamics
For the description of fluid flows an Eulerian formulation is

employed, because one is interested in the properties of the flow
at certain locations in the flow domain. We restrict ourselves to
the case of linear viscous isotropic fluids known as Newtonian
fluids. Newtonian fluids are characterized by the following ma-
terial law for the Cauchy stress tensorT:

Ti j = µ
(

∂vi
∂xj

+
∂vj
∂xi

− 2
3

∂vk
∂xk

δi j

)

− pδi j

with the velocity vectorvi with respect to Cartesian coordinate
xi , the pressurep, the dynamic viscosityµ , and the Kronecker
symbolδi j . In the framework of incompressible flow the conser-
vation of mass yields to a divergence-free velocity vector:

∂vi/∂xi = 0

For incompressible flows the stress tensor becomes:

Ti j = µ
(

∂vi
∂xj

+
∂vj
∂xi

)

− pδi j

The conservation equations for mass, momentum, and energy
then read:

∂vi
∂xi

= 0
∂ (ρvi)

∂ t +
∂ (ρvivj )

∂xj
= ∂

∂xj

[

µ
(

∂vi
∂xj

+
∂vj
∂xi

)]

− ∂ p
∂xi

+ ρ fi

For isothermal processes in the incompressible case the energy
equation does not need to be taken into account. This equa-
tion system has to be completed by boundary conditions and,
in the unsteady case, by initial conditions. As boundary condi-
tions for the velocity, the velocity components can be explicitly
prescribed:

vi = vbi

Here,vb can be a known velocity profile at an inflow boundary
or, in the case of an impermeable wall where a no-slip condition
has to be fulfilled, a prescribed wall velocity (vi = 0 for a fixed
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wall). Attention has to be paid to the fact that the velocitiescan-
not be prescribed completely arbitrarily on the whole boundary
Γ of the problem domain, since the equation system only admits
a solution, if the integral balance

∫

Γ
vbini dΓ = 0

is fulfilled. This means that there flows as much mass into the
problem domain as it flows out, which, of course, is physically
evident for a “reasonably” formulated problem. At an outflow
boundary, where usually the velocity is not known, a vanishing
normal derivative for all velocity components can be prescribed.
For incompressible flows, the pressure is uniquely determined
only up to an additive constant.

For time discretisation aθ -scheme is involved. A second or-
der Crank-Nicolson scheme withθ = 1/2 is used. A fractional
step scheme is used to solve the mass and momentum equations
with a Chorin method [2]. The first step (the predictor step) pro-
vides predicted velocity components : they are determined se-
quentially and without coupling between each other. The mass
equation is taken into account during the second step (correc-
tor step) where a Poisson equation is solvedfor pressure and the
mass fluxes at the cell faces are updated. Finally all variables are
updated and another time step may start. During the flow com-
putation the time step is constant in time and uniform in space.
For space discretisation a finite volume method is involved with
colocated variables. Within the framework of the finite volume
approach, the equations are integrated over each cell of the mesh
called control volumes. This yields to an equilibruim equation
for fluxes through control cell faces and volumic sources. Con-
vection and diffusion terms are thus integrated.

To deal with any fluid structure interaction problem the com-
putation of coupled fluid and solid systems is required with con-
venient data interchange through the interface. Therefore bound-
ary conditions must be compatible at the interface. From a nu-
merical point of view solid and fluid boundariesΓs et Γf may be
considered as standard boundaries. IfΓi designates the interface
boundary, velocity and stress tensor must satisfy the following
conditions :

vi =
∂ub

i
∂ t and σi j n j = Ti j n j

whereub
i and ∂ub

i /∂ t designate respectively the interface dis-
placement and velocity. When the fluid domain changes in space
and time during the computation due to solid wall motion or de-
formation, it is necessary to account for this motion in the fluid
domain mesh. The mesh and domain evolution is accounted for
by using a moving mesh method. An Arbitrary Lagrange Euler
(ALE) formulation is involved. The method consists in introduc-
ing an arbitrary referential domain in which the set of equations
is reformulated and solved. This domain is built to coincide with
the Lagrangian referential near with moving boundary and with

the Eulerian referential far from the interface. Using the Geomet-
ric Conservation Law (GCL) for an incompressible flow it can be
shown that in the ALE context, Navier-Stokes equations can be
reformulated as follows [8] [9]:

∇.(v) = 0
ρ{ ∂v

∂ t +(v−w) ∇v} = −∇p+ ∇.(µ ∇v)

wherew designates the mesh node velocity in the reference do-
main. This velocity is updated at each time step of the compu-
tation. Several methods are possible for updating. Algebraic or
elliptic methods are used in the configurations presented below.

