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ABSTRACT
The broad aim of the present work is to elucidate mecha-

nisms of obstructive breathing disorders (snoring, sleep apnea)
in which flow-induced instabilities of the soft palate feature. We
use the well-established analogue system model wherein a two-
dimensional flexible plate (soft palate) is mounted downstream
of a rigid surface that separates upper and lower plane channel
(oral and nasal tracts) flows that interact with the plate motion
and then combine into a single plane channel (pharynx) flow. For
this system, we take the next step towards biomechanical realism
by modeling finite-amplitude motions of the flexible plate and in-
corporating finite thickness in its structure. The structural model
makes use of a geometrically nonlinear formulation of the solid
mechanics. Viscous flow is modeled at Reynolds numbers giv-
ing unsteady laminar flow. The fully-coupled fluid-structure in-
teraction (FSI) model is developed using the open-source finite-
element library oomph-lib. We first show the effects of finite
amplitude and finite thickness on the in-vacuo modes of the plate
through a validation study of the structural mechanics. There-
after, we use the FSI model to illustrate both stable and unstable
motions of the plate. Overall, this paper demonstrates the versa-
tility of the new modeling approach and its suitability for char-
acterizing the dependence of the plate’s stability on the system
parameters.

∗Address all correspondence to this author.

INTRODUCTION

A cantilevered flexible plate immersed in a two-dimensional

channel flow has previously been shown to capture fluid-

structure interactions (FSIs) representative of respiratory flow

and soft-palate motion in the upper airway [1–5]. In these,

and the present study, the analogue FSI system can be repre-

sented by Fig. 1. These models generally utilize ideal flow giv-

ing very high Reynolds numbers with viscous boundary-layer ef-

fects implicitly modeled through the imposition of a Kutta condi-

tion [2,4,5] or an applied channel resistance [3]. Recently inves-

tigators have modeled the effects of fluid viscosity explicitly for

the laminar regime of Reynolds numbers [6] and implemented

constant pressure-drop boundary conditions [7]. In all of these

studies—across the low-to-high range of Reynolds numbers—

short plates (with low mass ratio) are shown to lose their stabil-

ity to a single-mode flutter instability at a critical value of flow

speed or Reynolds number based on channel height. The desta-

bilization mechanism is fundamentally similar being due to an

irreversible energy transfer from fluid to plate. This arises from

a phase difference between fluid pressure and plate motion that

owes its origin to the finite length of the flexible plate [5, 6, 8].

In all of the aforementioned studies, linear structural me-

chanics were adopted by using the one-dimensional (1-d) Euler-

Bernoulli beam equation. A nonlinear structural model has been

developed by including an inextensibility condition but this uti-

lized potential flow [9]. Plainly the soft palate undergoes dis-

1 Copyright c© 2010 by ASME

Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and  
8th International Conference on Nanochannels, Microchannels, and Minichannels 

FEDSM-ICNMM2010 
August 1-5, 2010, Montreal, Canada 

FEDSM-ICNMM2010-30438 



placements beyond the linear range, particularly during obstruc-
tive breathing disorders. It is also of non-negligible thickness
and is subjected to fluid friction in a viscous flow field. Accord-
ingly, the present work includes these effects and thereby yields a
more faithful biomechanical FSI model. To achieve this, we em-
ploy a continuum mechanics approach, developing and utilizing
a model of the cantilever as a two-dimensional (2-d) elastic solid
beam immersed in viscous flowing fluid. As an intermediate step
we also implement a (geometrically) nonlinear 1-d beam model.
This paper describes the development of the improved FSI model
and then demonstrates its utility in simulating both stable and un-
stable motions of the flexible plate and the characterization of the
system’s behavior

