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ABSTRACT 
This paper presents an approach using numerical 

simulations that have been used to characterize pipe vibration 
resulting from fully developed turbulent flow in a straight pipe.   
The vibration levels as indicated by; pipe surface displacement, 
velocity, and acceleration are characterized in terms of the 
influences of geometric and material properties of the pipe, and  
the effects of varying flow velocity, fluid density and viscosity 
have considered Reynold’s numbers ranging from 9.1x104 – 
1.14x106. A large eddy simulation fluid model was coupled 
with a finite element structural model to simulate the fluid 
structure interaction using both one-way and two-way coupled 
techniques. The one-way technique passes the spatially and 
temporally varying wall pressure from a completed flow 
solution with fixed wall boundaries to the structural model. The 
structural model is then solved for wall displacements. The 
two-way technique involves the additional passing of wall 
displacement back to the fluid model which is then resolved 
given the new boundary location. The structural and fluid 
models are thus continually updated until convergence is 
reached at each time step. The results indicate a strong nearly 
quadratic dependence of pipe wall displacement on fluid 
average velocity. This relationship has also been verified in 
experimental investigations of pipe vibration. The results also 
indicate the pipe vibration has a power law type dependence on 
several variables. Dependencies on investigated variables are 
non-dimensionalized and assembled to develop a functional 
relationship that characterizes turbulence induced pipe 
vibration.  

 

1.0   INTRODUCTION 
Flow induced pipe vibration is a phenomenon that is 

readily observed in almost any pipe system that involves fluid 
motion.  This paper focuses specifically on the topic of pipe 
vibration caused by turbulent fluid flow through a pipe.  While 
this type of flow induced vibration is easily observed and has 
been the subject of some investigation, the phenomenon has not 
been well characterized.  In industrial applications vibration can 
result in fatigue failure of pipe systems requiring costly 
maintenance and repairs [1].  With a more complete 
understanding of how pipe vibration is related to other 
variables, design tools for vibration resistant systems could be 
developed.  Non-intrusive flow measurement techniques 
relying on vibration measurements could also be improved with 
a set of functional relationships tying vibration level and flow 
rate to other important variables [2]. 

Several of the variables that exert influence have been 
explored by other researchers [3-13].  Analytical, experimental, 
and numerical research efforts in this field have been able to 
identify some basic relationships describing the dependence of 
pipe vibration level on flow parameters and pipe geometry [6, 
7, 11].  Each of the research approaches has inherent limitations 
and advantages, but none have resulted in a clear or complete 
picture or set of relations that describe pipe vibration in terms 
of the many influential parameters. 

Analytical approaches allow precise functional 
relationships to be determined quickly, and do not require any 
expensive equipment.  However, these approaches only account 
for average pressure and wall shear stress in the fluid and are 
unable to include the unsteady effects of turbulence.  
Experimental efforts to create and measure turbulent flow 
induced vibrating pipe systems provide results with direct 
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application to industry, but can be time consuming and 
expensive.  They are also limited by the available pipe 
materials and fluids, making controlled variation of parameters 
difficult.  It is also often impossible to isolate one particular 
variable without affecting others.  Experimental systems are 
susceptible to vibration from other sources, such as pump or 
valve noise, or entire facility vibration from traffic or 
machinery.  Previous results from experiments such as those 
performed by Evans [7] are valuable for comparison, but are 
certainly limited in coverage.  Numerical efforts at modeling a 
coupled system that includes time accurate turbulent fluid flow 
and dynamic pipe response have had some success, but have 
generally been limited by available computational power.  
Limitations on processor speed, system memory, and storage 
capacity have made numerical techniques useful only for 
simple geometries and low Reynolds numbers.  While recent 
advances in computer technology have expanded the range of 
usefulness for these techniques, they have not yet been applied 
to developing a complete set of functional relationships that 
characterize pipe vibration caused by fully developed turbulent 
flow. 

The objective of this work is to provide a more complete 
characterization of fully developed turbulent flow induced pipe 
vibration than currently exists.  Although pipe vibration is 
usually dominated by contributions from complexities in pipe 
geometry such as elbows and tees, the vibration due to 
turbulent flow through a straight pipe segment is the focus of 
this research.  The straight pipe case provides a baseline model 
that can be realistically explored using computational fluid 
dynamics (CFD).  The functional relationships that characterize 
the phenomenon are determined using a numerical model 
coupling turbulent fluid flow with a dynamic pipe structure.  
The model uses a combination of large eddy simulation (LES) 
to solve for the time varying pressure field in the fluid domain, 
and finite element analysis (FEA) to solve for the transient 
structural response of the pipe.  The effects of the most 
influential variables are explored by independently adjusting 
each.  The final goal of the research is to assemble a set of 
functional relationships that can be used as a design tool, and 
with further application in improving non-intrusive flow 
measurement techniques.  An additional objective is to develop 
a methodology which can be used for additional exploration of 
complex variable interactions so the functional relationships 
can continually be expanded and improved. 