Coupling strategy
As far as multi-physics systems are concerned, in terms of

time integration, two approaches are possible. A monolithic
strategy consists in considering the whole coupled system as a
single system. Therefore both sub-systems are formulated in the
same framework and solved with the same numerical methods,
especially with the same time integration algorithms, by using
interface matching discretizations. This leads to an algebraic sys-
tem that can be inversed by any direct or iterative computation
algorithm. In spite of its convergence properties, this approach
features the main inconvenience to imply high price for the stor-
age and the inversion of the Jacobian of the full system. As an
alternative method, a partitioned approach enables the resolution
of the fully-coupled system in case of different discretizations
either on the space or on the time domain, with possible non-
matching interfaces. Its efficiency has been pointed out in many
previous works [22] [17] [15] [16] [23] [11]. It is used in the
present work.

The interaction of motions of fluid (denoted byf ) and solid
(denoted bys) is considered. Both systems can be non-linear
and time-dependent. In what follows, for a structure,us des-
ignates the displacement field, whereasu f = (v f , p) takes into
account both velocity and pressure for an incompressible flow.
Each quantityui is associated with a strainFi through an operator
called the Neumann-Dirichlet operator and depending on chosen
models, material properties, boundary conditions but also on dis-
cretization techniques, time integration schemes, inverse discrete
equation solvers for each sub-system. Lets one denote byFi and
Ui the operators defined on convenient spaces such that:

Fi = Fi(ui) andui = Ui(Fi)

for i = f or s. The interaction between both sub-systems is based
on the two following principles : the continuity of velocities and
the equilibrium of forces at the interface. In the continuum space
interface fluid and solid velocities (v) and accelerations (a) are
equal. However these equivalence relations are no longer en-
sured in the time discretized domain. The equilibrium equations
correspond to the action-reaction principle at the interface :

F f (u f )+Fs(us) = 0
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Therefore find the solutionu of the coupled system (whereu
designates the value of the variable at the interface defined on
Γ× [0,T] with Γ the fluid structure interface and[0,T] the time
domain) is equivalent to find the solution of the following prob-
lem :

Find u on Γ× [0,T] so that :F f (u)+Fs(u) = 0

or using the inverse of the solid operator :

Find u onΓ× [0,T] so that :u = F−1
s (−F f (u))

Then several strategies are possible to solve this equation. It
is possible to consider fixed point formulation with iterative
schemes. Stability and convergence are thus conditional. With
explicit coupling, the method consists in solving the coupled sys-
tem in a window[TN,TN+1] of size∆t (which corresponds to the
time step). At each time step an iteration of the fixed-point equa-
tion is solved as follows :

uN+1 = F−1
s (−F f (uN)).

This method features bad conservation properties at the interface.
It can be improved either by the addition of a predictor of the
interface displacement or by subcycling. At each subcycling, a
predictor is defined :uP

N+1 = P(uN,vN,uN−1, ...). Solid and fluid
systems are then solved by computation of equations :

FN+1 = F f (uP
N+1)

uN+1 = F−1
s (FN+1)

Finally uN+1 anduP
N+1 are compared and at each time step, the

current error is evaluated in order to continue or to stop the sub-
cycling process. Additional relaxations on fluid forces may also
be introduced in order to increase the convergence velocity and
the coupling procedure order. In Figure 1 a schematic view of the
iteration process is given. After the initializations the flow field
is determined in the actual flow geometry. From this the friction
and pressure forces on the interacting walls are computed. These
are passed to the structural solver as boundary conditions. The
structural solver computes the deformations, with which then the
fluid mesh is modified. Afterwards the flow solver is started
again. The fluid-structure interaction (FSI) iteration loop is re-
peated until a convergence criterionε is reached. It is defined by
the change of the mean displacements:

ℜFSI =
1
N

N

∑
k=1

‖uk,m−1−uk,m‖∞

‖uk,m‖∞
< ε , (1)

wherem is the FSI iteration counter,N is the number of inter-
face nodes, and‖ ·‖∞ denotes the infinite norm. An explicit cou-
pling method is obtained if only one FSI iteration is performed.
The data transfer between flow and solid solvers within the parti-
tioned solution procedure is performed via an interface that con-
trols the data communication and also carries out the interpola-
tions of the data from the fluid to the solid grid and conversely.