METHOD
Theoretical model

The system investigated for the case of the 2-d flexible plate
is shown schematically in Fig. 1(a). All of the annotated quanti-
ties are dimensional, indicated by their superscripted asterisks—
we drop the asterisk when referring to a nondimensional quantity.
A two-dimensional channel of height H∗ and length L∗ conveys
a fluid of density ρ∗f and dynamic viscosity µ∗ and is divided at
the upstream end by a rigid wall of length l∗rigid and thickness h∗,
offset from the lower channel wall by a vertical distance Y ∗0 , to
which a flexible cantilevered plate (length l∗flexible and identical
thickness) is attached. Steady Poiseuille flow with mean veloc-
ities U∗1 and U∗2 are imposed at inlets 1 (upper) and 2 (lower),
respectively, and the outflow is assumed to be parallel and axi-
ally traction-free. The flexible plate is modeled as a 2-d elastic
solid beam with density ρ∗s , elastic modulus E∗ and Poisson’s ra-
tio ν . To examine the effects of asymmetry we set Y ∗0 = H∗/2
and U∗1 = U∗2 = U∗. For the analogous model with a 1-d beam
the central rigid wall and beam coincide with the centerline of
their 2-d counterparts.

Governing equations
We now describe the equations governing the deformation

of the cantilevered flexible plate, the flow of the immersing fluid
and their interaction. We begin with the simpler in vacuo case
before introducing the fluid, and in each case we present the
equations for the 1-d beam model ahead of the 2-d beam model.
The constitutive law, boundary and initial conditions are treated
separately. All equations are presented in nondimensional form,
variously making use of characteristic scales of length, L∗, time,
T∗, material stress, S∗, fluid pressure, P∗, and fluid velocity, V∗.

In vacuo For the 1-d beam model we nondimension-
alize all lengths and spatial coordinates on the beam length,
L∗ = l∗flexible, and all stresses and tractions on the effective 1-d

(a)

H∗

Y ∗0

L∗
l∗rigid

l∗flexible

h∗

ρ∗f ,µ∗
U∗1

U∗2

ρ∗s
E∗ ν

(b)
ξ ∗

(c)

ξ ∗1
ξ ∗2

FIGURE 1. SCHEMATIC OF THE FSI SYSTEM INDICATING (a)
THE PHYSICAL QUANTITIES OF THE PROBLEM AND THE LA-
GRANGIAN COORDINATES OF THE (b) 1-D AND (c) 2-D FLEXI-
BLE PLATE.

elastic modulus, S∗ = E∗eff = E∗/(1− ν2). The beam’s unde-
formed shape is parameterized by a nondimensional Lagrangian
coordinate ξ = ξ ∗/l∗flexible [see Fig. 1(b)] so that the nondimen-
sional position vector to a material particle on the beam’s center-
line in the undeformed configuration is given by r(ξ ). We denote
the unit normal to the beam’s undeformed centerline by n̂. Ap-
plying a traction T = T∗/E∗eff (a force per unit deformed length
of the beam) deforms the beam, causing its material particles to
be displaced to their new positions R(ξ ); the unit normal to the
beam’s deformed centerline is N̂.

The principle of virtual displacements (PVD) governs the
beam’s deformation, which in nondimensional form is

∫ lflexible

0

[
γ δγ +

h2

12
κ δκ−

(
1
h

√
A
a

T−Λ
2 ∂ 2R

∂ t2

)
·δR

]
ds = 0,

(1)
where

a =
∂r
∂ξ
· ∂r

∂ξ
and A =

∂R
∂ξ
· ∂R

∂ξ
(2a,b)

represent the squares of the lengths of infinitesimal material line
elements in the undeformed and the deformed configurations, re-
spectively. These may also be interpreted as the ‘1×1 metric
tensors’ of the beam’s centerline in the respective configurations.
The quantity

√
A/a represents the ‘extension ratio’ of the beam’s

centerline, and ds =
√

adξ .
We represent the curvature of the beam’s centerline before
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and after the deformation by

b = n̂ · ∂ 2r
dξ 2 and B = N̂ · ∂

2R
dξ 2 (3a,b)

respectively. The (‘1×1’) strain and bending ‘tensors’ γ and κ

are then given by

γ =
1
2

(A−a) and κ =−(B−b) . (4a,b)