 
2.0   METHOD 
2.1 LES Fluid Model 

The use of LES as a turbulence model is based on the 
concept that turbulent flows contain a wide range of length and 
time scales.  The largest eddies, having dynamic and geometric 
properties related to the mean fluid flow, contain more energy 
than the smallest eddies.  The LES approach makes use of this 
fact by applying spatial filters to the governing equations to 
remove, and therefore model, the smallest eddies while the 
large eddies are numerically simulated.  This model requires 
less computation than direct numerical simulation (DNS) which 

does not filter the equations and resolves all scales of 
turbulence.  The LES model provides the ability to resolve 
pressure fluctuations while allowing solutions on modest 
computer hardware.  The Smagorinsky[14] model was used as 
the sub-grid-scale model in this work.  All modeling of the fluid 
domain was done using the ANSYS CFX program because it 
not only allows the required LES turbulence model, but it 
allows direct two-way coupling with the ANSYS® 
Multiphysics™ structural FEA model [15]. 

For the model used in this research the domain was a 
cylinder 0.3 m long and .1015 m in diameter representing a 
section of the interior of a pipe.  Other researchers have found 
that pipe lengths of 4/3D [11], 5D [16], and 2πD [17], where D 
is the diameter, produce adequate results.  The length of pipe 
chosen for these simulations is approximately 3D, or slightly 
shorter than that suggested by Eggels [16] but significantly 
longer than that used by Pittard [11].  Although Pittard justified 
the use of a shorter pipe, the longer pipe was used here to 
increase the accuracy of the results. 

An O-grid type mesh was used which surrounds an H-grid 
uniform square central region.  This allows the grid to be 
uniformly spaced and perpendicular at the cylindrical walls.  
The wall region used a slight inflation layer in the radial 
direction to allow better resolution of the high velocity 
gradients there.  The square central region was 60 by 60 nodes.  
The O-grid ring that transitions from the square central region 
to the cylindrical wall contains 30 radial nodes and 236 
circumferential nodes.  There are 180 nodes in the axial 
direction.  A view of the mesh as seen from the axial direction 
is shown in Fig. 1.  This mesh contains a total of 1,879,920 
nodes and 1,848,175 hexahedral elements.  The mesh contains 
42,480 nodes on the wall where pressure information can be 
extracted or passed to the FEA solver in the coupling 
procedure. 

 

 
  Figure 1,  Mesh used for LES Simulations 
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Recommendations for the minimum grid spacing at the 
wall for LES models to be able to resolve a boundary layer are 
given by Piomelli [18].  Wall grid spacing suggestions are given 
in dimensionless form using the friction velocity, ݑఛ, defined as 
ఛݑ ൌ ܷ√ሺ݂/8ሻ, where ܷ is the average velocity and ݂ is the 
Darcy friction factor.  The dimensionless wall grid spacing in 
three directions is given by: ݎା ൌ ାݖ ,ሻߥ/ఛݑሺ ݎ ൌ  ,ሻߥ/ఛݑሺ ݖ∆
and ܴߠା ൌ  is the perpendicular distance ݎ ሻ, whereߥ/ఛݑሺߠ∆ܴ
to the wall, ∆ݖ is the axial grid spacing, ܴ∆ߠ is the azimuthal 
grid spacing, and ߥ is the kinematic viscosity.  Piomelli 
suggests using minimum values of ݎା ≤ 1, ݖା ≈ 50-100, and  
 ା ≈ 15-40.  Rudman used slightly higher values but was stillߠܴ
able to get results that compared well with experimental data 
[17].  The wall grid spacing of this mesh is insufficient to fully 
resolve the near wall region.  The model therefore requires the 
use of significant wall modeling which assumes a turbulent 
boundary layer type velocity profile in the near wall region.  
The wall spacing of the grid is shown in Table 1 in terms of 
wall units and compared to the dimensionless wall spacing used 
in studies by Pittard[11]. 

 
Table 1,  Dimensionless Grid Spacing at Wall 

 ାߠܴ ାݖ ାݎ 

Present Simulations  
ReD = 1.14x106  

80 690 550 

Present Simulations  
ReD = 9.1x104

 

8.5 70 57 

Pittard 
ReD = 4.15x105 

279 284 284 

Pittard 
ReD = 8.3x104 

64 65 65 

  
 

The LES model used a no-slip boundary condition on the 
pipe wall, and a periodic condition with specified mass flux at 
the inlet and outlet.  The flow field was initialized to a uniform 
average velocity in the axial direction with 10% random 
fluctuations added in all 3 directions.  The solver was then run 
until a pseudo-steady turbulent velocity profile developed, and 
the random fluctuations had developed into turbulent 
fluctuations.  This fully developed flow field was then used as 
the initial condition for the simulations.  Statistically steady 
conditions for wall shear stress and velocity profile were 
reached after approximately 5000 timesteps.  The LES 
simulation used for this research was repeated for eight 
different Reynolds numbers, each using the same mesh, 
boundary conditions, and solver conditions shown in Table 2.  
All of the simulations assumed an incompressible fluid, and do 
not account for acoustic effects.  The Reynold’s number was 
varied by using velocities ranging from 1-10 m/s and holding 
the fluid density constant at 997 kg/m3, and viscosity constant 
at 8.9x10-4 Pa.s.  