End

Comp. Wall Forces

Comp. Deformation

Interface Interface

Compute Flow Field

u
v , pi

underrelaxation of
structural displacement

− multigrid
    finite grid generation

− FEM

Structure solver

Flow solver
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next time step
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− moving grids

− linear, elliptic, trans−
Mesh Movement

Underrelaxation

FIGURE 1. FLOW CHART OF COUPLED SOLUTION PROCE-
DURE

Various test computations have shown that the coupling
scheme is rather sensitive with respect to the deformations es-
pecially in the first FSI iterations. Here, situations that are far
away from the physical equilibrium can arise, which may lead
to instabilities or even the divergence of the FSI iterations and
an adaptive underrelaxation is sometimes unsufficient to ensure
stability.

Space discretization
In terms of space discretization due to the presence of non-

matching interface, an interpolation method has been chosen to
ensure data projection between sub-system solvers [18]. One can
notice that in the case of pipes and cylinders, the interfaces are
non-matching from at least three points of view : in terms of
interface mesh refinment, since fluid mesh refinment is greater
than solid mesh one, in terms of geometry because fluid and solid
interface models do not coincide and in terms of dimension be-
cause the solid model is represented by a beam element while
the fluid domain is two-dimensional. A two-dimensional to one-
dimensional condensation method is then required. Therefore an
interpolation technique is combined with a condensation tech-
nique. The interpolation method relies on a consistant approach
ensuring the equilibrium of forces evaluated in both sub-domains
at the interface. The accuracy is equivalent to the accuracy of
a method relying on Lagrange multiplicators, if the fluid mesh
is sufficiently refined, which is the case in the present work.
The fluid is viscous, therefore the meshes move simultaneously
without any slip condition. Each discretization points of a sub-
domain can thus be connected to an element of the other one and
be repered with the same barycentric coordinates during all the
computation. The interface of the first mesh is called slave in-
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terface while the other one is referred to as the master interface.
There is then a connectivity table between discretization nodes
of slave interface and elements of master interface and by using
interpolation functions, it is possible to transfer fields from one
mesh to the other one. The fluid interface can be considered as
the slave and the solid one as the master interface. The projection
procedure satisfies the two following functions : (1) by using an
interpolation function, the force at any fluid discretization point
is distributed on the discretization points belonging to the asso-
ciated solid element ; (2) by using an interpolation function, the
displacement at the fluid discretization point is deduced from the
discretization points of the associated solid element. The choice
of interpolation functions is free. In the present work, the fluid
solver relies on a finite volume formulation and the solid solver
on a finite element method. The interpolation functions cho-
sen correspond to the shape functions of the solid finite element
method. For field condensation a domain decomposition method
is applied and fields are interpolated and spatially averaged over
each sub-domain. From a geometrical point of view one sub-
domain corresponds to a cylinder or tube cross-section extruded
over one cell of the mesh.

NUMERICAL SIMULATION OF FLUTTER
Two examples of simulation of flutter are presented below.

The first one deals with the motion of a flexible duct conveying
fluid, the second one is related to the vibration of a tube embed-
ded in a tube array under cross flow. In both cases a damping-
governed dynamic instability is simulated numerically and first
conclusions on the consistency of the partitioned procedure ap-
plied to this class of problems can be drawn.

Oscillations of a flexible duct conveying an internal ax-
ial fluid flow

The dynamical system involving a fluid-conveying pipe has
been mainly studied because of its applications. This is a system
of great relevance in the field of fluid structure interaction as this
is a model problem for a large variety of fluid structure interac-
tion systems [19] [3] [5] [21]. The identification of the dynamical
instability threshold in such a configuration has been extensively
studied from an experimental point of view under many mechan-
ical and hydraulical conditions. Analytical models have been de-
rived and good agreement has been obtained between analytical
predictions and experimental observations. Numerical simula-
tions have although been performed by using boundary condition
linearized formulations for example [12].