Thus (1) is a 1-d beam equation that takes into account curvature
hence finite length, and axial stretching. Finally,

Λ =
l∗flexible

T∗

√
ρ∗s
E∗eff

(5)

is the ratio of the natural timescale of extensional oscillations in
the (solid) beam, T∗s = l∗flexible

√
ρ∗s /E∗eff, to the timescale T∗ used

in the nondimensionalization of the equations. Being in vacuo
we simply choose T∗ = T∗s , giving Λ = 1. The parameter Λ2 may
also be interpreted as the nondimensional beam density, thus by
setting Λ = 0 we may ignore beam inertia.

For free oscillations in vacuo the traction T = 0 in Eqn. (1).
However, in order to deform the beam into an initial configu-
ration from which it is released an external traction is applied in
the steady form of Eqn. (1), as described in ‘Boundary and initial
conditions’.

For the 2-d beam model a pair of Lagrangian coordi-
nates [see Fig. 1(c)] parameterize the Eulerian position vector,
R(ξ 1,ξ 2, t), and the PVD becomes

∫ {
σ

i j
δγi j−

(
F−Λ

2 ∂ 2R
∂ t2

)
·δR

}
dv−

∮
Atract

T ·δR dA = 0,

(6)
where σ i j is the (symmetric) second Piola-Kirchhoff stress ten-
sor, γi j is the Green strain tensor, F is the body force per unit
volume, dv is the differential unit of volume in the undeformed
configuration, and Atract is the deformed surface area over which
acts the traction T.

Since we do not include the effects of gravity F = 0 and
again the traction is T = 0 in the unsteady solution. We choose
the same characteristic length as for the 1-d beam model, but the
stresses and tractions are nondimensionalized on the ‘real’ (i.e.
3-d) elastic modulus, S∗ = E∗, thus

Λ =
l∗flexible

T∗

√
ρ∗s
E∗

. (7)

As before the equations are nondimensionalized on the natural
timescale of the solid so Λ2 = 1.

FSI When the beam is immersed in the viscous channel
flow we choose the height of the channel as the characteristic
length, L∗ = H∗, the mean inlet velocity as the characteristic
velocity, U∗ = U∗, the natural timescale of the fluid flow as
the characteristic time, T∗ = T∗f = H∗/U∗, and use the viscous
scale to define a characteristic pressure, P∗ = µ∗U∗/H∗. The
fluid flow is then governed by the nondimensional Navier-Stokes
equations

Re
(

St
∂ui

∂ t
+u j

∂ui

∂x j

)
=− ∂ p

∂xi
+

∂

∂x j

[(
∂ui

∂x j
+

∂u j

∂xi

)]
, (8)

and nondimensional continuity equation

∂ui

∂xi
= 0, (9)

where Re = ρ∗f U∗H∗/µ∗ and St = (H∗/U∗)/T∗ = 1 are the
Reynolds number and Strouhal number, respectively.

For the 1-d beam immersed in fluid flow the PVD is as per
Eqn. (1) but the traction vector is the summed pressure and vis-
cous loads of the fluid on its ‘top’ and ‘bottom’ faces,

Ti = Q

{[
p
∣∣
top N̂[top]

i −
(

∂ui

∂x j
+

∂u j

∂xi

)∣∣∣∣
top

N̂[top]
j

]
+[

p
∣∣
bottom N̂[bottom]

i −
(

∂ui

∂x j
+

∂u j

∂xi

)∣∣∣∣
bottom

N̂[bottom]
j

]}
, (10)

for i = 1,2, where N̂[top] and N̂[bottom] are the outer unit normals
on the top and bottom faces of the deformed beam. The nondi-
mensional parameter

Q =
µ∗U∗

E∗effH
∗ (11)

is the ratio of the fluid pressure scale, µ∗U∗/H∗ (= P∗), used
to nondimensionalize the Navier-Stokes equations, to the beam’s
effective elastic modulus, E∗eff (= S∗), used to nondimensional-
ize the PVD equation. Q therefore indicates the strength of the
fluid-structure interaction. In particular, if Q = 0 the beam defor-
mation is not affected by the fluid flow.