 
 
 

Table 2,  Solver Settings Used for All Simulations 
Setting Value 

Smagorinsky Constant 0.1 

Advection Scheme 2nd Order Central Difference 

Transient Scheme 2nd Order Backward Euler 

Average Courant Number 0.6 

 
2.2   LES Model Verification 

The LES model was verified by performing a grid 
refinement study.  The previously described mesh that was used 
for all of the simulations contains approximately 1.9x106 nodes.  
Two additional meshes were produced with the same general 
O-grid structure, but containing fewer nodes, and therefore 
larger mesh spacing in all dimensions.  The other meshes 
contain approximately 6x104 and 4x105 nodes respectively.  
The solutions on each of the three meshes were compared using 
the time averaged velocity profile, wall shear stress, and wall 
pressure fluctuations.  The velocity profiles are shown in Fig. 2.  
The maximum velocity difference between the coarse mesh and 
fine mesh is about 4%, and the maximum difference between 
the medium mesh and fine mesh is 2%. 

 

 

Figure 2,  Velocity profile comparison at Re = 91,000 
 

Table 3 shows the difference in average wall shear stress for the 
different grids.  The wall shear stress difference between the 
medium mesh and fine mesh are nearly negligible due to the 
operation of the wall function.  Although it may appear the 
coarse grid is sufficient, the fine grid is used to keep the near 
wall ݎାvalue  low for higher Reynolds number simulations. 
 

Table 3,  Wall shear stress for different meshes.   
Re = 91,000 

Number of 
Nodes

Wall Shear 
Stress 

% Difference from 
Fine Mesh Solution

60,000 1.66 Pa +3.75% 
400,000 1.59 Pa -0.63% 

1,900,000 1.60 Pa - 
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Because the pressure fluctuations at the wall are the 
driving force for pipe vibration, it is useful to consider how 
sensitive the amplitude of the pressure fluctuations is to the grid 
size.  The averaged standard deviation of the wall pressure 
fluctuations, ܲᇱ, is shown in Table 4 for the three meshes. 

 
Table 4,  RMS Pressure fluctuation for different meshes 
Number of Nodes ܲᇱ % Difference from 

Fine Mesh Solution
60,000 4.49 Pa -0.44% 

400,000 4.54 Pa +0.67% 

1,900,000 4.51 Pa - 

 
The mesh refinement study concludes that the mesh used 

for the simulations is adequate for calculating the pressure 
fluctuations needed for driving the structural pipe model.  In 
addition to mesh refinement, the effects of timestep size were 
also analyzed.  The use of a larger timestep than that required 
for a CFL number of 0.6 results in instabilities.  A smaller 
timestep was found to cause no detectible change in the 
solution, so the timestep size used for the simulations is 
sufficient. 
 
2.3   LES Model Validation 

The LES model used here has been validated using two 
comparisons to empirical data.  Guo and Julien [19] proposed a 
velocity profile relation that has been shown to fit experimental 
pipe data very well everywhere except very near the wall.  This 
modified log-wake law is: 

ାݑ ൌ
1

0.41
ln ାݎ ൅  5.0 ൅ 2 sinଶ

ߦߨ
2
െ

1
0.41

ଷߦ

3
 (1) 

where ߦ is the wall distance divided by the pipe radius.  The 
velocity profile for the case with ܴ݁஽= 1.14x106 is compared 
with the log-wake law in Fig. 3.  The LES model relies on the 
solver wall function which influences the velocity profile 
nearest the wall.  The rest of the velocity profile fits the log-
wake law very well, indicating that the LES model is 
representing physical pipe flow appropriately. 
 

 
Figure 3,  u+ vs. r+ at Re = 1.14x106 

 The LES model was also validated by comparing the 
Darcy friction factor of the model with the measured friction 
factor for a smooth pipe.  Experimental data has been obtained 
for a wide range of Reynolds numbers and can be found using 
the classical Colebrook equation [20], which for a smooth pipe 
is √ሺ4/݂ሻ ൌ 1.5635 ln ሺܴ݁/7ሻ.  The friction factor in the LES 
simulations was determined from the wall shear stress and is 
compared to those from the Colebrook equation for several 
Reynolds numbers in Table 5.  With a maximum relative error 
of less than 10% the numerical results are within the 
uncertainty range of the experimental data, again indicating an 
appropriate model of the physical system. 

 

Table 5,  Friction factor comparison with experimental data 
Reynolds 
Number 

LES model Colebrook 
Equation 

Relative 
Error 

91,000 0.0201 0.0182 8.4% 

227,000 0.0163 0.0152 5.0% 

455,000 0.0138 0.0133 2.2% 

1,140,000 0.0115 0.0114 1.2% 

 
 
2.4   Coupling with FEA model 

The LES solution for the fluid domain can be coupled to an 
FEA structural model of a pipe.  Two FEA  pipe models were 
used in this research.  A short pipe model with the same 
dimensions as the fluid domain (L/D = 3) was constructed with 
fixed conditions on both ends to model a very stiff pipe 
segment.  A long pipe model (L/D = 24) with simply supported 
ends was constructed to explore the effect of support spacing 
and pipe inertia.  Both FEA models use ANSYS shell63 
elements which work well for thin structures.  The short model 
has 59 elements in the circumferential direction and 45 
elements in the axial direction.  The long pipe model has 59 
circumferential elements and 359 axial elements.  The models 
both allow variation of material density (ρeq), elastic modulus 
(E), thickness (t), and material damping coefficient (β).  A 
range of values for each of these parameters was explored using 
the long pipe model.  The short pipe model was found to be 
stiff enough to respond instantaneously to temporal changes in 
the pressure field, making its response independent of material 
density and damping.  The thickness and elastic modulus were 
therefore the only parameters explored using the short model. 