One considers a flexible cylinder of circular cross section of
diameterD and lengthL conveying a fluid. The flow is incom-
pressible and the velocityv0

f is uniform along the initial axis of
the cylinder (Figure 2). The cylinder is fixed upstream in the flow
direction and it is free downstream. This means that the motion

of the downstream extremity of the duct depends on the interac-
tion with the fluid flow and conversely. The cross section diame-
ter is uniform and only small flexion motion is allowed along the
cross direction. Gravity and external perturbations are neglected.
Only fluid forces acting on the cylinder wall are taken into ac-
count. Reference analytical solutions are available [15] [19]. A
two-dimensional modeling is used. Until a laminar Poiseuille
flow profile has been reached, solid walls are fixed. Then the
coupling process can be started. An initial impulsion is intro-
duced in order to create an asymmetry by using the mode shape
of the second mode of the structure. The second mode is cho-
sen because it is expected to be unstable in the configuration
that is considered according to the analytical theory [19]. The
solid modeling is formulated along the mean axis of the cylin-
der. Using a two-dimensional modeling implies connecting solid
walls at each time step of the computation so that they move in
accordance. For fluid mesh deformation and node displacement
computation an algebraic method combined with an adjacent cell
tracking process is involved.

Examples of meshes used for fluid and solid modeling are
shown in Figure 3. The configuration parameters are described in
Table 1 and correspond to those of a previous work [12]. Results
are compared to those obtained by a non-moving mesh method in
a small displacement framework with a boundary condition lin-
earization approach. Two instantaneous mode shapes are plotted
in Figure 4 for reduced velocities4,0and4,5where the reduced
velocity is defined by the ratio between the flow velocity and the
product between the duct diameter and the frequency of the sec-
ond mode of the solid. According to the Argand diagram, the
critical velocity corresponds to the dynamic instability thresh-
old where the damping of the system falls to zero. The critical
threshold is comprised between4.0 and4.5 as shown in Figure
5. As shown on the Figure, numerical results are consistant with
previous solutions established numerically [12] in terms of criti-
cal reduced velocity threshold estimate. Moreover the solution

FIGURE 2. PRESSURE FIELD IN THE INITIAL STATE

obtained in the present work may be more consistant in the post-
instability range since the solution resulting from the boundary
linearization method is not reliable for large motion magnitudes.
From these first results one can conclude that the partitioned pro-
cedure is convenient for simulation of flutter and identification of
instability threshold. The full system damping estimate seems to
be acceptable which tends to show that the numerical diffusion
generated by the partitioned procedure does not affect the results
significantly.
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FIGURE 3. FLUID AND SOLID MESHES (TOP). ZOOM ON A
SOLID ELEMENT (BOTTOM)

TABLE 1 . PARAMETERS OF THE CONFIGURATION WITH A
FLEXIBLE DUCT CONVEYING FLUID

– Tube length L = 1,0 m,

– Tube diameter D = 4,0 10−2 m,

– Young modulus Es = 1,5.109 Pa,

– Poisson coefficient νs = 0,3,

– Solid density ρs = 160 kg.m-2,

– Fluid density ρ f = 1,0 103 kg.m-3,

– Dynamic viscosity η = 5,0 10−2 kg.m-1.s-1,

– Reduced velocity ¯vred ∈ [0,7],

– Initial magnitude motion Ampl = 1,84 10−6 m.s-1.

FIGURE 4. INSTANTANEOUS CYLINDER MODE SHAPES FOR
REDUCED VELOCITY 4,0 AND 4,5.

Instability threshold in tube array under cross flow
Many studies on vibrations in tube arrays under cross flows

have been performed over the last four decades. Experimental
campaigns as well as theoretical and numerical developments
have been published. The configuration that is investigated in
the present section concerns a fictitious device modeled by us-
ing periodic boundary conditions to simulate an infinite tube ar-