For the fluid-immersed 2-d beam the traction vector is

Ti = Q
[

pN̂i−
(

∂ui

∂x j
+

∂u j

∂xi

)
N̂ j

]
(12)

where

Q =
µ∗U∗

E∗H∗
. (13)
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Note that when the beam is immersed in channel flow
the solid mechanics timescale ratio can be expressed as Λ2 =
(ρ∗s /ρ∗f )Re St2 Q.

Constitutive law For ‘slender’ beam geometries large
bending deflections do not create large strains, so a linearized
relation between stresses and strains is appropriate. In our con-
stitutive equation we form the tensor of elastic coefficients with
the deformed metric tensor rather than the undeformed one.
This yields a geometrically nonlinear formulation [e.g., Equa-
tions (4a,b) in the 1-d beam model] as the strain depends non-
linearly on the displacements, capturing the kinematics of the
deformation exactly for arbitrarily large displacements and rota-
tions, though for small strains the difference between this and a
linear theory is negligible.

As the thickness of the beam increases relative to its length
the strains on the top and bottom surfaces become significant
at large bending deflections. Which constitutive equation one
ought to use in the large strain regime is not straightforward and
depends on the specific material being modeled. The work pre-
sented here focuses on beams slender enough for this not to be
an issue, although the capability exists to use a full nonlinear
constitutive relation (e.g., Neo-Hookean, Mooney-Rivlin).

Boundary and initial conditions The 1-d and 2-d
beams are clamped at the upstream end and free at the down-
stream end. When fluid-immersed no slip conditions are applied
on all walls. For the flexible walls this is given by

u = St
∂R(ξ , t)

∂ t
. (14)

for the 1-d beam and

u = St
∂R(ξ[top,tip,bottom], t)

∂ t
(15)

for the ‘top’, ‘tip’ and ‘bottom’ surfaces of the 2-d beam (param-
eterized by local Lagrangian coordinates). The two inlets have a
parabolic velocity profile and the outflow is parallel.

For a linear Euler-Bernoulli cantilevered beam of length l
and flexural rigidity B the nth eigenmode of amplitude η0 is de-
scribed by a vertical displacement profile ηn(x), which may be
produced by applying the following distributed load

B∇
4
ηn(x) = B

η0

2

(
βn

l

)4 [
cosh(βnx/l)− cos(βnx/l)−

Sn

Tn
(sinh(βnx/l)− sin(βnx/l))

]
; (16)

B = Eh3/[12(1 − ν2)] is the flexural rigidity of the beam,
Sn = cosh(βn) + cos(βn), Tn = sinh(βn) + sin(βn) and βn sat-
isfy cos(βn)cosh(βn) = −1 (e.g., β2 = 4.6941). In the present
work we apply T + (0,B∇4η2(ξ )) to the 1-d beam and T +
(0,B∇4η2(ξtop)) to the 2-d beam as initial conditions in the
steady problem, with no flow at the inlets for the fluid-immersed
cases.

Numerical implementation
The problem is formulated using the open-source finite-

element library oomph-lib [10, 11]. We use two-node Her-
mite beam elements for the 1-d beam and nine-node quadrilateral
displacement-based solid mechanics (PVD) elements for the 2-
d equivalent. Nine-node quadrilateral Taylor-Hood elements are
used for the fluid. Timestepping is performed using a Newmark
scheme for the solid and a BDF scheme for the fluid. The FSI
problem is discretized monolithically and the Newton-Raphson
method is used to solve the nonlinear system of equations (speci-
fied by the global Jacobian matrix and the global residual vec-
tors), employing the SuperLU direct linear solver within the
Newton iteration.