One goal of this research was to determine the validity of a 
one-way coupling approach for this type of modeling.  A one-
way approach assumes that although pressure fluctuations in 
the fluid cause the structure to deform, this deformation does 
not influence the flow field.  This approach is advantageous 
because it allows a single, computationally expensive LES 
solution to be used for a wide range of FEA simulations.  The 
one-way solution procedure used for this research consists of 
applying the pressure fluctuations from a completed LES 
solution as a force distribution on the FEA model.  For the long 
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pipe model, at each time step the instantaneous pressure field 
was applied periodically in the axial direction to cover the 
entire length of pipe. 

A two-way procedure is necessary when the structural 
deformation will affect the flow field.  The two-way procedure 
was used as a way to validate the one-way FSI (fluid structure 
interaction) model by determining the magnitude of the 
difference in results.  ANSYS has built in capability for two-
way coupling, which makes the process easy to implement, but 
very time consuming to compute.  The pressure field from the 
fluid simulation is first calculated and interpolated so it can be 
applied to the structural model.  The structural model then 
responds to the change in applied loads.  The structural 
deformation is then interpolated and applied as a mesh 
deformation to the fluid domain.  The fluid domain is the re-
solved to determine the pressure field.  This process is repeated 
at each timestep until no additional change is produced in the 
pressure field. 

The two-way approach was used for a single case with a 
Reynolds number of 227,000.  The elastic modulus of the 
0.1015 m diameter pipe was set to 3.7 GPa and the wall 
thickness was set to 6 mm.  The pipe material density for the 
two-way model was set to 1300 kg/m3.  The short pipe model 
was used with no damping coefficient specified.  The results of 
the two-way simulation were then compared to a one-way 
simulation using the same parameters.  The pipe wall motion 
was first compared by plotting the time series displacement 
calculated by both solutions.  Figure 4 shows this comparison. 

 

Figure 4,  Comparison of One-Way and Two-Way Simulation  
Wall Displacement as a Function of Time.  Re = 2.27x104, 

D = 0.015 m, t = 6 mm, E = 3.7 GPa, ρ = 1300 kg/m3 
  

The solutions appear similar, although the instantaneous 
wall displacement is not expected to match.  Because of the 
chaotic nature of turbulence, even very small changes in the 
boundary conditions or locations can lead to large changes in 
instantaneous values in the flow field, especially after a long 
time.  This would be expected to in turn cause changes in the 
instantaneous values of the structural solution which are 
illustrated in Fig. 4.  A more important measure of the 
difference between the two methods is to compare statistical 
values by looking at the standard deviation of the displacement 
 The values for these  .(Ԣܣ) velocity (ܸԢ), and acceleration ,(Ԣߜ)

dependant variables were determined by averaging over four 
locations on the center of the pipe wall (top, bottom, left, and 
right).  The values are shown in Table 6.   

 

Table 6,  Coupling Technique Comparison Summary 
Coupling Technique ߜԢ(nm) ܸԢ(μm/s) ܣԢ(m/s2) 

One-Way 9.77 2.89 0.00349 

Two-Way 10.3 2.9 0.00340 

% Difference 5.1% 0.3% 2.6% 
 

The maximum relative difference between the two 
techniques occurs for the standard deviation of wall 
displacement at just over 5%.  Because the difference here 
between the two techniques is negligible relative to the 
expected differences from investigated parameter variation, the 
much faster one-way model was subsequently used. 

3.0   RESULTS 
Figure 5 displays the relationship between the Reynold’s 

number, which was changed to produce the various flow 
solutions, and the standard deviation of the dimensionless wall 
pressure fluctuations, ܥ௣Ԣ, averaged over the entire pipe wall.  
Also shown on this plot is the average wall friction coefficient, 
 ௙.  The pressure fluctuations can be fit with a power law curveܥ
with ܴଶ = 0.9997 indicating that they vary with ܴ݁஽

ି଴.ଶ଻.  This 
scales very similarly with the average wall friction coefficient 
which varies with ܴ݁஽

ି଴.ଶଷ, indicating that the wall shear stress 
is likely the driving factor in determining the level of the 
pressure fluctuations.  The values of wall shear stress 
determined in these simulations are those caused by a smooth 
wall.  A rough walled pipe would be expected to yield behavior 
with less dependence on Reynold’s number. 
 

 
Figure 5,  Cp’  and Cf as functions of Reynold’s number  in a 

pipe having D = 0.1015 m with water as the working fluid. 
 

The spatial correlation of the pressure fluctuations on the wall 
indicates that the pressure is only correlated for the relatively 
short scales typical of turbulence.  The correlation coefficient, 
 ௨ is shown as a function of separation length, ∆ in both theܥ
axial (streamwise) and circumferential directions in Fig. 6.  The 

-1.0E-8

0.0E+0

1.0E-8

2.0E-8

3.0E-8

4.0E-8

5.0E-8

0 0.05 0.1 0.15 0.2 0.25

W
al

l D
is

pl
ac

em
en

t (
m

)

Time (s)
2-Way Model 1-Way Model

CP' ~ ReD ‐0.27 Cf ~ ReD
‐0.23

1E-3

1E-2

80,000.0 800,000.0

C P
'
,  
C f

ReD



 6 Copyright © 2010 by ASME 

pressure signals only show correlation for separation distances 
less than 6% of a diameter in the axial direction, and less than 
about 30% of a diameter around the circumferential direction. 
 