FIGURE 5. EVOLUTION OF DAMPING WITH RESPECT TO RE-
DUCED VELOCITY

ray [4] [7] [15] [6]. The configuration is represented by a pe-
riodic square tube array involving 9 plain or cut cylinders (Fig-
ure 6). The pitch ratio is set to 1.44 and the modeling is two-
dimensional. To avoid any three-dimensional effect induced by
turbulence the Stokes number and the Reynolds number are cho-
sen sufficiently small. Periodic conditions are introduced at in-
let and outlet of the computational domain to ensure the con-
venient flowrate. Only the middle tube is supposed to have a
rigid motion. The neighbour tubes are fixed. Fluid properties
are described in Table 2. The properties of the moving tube are
presented in Table 3. The modeling involves a single-degree-
of-freedom system. Examples of velocity fields are shown in
Figure 7. Simulations of tube motion have been performed for
several reduced velocity in the low Reynolds number range (in
this case the reduced velocity is defined by the ratio between the
gap flow velocity and the product between the tube diameter and
the tube frequency. The gap flow velocity is deduced from the
inlet velocity and from the pitch ratio of the configuration). Af-
ter post-processing the critical flow velocity of instability thresh-
old can be identified. Displacement time history is illustrated
in Figures 8 and 9 in stable and unstable cases. Figures 10 and
11 provide the evolution of frequency and damping with respect
to inlet velocity. The frequency slightly decreases until a criti-
cal flow velocity has been reached. Above this critical threshold
the damping is positive. Below it becomes negative and the fre-
quency increases significantly. Accordingly an energy transfer
occurs between kinetic energy terms and dissipative terms lead-
ing to a non conservative process.

In this configuration there is no available experimental re-
sults because of the choice of the parameters enabling two-
dimensional computations without any turbulence modeling.
From an analytical point of view it is possible to formulate an
exact expression of the fully-coupled fluid solid system and to
identify its eigenvalues only in the case of a potential flow which
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is not the case here. Therefore an interesting analysis consists in
comparing the numerical solution obtained with the partitioned
procedure to a predictive solution deduced from the Connors the-
ory. According to Connors theory, the critical reduced velocity
in the tube array under cross flow is expected to be provided by
the following formula [5] :

URC

fnD
= CConnors(

m2πξ
ρ f D2 )1/2 (2)

wherefn, mandξ designate the solid frequency, mass and damp-
ing modified by added mass effects.ρ f is the fluid density and
D the tube diameter.CConnors designates the Connors constant
taken to be equal to 4 according to standard convention in the
framework of studies on in-line square tube arrays under single-
phase cross flows. This relation provides an evaluation of the
critical reduced velocity of 2,68 which is consistant with numer-
ical results displayed in Figures 10 and 11. The critical reduced
velocity corresponds to a damping value falling to 0 obtained for
an inlet velocity of 0,0187m/scorresponding to a gap velocity of
0,61m/s and leading to a critical value of 2,44 for the reduced
velocity. Numerical solutions are then in good agreement with
expectations. These results show the capability of the partitioned
coupling procedure to reproduce the non conservative fluid struc-
ture interaction in tube array under cross flow leading to a possi-
ble exponontial increase of vibration magnitude according to the
rigid body linear theory.

Further works will now be developed in order to retrieve or
to complete stability charts of tube arrays by reproducing oper-
ating conditions of heat exchangers [14] [19] [20] [10] [24].

TABLE 2 . FLUID PROPERTIES FOR THE CONFIGURATION
WITH A TUBE ARRAY UNDER CROSS FLOW

Fluid density Kinematic viscosity

1,0 103 kg.m-3 1,0 10−6 m2.s-1

TABLE 3 . SOLID PROPERTIES FOR THE CONFIGURATION
WITH A TUBE ARRAY UNDER CROSS FLOW

Frequency Reduced damping Mass Diameter

2,5 Hz 0,0437 % 0,298 kg 10,0 mm

FIGURE 6. PRESSURE FIELD IN A MOVING TUBE ARRAY EM-
BEDDED BY STILL WATER

FIGURE 7. VELOCITY FIELD IN A MOVING TUBE ARRAY UN-
DER CROSS FLOW

CONCLUSION
The present work is related to simulation of vibrations of

cylinders and cylinder arrays submitted to axial and cross flows.
It is especially devoted to the identifiation of dynamic instability
threshold. The application of staggered partitioned time integra-
tion to study of dynamic system stability is investigated. Further
works are forecast on the extension of partitioned coupling pro-
cedure to strong non-linear effects, such as solid large deforma-
tions or turbulence in fluid flows. Vibrations of solids submitted
to two-phase flows should although be investigated.
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FIGURE 8. TUBE DISPLACEMENT FOR SMALL REDUCED
VELOCITY

FIGURE 9. TUBE DISPLACEMENT FOR HIGH REDUCED VE-
LOCITY

FIGURE 10. EVOLUTION OF TUBE FREQUENCY WITH INLET
VELOCITY
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