The external traction used to produce the second eigenmode
displacement of the beam is applied incrementally over a series
of steady solves. The external traction is then removed and the
beam is free to oscillate. In the fluid-immersed case the flow is
ramped up from zero over a period of 20 time steps. We have
tested our code at various mesh densities and timestep sizes, and
employed oomph-lib’s adaptive mesh refinement capabilities;
e.g., see Fig. 5(b).

Parameter values
To appreciate the physical scales of the problem we specify

the input parameters in dimensional form and then derive their
associated nondimensional quantities. To facilitate comparison
with the more familiar linear Euler-Bernoulli formulation of the
structural mechanics we choose the same channel and beam pa-
rameter values as the original ‘Plate 2’ simulations in [7], except
here the mean inlet velocity is an order of magnitude smaller.
Additionally, both for our 1-d and 2-d beams, we require a thick-
ness (h), which we choose such that h∗/l∗flexible = 1/32, and a
Poisson’s ratio (ν), which we obtain from [6]. This set of di-
mensional parameter values are summarized in Table 1 and form
the reference for subsequent parametric variations. The corre-
sponding values of the important nondimensional parameters re-
quired to set up the finite element problems (in vacuo and FSI)
in oomph-lib are summarized in Table 2.

RESULTS
In the results that follow all parameter values are as per Ta-

bles 1 and 2 unless stated otherwise.
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TABLE 1. DIMENSIONAL PARAMETER VALUES.

Parameter Value Description

L∗ 40.5 mm Length of channel

H∗ 5.0 mm Height of channel

l∗rigid 6.0 mm Length of rigid central wall

l∗flexible 8.0 mm Length of flexible plate

h∗ 0.25 mm Thickness of flexible plate

ρ∗f 1.1774 kg/m3 Density of fluid

µ∗ 1.98×10−5 kg/(m·s) Dynamic viscosity of fluid

ν 0.3333 Poisson’s ratio of solid

ρ∗s h∗ 0.0248 kg/m2 Mass per unit area of solid

B∗ 1.87×10−8 N·m Flexural rigidity of flexible
plate

U∗ 0.08488 m/s Mean inlet velocity

η∗0 0.08 mm Amplitude of initial flexible
plate eigenmode displacement

TABLE 2. NONDIMENSIONAL PARAMETER VALUES.

Case Parameter Value Description

in vacuo Λ2 1 Solid-mechanics
timescale ratio

FSI Re 25.2 Reynolds number

St 1 Strouhal number

Q 1.05×10−6 FSI parameter

ρ∗s /ρ∗f 84.2 Solid-to-fluid density
ratio

Λ2 1.98×10−3 (1-d), Solid-mechanics

2.23×10−3 (2-d) timescale ratio

In vacuo
Since our initial condition for the channel flow problem in-

volves an eigenmode displacement we first verify the structural
codes against linear Euler-Bernoulli theory. We begin with the
1-d beam code.

The bold curve in Fig. 2 shows the second mode dis-
placement profile corresponding to the applied load of Text,
as predicted by the linear theory; the nondimensional y coor-
dinate is normalized by the amplitude of the displacement η0

0.0 0.2 0.4 0.6 0.8 1.0
x

−1.0

−0.5

0.0

0.5

1.0

y
/η

0

linear theory

η0 = 0.04

η0 = 0.1

η0 = 0.2

η0 = 0.4

FIGURE 2. APPROXIMATIONS OF THE SECOND IN VACUO
LINEAR EIGENMODE AT DIFFERENT AMPLITUDES η0 FOR
THE 1-D PLATE.

(= η∗0 /l∗flexible). For a finite length 1-d beam one would expect a
departure from this profile for increasing amplitudes as the curva-
ture becomes more prominent. This is exactly what is observed
in the four remaining curves corresponding to η0 = 0.04, 0.1,
0.2 and 0.4. For smaller η0 the displacement predicted by the
numerical code and the linear theory become indistinguishable,
verifying the 1-d code for steady static solutions.