 

Figure 6,  Correlation as a function of separation length for 
the wall pressure fluctuations 

 

3.1   Short Pipe 
The short pipe has very high natural frequencies and is stiff 

enough to respond immediately to the changes in pressure from 
the fluid solution.  Because the pipe wall responds so quickly, a 
full transient analysis of the short pipe was found to yield the 
same results as a static analysis.  The time series wall 
displacement is taken from four nodes (top, bottom, front and 
back) situated around the domain, halfway between the inlet 
and outlet.  The frequency content of the displacement at these 
four locations is averaged and presented in Fig. 7.  There is 
some noise because of the relatively short (1/10 s) sample and 
averaging over only four nodes, but the trend is clear.  The pipe 
wall displacement exhibits nominally the same characteristic 
frequency content as the wall pressure, but with reduced 
response to high frequencies.  This may be due to the fact that 
the pipe wall averages out the smallest spatial pressure 
variations that correspond to the highest frequency fluctuations.  

 

Figure 7,  Short pipe pressure and wall displacement PSD 
for Re = 1.14x106, D = 0.1015 m,  t = 3 mm, E = 3.7 GPa 

Another behavior of the short pipe is its tendency to 
respond to local pressure variations, undergoing shell-type 
deformations.  Rather than large portions of the pipe moving 
together as in bending, small areas of the surface deflect 
relative to adjacent areas producing an unordered pattern of 
valleys and peaks.  Figure 8 shows an image of the short pipe 
with exaggerated deflection and color contours of the 
instantaneous displacement magnitude.  This localized 
deflection was observed to dominate the short pipe motion in 
all of the simulations performed with this model. 

 

Figure 8,  Short pipe surface deflection pattern for  
Re = 1.14x106, D = 0.1015 m, t = 3mm, E = 3.7 GPa 

 
 
3.2   Long Pipe 

The long pipe model has lower natural frequencies and is 
not stiff enough to respond instantaneously to the changing 
pressure load.  This inertial effect required the use of a full 
transient analysis.  Due to the inclusion of inertial effects in the 
long pipe model, the pipe responds naturally better to certain 
frequencies than others.  The effect is to amplify the pipe wall 
motion in certain bands of the broad spectrum over which it is 
excited by the fluctuating pressure.  This effect is illustrated in 
Fig. 9, which shows the spectral density of the pressure 
fluctuations overlaid on the spectral density of the pipe wall 
displacement response, with vertical bands indicating natural 
frequencies predicted by a modal analysis.  As seen with the 
short pipe frequency response, the long pipe displacement 
spectrum has the same characteristic roll-off with increasing 
frequency, including reduced response at the highest 
frequencies.  However, the long pipe also has a clear region of 
enhanced response which appears to coincide with the natural 
frequencies determined through a modal analysis, although 
significant noise prevents observation of any clearly defined 
peaks. 
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Figure 9,  Long pipe pressure and wall displacement 
frequency content for Re = 1.14x106, D = 0.1015 m, t = 2 

mm, E = 21 GPa, ρeq = 3000 kg/m3, β = 0.001.  Also shown: 
pipe natural frequencies predicted using a modal analysis 

 
Any local fluctuations along the wall of the long pipe tend 

to be small relative to the pronounced large scale bending 
motions that dominate its response.  The pipe tends to respond 
to an overall net force imbalance that induces deflections 
similar to those experienced by a beam subjected to a 
distributed load.  Figure 10 shows an image of the deformed 
long pipe with exaggerated displacement scaling and color 
contours of displacement magnitude.  This bending-beam type 
of deflection is typical of almost any time step in all of the long 
pipe solutions. 
 

 

Figure 10,  Long pipe wall displacement pattern for Re = 
1.14x106, D = 0.1015 m, t = 2 mm, E = 21 GPa,  

ρeq = 3000 kg/m3, β = 0.001 
 
3.3   Non-Dimensionalization 

Dimensional analysis was used to reduce the total number 
of important variables needed to characterize the problem.  The 
dimensional analysis also gives the results in more generalized 

form, convenient for comparisons with other work.  A complete 
non-dimensional set of variables accounts for all of the original 
variables of interest.  The dimensionless forms of each of the 
dependant variables are defined in Table 7. 

 

Table 7, Dimensionless dependant variables 
Dimensionless 

Variable 
Definition Description 

Ԣߜ כߜ
ܦ

 

Ratio of standard deviation 
of pipe wall displacement to 

internal diameter  

Ԣܸ כܸ
ܷ

 
Ratio of standard deviation 

of pipe wall velocity to 
average fluid velocity 

ݐԢܣ כܣ
ܷଶ  

Dimensionless pipe wall 
acceleration 

 

Before defining the dimensionless form of the independent 
variables it is useful to introduce two new variables.  The first 
represents a characteristic frequency of the fluid flow and is 
defined as ߱௖ ൌ  and indicates the lowest frequency of ,ܦ/ܷ
coherent structures expected to be present in the turbulent flow 
field [21].  The second variable is proportional to the 
fundamental natural frequency of the pipe in bending [22]. It is 
defined as ߱௡ ൌ √ሺߩ/ܧ௘௤ሻ כ   ௘௤ is the fluidߩ ଶ , whereܮ/ܦ 
loaded pipe mass divided by the pipe wall volume.  The nine 
independent variables considered were: ߤ (fluid viscosity), ߩ௙ 
(fluid density), ܷ (average fluid velocity), ܦ (inner pipe 
diameter), ݐ (wall thickness), ܮ (support spacing), ߩ௘௤ 
(equivalent pipe density), ܧ (Young’s modulus), and ߚ 
(material damping coefficient).  Using the previously defined 
characteristic frequencies, the dimensionless independent 
variables are defined in Table 8.  The total number of 
independent variables influencing the pipe motion has been 
reduced from the original nine, to the six dimensionless 
independent variables. 

 

Table 8, Dimensionless independent variables 
Dimensionless 

Variable
Definition Description 

ܴ݁஽ ߩ௙ܷܦ
ߤ

 
Ratio of fluid inertial forces 

to viscous forces  

ݐ כݐ
ܦ

 
Ratio of pipe wall thickness 

to diameter 

ܮ כܮ
ܦ

 
Ratio of pipe length to 

diameter 

 כߩ
௘௤ߩ
௙ߩ

 Ratio of total mass to fluid 
mass 

 כ߱
߱௡
߱௖

 Ratio of pipe frequencies to 
fluid frequencies 

 ௡ Damping ratio߱ߚ ߞ
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All of the listed dimensionless parameters are considered 
in determining the behavior of the long pipe, however, because 
the short pipe is able to respond instantaneously to changes in 
the pressure field, its motion is independent of the parameters 
 have not been כܮ Additionally, the effects of  .ߞ  and ,כ߱,כߩ
considered for the short pipe because it does not undergo 
significant bending deformation.  The short pipe motion is 
dependent on E, so a dimensionless stiffness was defined as 
כܧ ൌ  ଶ ሻ, and is the ratio of the elastic modulus of theܷߩሺ/ܧ
pipe material to twice the dynamic pressure of the fluid.  The 
short pipe response is then a function of three variables, namely 
ܴ݁஽, כݐ, and כܧ. 

 
3.4   Complete Functional Relationships 

Each of the dimensionless independent variables was 
varied one at a time, while holding the others constant, to 
determine their first order influence on the dimensionless 
independent variables.  ܴ݁஽ was varied over a range of 9.1x104 
– 1.14x106, כݐ was varied over a range of 9.9x10-3 – 7.9x10-2, 
 was varied over a כߩ ,was varied over a range of 13.8 – 23.6 כܮ
range of 3.0 – 12.0, ߱כ was varied over a range of 8.9x10-2 – 
8.9x10-1, כܧ was varied over a range of 2.3x105 – 1.3x107, and 
 was varied over a range of 4.7x10-2 – 9.3x10-1.  The first ߞ
order effects were found to be approximately described by a 
power-law type relationship of the form כܦ ן ௜ܣ

௡೔, where כܦ 
represents any one of the dependant variables, ܣ௜ is the ith 
independent variable and ݊௜ is the ith power-fit exponent.  Each 
of the variable dependencies were fit with a curve of this form 
to determine the ݊௜ values of the best power-law fit to the data.  
Table 9 shows the ݊௜ values for each combination of dependant 
and independent variables.  Table 10 shows the average relative 
error of the curve fit to the data for each variable combination. 

 
Table 9,  Power-Law Fit Exponents for Each Variable  

Variable Short Pipe ݊௜ Long Pipe ݊௜ 
 δכ Vכ Aכ δכ Vכ Aכ 

ܴ݁஽ -0.26 -0.30 -0.38 -0.20 -0.12 -0.18 
 0.04+ 1.06- 1.16- 0.90- 1.96- 2.05- כݐ
 0.16- 0.34- 0.72- - - - כܮ
 1.00- 1.00- 1.00- - - - כߩ

 0.10+ 0.67- 1.81- 1.00- 1.00- 1.00- כ߱ or כܧ
 0.35- 0.51- 0.22- - - - ߞ
   
 

Table 10,  Relative Error of Power-Law Fit for Each Variable  
Variable Short Pipe ݊௜ Long Pipe ݊௜ 

 δכ Vכ Aכ δכ Vכ Aכ 
ܴ݁஽ 10.8% 6.3% 11.1% 5.2% 6.2% 8.0% 
 0.7% 3.4% 5.4% 1.4% 1.9% 3.8% כݐ
 2.4% 1.9% 3.9% - - - כܮ
 0.0% 0.0% 0.0% - - - כߩ
 or 0.0% 0.0% 0.0% 7.9% 12.5% 4.5% כܧ
 4.6% 3.6% 2.8% - - - ߞ