Figure 3 demonstrates what happens when the previous ap-
plied load is removed and the beam allowed to oscillate freely for
the (a) η0 = 0.04 and (b,c) η0 = 0.2 cases. Consider Fig. 3(a).
The beam begins from the profile indicated by the bold green
curve (t∗= 0, corresponding to the dotted curve in Fig. 2) and the
ensuing oscillations have the mode shape described by the series
of black curves; the final snap shot at t∗ = 1.2 sec is given by the
bold red curve. Since the amplitude is sufficiently small the mode
closely matches the well-known shape predicted by linear theory
[e.g., see [6], Fig. 2(b)]. Figure 3(b) shows the analogous result
for larger amplitude oscillations that, as expected, deviate signif-
icantly from the linear mode. A time trace of the vertical position
of the beam tip from Fig. 3(b) is depicted in Fig. 3(c). To verify
the 1-d code for unsteady solutions we examine the eigenmode
frequency. Figure 4 shows the ratio of the numerical results to
the theoretical prediction over a range of amplitudes for the sec-
ond and fourth modes. As the amplitude approaches the linear
regime there is a convergence to the linear theory (ω/ωn→ 1).

Adding a second dimension to the beam allows for stress
variation across the thickness. Figure 5(a) demonstrates the
compressive (blue) and tensile (red) stresses of the second
eigenmode. In order to resolve the large stress gradients at
the clamped end the mesh has automatically refined itself us-
ing the quad-tree procedure, as shown in Fig. 5(b). Analy-
sis of the eigenmode static profiles and oscillation frequencies
reveals the same behavior demonstrated for the 1-d beam in
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0.0 0.2 0.4 0.6 0.8 1.0 1.2

t∗ (sec)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y t
ip
/
η 0

(c)
η0 = 0.2 linear theory

FIGURE 3. (a,b) DEMONSTRATION OF THE INFLUENCE OF
AMPLITUDE ON MODE SHAPE AND (c) TIP POSITION FOR THE
1-D PLATE MODEL IN VACUO.

the limit of small amplitudes (Figures 2–4) provided that the
beam thickness-to-length ratio is also small, with increasing
deviation from this behavior at larger ratios. The 2-d beam
code has also been verified previously using the case of a uni-
form applied transverse load by comparing with the theoreti-
cal St Venant’s solution for the stress field (see http://oomph-
lib.maths.man.ac.uk/doc/solid/airy cantilever/html/index.html).

10−3 10−2 10−1 100

η0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

ω
/ω

n

n = 2

n = 4

FIGURE 4. VERIFICATION OF THE DYNAMIC RESPONSE OF
THE 1-D BEAM IN VACUO—CONVERGENCE OF MODE FRE-
QUENCY ω TO THE LINEAR THEORY AT SMALL AMPLITUDES.

(a) stress field

(b) mesh

FIGURE 5. (a) STRESS FIELD IN THE 2-D BEAM IN VACUO
RANGING FROM COMPRESSIVE (BLUE) TENSILE (RED); (b)
DEMONSTRATION OF MESH ADAPTING AROUND STRESS
CONCENTRATION AT THE CLAMPED END.

FSI
Having established the credibility of the structural models

we now couple these to the fluid model and investigate their in-
teraction. Once again beginning with the 1-d beam, consider
Fig. 6. Figure 6(a) shows the initial mesh with the central rigid
wall drawn in red and the beam in blue. This structured mesh
deforms according to the movements of the beam. Plotted in
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t∗ (sec):
0.000

(a) mesh

1.456

1.472

1.488

1.504

1.520

1.536

1.552

1.568

1.584

(b) axial velocity field

1.584

(c) pressure field

FIGURE 6. A LARGE-AMPLITUDE UNSTEADY OSCILLATION
IN THE 1-D PLATE IN CHANNEL FLOW. FIELD VARIABLES
COLORED BLUE-LOW TO RED-HIGH.

Fig. 6(b) are a series of axial velocity (u1) fields at consecu-
tive time steps showing the beam undergoing an oscillation, and
Fig. 6(c) shows the corresponding pressure field at the last time
step. This simulation begins in a mode 2 configuration with a dis-
placement amplitude of η0 = 0.01, which grows exponentially in
time through a series of oscillations, reaching some twenty times
that amplitude by the cycle depicted in Fig. 6.