Multiplying each of the independent variables raised to the 
appropriate power results in a complete predictor of the 
dependant variable in terms of all independent variables.  The 
results of all of the simulations are compared to the complete 
functional relationship and plotted.  A plot of כߜ versus its 
complete functional relationship including all independent 
variables for the short pipe model is shown in Fig. 11 along 
with a linear fit line having average relative error of 14%.  A 
plot of ܸכ versus its complete functional relationship including 
all independent variables for the short pipe model is shown in 
Fig. 12 along with a linear fit line having average relative error 
of 11%.  A plot of כܣ versus its complete functional relationship 
including all independent variables for the short pipe model is 
shown in Fig. 13 along with a linear fit line having average 
relative error of 21%.  A plot of כߜ versus its complete 
functional relationship including all independent variables for 
the long pipe model is shown in Fig. 14 along with a linear fit 
line having average relative error of 7.6%.  A plot of ܸכ versus 
its complete functional relationship including all independent 
variables for the long pipe model is shown in Fig. 15 along with 
a linear fit line having average relative error of 6.3%.  A plot of 
 versus its complete functional relationship including all כܣ
independent variables for the long pipe model is shown in Fig. 
16 along with a linear fit line having average relative error of 
6.3%.  All of the full data sets are fit very well by straight lines 
intercepting the origin as expected. 

The full functional relationships represented on the x-axis 
of each of these plots constitute the most important contribution 
of this research.  These relationships describe the first-order 
contribution of each of the variables explored.  Higher order 
interactions between variables are not represented in the 
functional relationships presented here. 

 
 

 

Figure 11,  δ* as a function of ReD-0.26t*-2.05E*-1.00 for all short 
pipe model results 
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Figure 12,  V* as a function of ReD-0.30t*-1.96E*-1.00 for all short 
pipe model results 

 

 
 

Figure 13,  A* as a function of ReD-0.38t*-0.90E*-1.00 for all short 
pipe model results 

 

 
Figure 14, δ* as a function of ReD-0.20t*-1.16L*-0.72ρ*-1.00ω*-1.81ζ-0.22    

for all long pipe model results 

 
Figure 15, V* as a function of ReD-0.12t*-1.06L*-0.34ρ*-1.00ω*-0.67ζ-0.51    

for all long pipe model results 
 
 

 
Figure 16, A* as a function of ReD-0.18t*0.04L*-0.16ρ*-1.00ω*-0.10ζ-0.35    

for all long pipe model results 
 
3.5   Comparison with Experimental Data 

There is very little experimental data covering the wide 
range of variables explored in this research.  One of the primary 
goals of the numerical simulations was to cover a range of 
variables difficult to explore experimentally.  There have, 
however, been some experimental efforts to characterize 
turbulent pipe flow induced vibration.  Experimental data has 
primarily explored the effects of varying flow velocity.  
Additionally, the effects of pipe material and thickness have 
been explored, but only for two or three different values.  
Experimental results obtained by Evans predict that pipe wall 
acceleration is proportional to approximately ܷ2 [12].  Re-
dimensionalizing the long pipe results presented in the previous 
section of this chapter results in a fluid velocity dependence of 
ᇱܣ ן ܷ1.92.  This is very close to the value predicted by 
experiment.  It should also be noted that all experiments have 
used pipes with some degree of surface roughness.  The effect 
of surface roughness is to reduce Reynolds number dependence 
of the wall shear stress.  If the wall pressure fluctuations scale 
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with shear stress as indicated by Fig. 5, then the forcing 
function and pipe wall response would be expected to have less 
dependence on Reynolds number.  Removing the Reynolds 
number dependence (which is small anyway) from the 
relationships predicted from this research results in a fluid 
velocity dependence exponent of 2.1 which is in the range of 
values (1.94 to 2.19) determined by Thompson [23].   

Evans explored the use of 3 pipe materials over a range of 
flow rates from 7,000 to 23,000 g/s with water as the working 
fluid.  The experimental pipes were all 3 inch (0.0762m) 
nominal diameter schedule 40 pipe made of PVC, aluminum, 
and stainless steel.  Water was used as the working fluid, and 
the pipe wall acceleration was measured using an 
accelerometer.  Evans indicates that the experimental data from 
the PVC pipe is fit very well by the relation ܣᇱ ൌ 2.98e-11 x 
Q2, where Q is the flow rate in grams per second.  The 
aluminum pipe data is fit by the same curve divided by a 
constant 1.2, and the steel pipe data is fit by the same curve as 
the PVC divided by a constant 2.2.  Evans proposes multiplying 
the data by ඥߩ௉/ߩ௙, where  ߩ௉ is the pipe material density and 
 ௙ is the fluid density, to collapse all three sets onto a singleߩ
curve [12].  The present numerical simulations suggest that 
multiplying the data instead by כߩ will also cause the data to 
collapse since כܣ ן  Figure 17 shows a plot comparing  .כߩ/1
the method used by Evans with the curve fit generated using the 
functional relationships from this research.  Both methods 
allow the data to be fit closely by a single curve, although the 
fit is slightly better with R2 = 0.998 for the method using כߩ, 
compared to R2 = 0.993 for the method using ඥߩ௉/ߩ௙. 

 

 

Figure 17,  Comparison of Evans’ Method of Data Collapse 
(A'(ρp/ρf)1/2 ) to Suggested Method of Data Collapse (A'ρ*) 

Applied to Evans Experimental Data      
 

Thompson used only a single pipe material (PVC) for all 
experiments, but used both schedule 40 and schedule 80 pipe to 
determine the effects of varying thickness [23].  The pipe wall 
acceleration was determined using an accelerometer and the 
fluid velocity was varied by controlling the speed of the driving 
pump.  The PVC test sections were isolated from the pump 
vibrations by sections of rubber pipe upstream and downstream 

of the test section.  Six sets of data are used here to check the 
numerical simulation, each corresponding to a different pipe 
test section.  Table 11 shows the geometry of each section used 
in the experiments performed by Thompson.  Water was the 
working fluid used for all of the experiments. 

 
Table 11,  Thompson experiment pipe geometry 

Nominal 
Pipe Size

Pipe 
Schedule 

Inner 
Diameter, ܦ

Wall 
Thickness, ݐ

4 inch 40 0.1023 m 6.02 mm 
4 inch 80 0.0972 m 8.56 mm 
3 inch 40 0.0779 m 5.49 mm 
3 inch 80 0.0737 m 7.62 mm 
2 inch 40 0.0525 m 3.91 mm 
2 inch 80 0.0493 m 5.54 mm 

 
The numerical simulations suggest that ܣ′ should be nearly 

inversely proportional to כݐ because כܣ ן  ଴.଴ସ.  Including theכݐ
effects of varying כݐ and varying כߩ (which also changes with 
thickness) while neglecting the influence of Reynolds number, 
results in the prediction that ܣ′ ן ܷଶ.ଵ/ሺכݐכߩ଴.ଽ଺ሻ.  A plot of the 
standard deviation of the pipe wall acceleration verses this 
prediction expression is shown in Fig. 18.  The data for each 
nominal pipe size is fit with a line passing through the origin 
resulting in a coefficient of determination of R2 = 0.95 for the 4 
inch pipe data, R2 = 0.98 for the 3 inch data, and R2 = 0.93 for 
the 2 inch data.  Each pair of data sets (schedule 40 and 
schedule 80) collapses to nearly a straight line when accounting 
for changes in pipe wall thickness and average fluid velocity. 
 

 
Figure 18,  A' vs. U2.1/(ρ*t*0.96) for Thompson Experimental 

Data Exhibiting Power-Law Dependency Predicted by 
Present Numerical Simulations 

 
The relations developed using the numerical model are 

able to fit the available experimental data, although it is 
difficult to account for differences in pipe support boundary 
conditions, effective pipe length and structural damping in an 
experiment.  The inherent strength of the numerical model is 
the ability to control these additional parameters independently. 
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CONCLUSION 
A numerical model of fully developed turbulent pipe flow 

based on LES has been developed and solved for 8 different 
Reynolds numbers.  The LES model has been verified and 
validated to ensure accuracy of the solutions obtained through 
its implementation.  The solutions from this fluid model have 
been used to approximate the fluctuating pressure fields on the 
inside surface of a pipe.  These fluctuating pressure fields have 
then been applied as external loads on the surface of a structural 
model of a segment of pipe.  The structural model using FEA 
has also been verified and validated.  The magnitude of the pipe 
wall motion due to the applied pressure fields has been 
explored for a range of pipe geometric and material property 
variables.  A complete set of non-dimensional parameters that 
represents all of the variables explored has been used to 
generalize the results. 

The results indicate that there is a fundamental difference 
in the response of a short pipe compared to the response of a 
long pipe.  The short pipe responds immediately to changes in 
the pressure field and does not require the pipe inertia to be 
considered.  The short pipe tends to respond to local pressure 
variations and is more sensitive to changes in wall thickness 
than a long pipe.  The short pipe model indicates reduced 
response to higher frequencies in the pressure fluctuations 
which correspond to smaller turbulence length scales.  The long 
pipe model is influenced by the pipe inertia and must include 
transient structural effects.  The long pipe tends to respond 
primarily in bending modes.  The long pipe also shows 
decreased response to the highest frequency small-scale 
pressure fluctuations, but also indicates heightened response at 
middle frequencies that correspond to the natural frequencies of 
the pipe.   

A functional relationship between three pipe motion 
dependant variables and six dimensionless independent 
variables exerting influence has been developed by exploring 
first order effects of each variable.  The results can be 
summarized by these functional relationships as shown in Table 
12.  These results were compared to available experimental 
data, and indicate that the numerical model used here has 
produced results with behavior similar to experimental results. 

 

Table 12,  Functional relationships: Result summary 
Short Pipe  

כߜ ן ܴ݁஽
ି଴.ଶ଺ିכݐଶ.଴ହିכܧଵ.଴ 

כܸ ן ܴ݁஽
ି଴.ଷ଴ିכݐଵ.ଽ଺ିכܧଵ.଴ 

כܣ ן ܴ݁஽
ି଴.ଷ଼ିכݐ଴.ଽ଴ିכܧଵ.଴ 

Long Pipe 

כߜ ן ܴ݁஽
ି଴.ଶ଴ିכݐଵ.ଵ଺ିכܮ଴.଻ଶିכߩଵ.଴߱ିכଵ.଼ଵିߞ଴.ଶଶ 

כܸ ן ܴ݁஽
ି଴.ଵଶିכݐଵ.଴଺ିכܮ଴.ଷସିכߩଵ.଴߱ିכ଴.଺଻ିߞ଴.ହଵ 

כܣ ן ܴ݁஽
ି଴.ଵ଼כݐା଴.଴ସିכܮ଴.ଵ଺ିכߩଵ.଴߱כା଴.ଵ଴ିߞ଴.ଷହ 
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