The analogous plots for the 2-d beam FSI model are shown
in Fig. 7, although the magnitude rather than axial component of
velocity is plotted. The beam thickness ratio is again 1/32 but
this now relates to a second geometrical dimension rather than
simply as a means of approximating the contribution of flexural
rigidity. For brevity we now focus on this rather than the 1-d

beam FSI model noting that we observe similar behavior in both.
Although Fig. 7 clearly depicts a large-amplitude oscillation one
can better appreciate the instability of the system from Fig. 8(a),
where the vertical displacement of the tip of the beam centerline
has been plotted as it varies in time (bold line); the second in
vacuo eigenmode from linear theory is also plotted (thin line) to
show how the FSI augments the amplitude and frequency of the
structural oscillations. A flutter instability is present as evident
by the amplitude growth of the oscillations. The reduction in os-
cillation frequency by 4% compared to the in vacuo linear theory
is largely accounted for by the fluid traction. By reducing the in-
let velocity by an order of magnitude the same initial conditions
produce oscillations that decay very rapidly, as demonstrated in
Fig. 8(b). This shows the existence of a critical flow speed (or
Re) for flutter onset.

The stability trend with inlet velocity magnitude can be
gleaned from Fig. 9 in which the centerline tip amplitude is plot-
ted in logarithmic scale against time. The curve with ‘×’ markers
denotes a simulation for which the FSI is switched off by setting
Q = 0; i.e., the beam does not ‘feel’ the fluid traction and so is
able to oscillate freely, effectively serving as a mechanism for de-
forming a time-dependent fluid domain. The amplitude remains
constant at the initial value, as would be expected. Using this
as a neutral stability reference we can interpret the remaining
cases for which Q assumes its natural value. As the inlet velocity
is reduced from 10U down to U/10 the amplitude growth rate
reduces, eventually becoming less than unity when stability is
achieved. Linearly interpolating the growth rates predicts a crit-
ical Re of around 4 (U∗ = 0.015 m/s) for this channel geometry.
The curves denoted by ‘2U’ (doubled inlet velocity) and ‘U,2H’
(doubled channel width) have the same Re but the former is un-
stable while the latter is stable. This is because increasing the
channel width reduces the Bernoulli effect between the beam and
the channel walls.

Space limitations prevent us from presenting a detailed sta-
bility analysis but to demonstrate the capability to do so, we in-
clude results for a beam of double thickness but same mass per
unit area (‘U,2h’, Fig. 8), suggesting beam thickness may be a
stabilising factor, and a beam of 10 times the density (‘U,10ρs’),
which suggests that a uniform increase in inertia may be desta-
bilising. The tip of a thick beam is a bluff body to the viscous
flow field, as shown in Fig. 10, and vortices shed due to the low-
pressure region that develops behind the tip face may play a rôle
in the stability characteristics of the beam flutter. The additional
inertia also affects the mode shape of oscillations as illustrated
in the centerline plots of Fig. 11—the denser beam in (b) bends
more prominently in the mid-section than that in (a).

Conclusion
We have presented a model of a finite-thickness cantilevered

flexible plate interacting with a viscous channel flow. A geo-

7 Copyright c© 2010 by ASME



t∗ (sec):
0.000

(a) mesh
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(b) velocity magnitude field

0.000

(c) pressure field

FIGURE 7. 2-D BEAM IN CHANNEL FLOW, ANALOGOUS
PLOTS TO FIG. 6.

metrically nonlinear formulation of the solid mechanics was em-
ployed. This model was developed using oomph-lib, an open-
source finite-element library. We have demonstrated both stable
and unstable motions of the flexible plate with the latter involv-
ing large-amplitude flutter-type oscillations. This work provides
the infrastructure for a more anatomically accurate analysis of
the mechanisms underlying obstructive breathing disorders.
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