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ABSTRACT
Vortex and wake induced vibrations (VIV/WIV) of a circular

cylinder at low values of the Reynolds number (Re) are simu-
lated by means of a fully coupled fluid-structure interaction nu-
merical model based on the finite element method. It is shown
that VIV/WIV could occur far below the first Hopf bifurcation
(Re <47). The main objective of this study is to determine the
limiting Reynolds-Reduced velocity (Ur) curve that separates
the non-vibrational area from the possible vibrations occurrence
area. We assume that by taking a zero mass cylinder and zero
structural damping we will obtain the low limit of vibrations in
terms of Re and Ur. It is shown in particular that transverse vi-
brations could occur for reduced velocities larger than 40 and
not below 3.5.

NOMENCLATURE
D Cylinder diameter.
U Free-stream velocity.
k Spring rigidity.
ζ Damping ratio.
m Unit length cylinder mass.
ρ f Fluid density.

∗Address all correspondence to this author.

µ Fluid dynamic viscosity.
ρc Cylinder density.
ρc Reynolds number.
Re = ρ fUD/µ mass ratio.
Cd = 2 fx/(ρ fU2D) Drag coefficient.
Cl = 2 fy/(ρ fU2D) Lift coefficient.
ma = ρ f πD2/4 Fluid added mass.
x = [x,y]t Cylinder vector displacement.
x∗= x/D Non-dimensionnalized cylinder vector displacement.
Ur∗ = 2πU/(

√
k/mD) Reduced velocity in air.

Ur = 2πU/(
√

k/(m+ma)D) Reduced velocity in water.
f ∗ Effective reduced vibration frequency.
fNw = 1/Ur Cylinder reduced frequency in water.

1 Introduction
The flow behind a stationary circular cylinder becomes un-

stable when the Reynolds number (Re) is higher than a critical
value Rec of approximately 47 called the first Hopf bifurcation.
Vortices are shed from the cylinder resulting in the appearance of
a Von Karman vortex street. No vortex is shedded for Reynolds
numbers below 47. A priori, there is no evident reason for the
occurrence of vortex-induced vibrations (VIV) below this critical
value. However, for Reynolds number value higher than approxi-
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mately 30 and less than 47 the wake exhibits asymmetries. Thus,
one may wonder what would happen if the cylinder is mounted
on springs and allowed to move in response to the flow loads
for values of Re lower than 47. This study is motivated by vi-
bration problems that could occur in small scale systems such as
hot-wire probes (e.g., see Van Atta and Gharib [1]).

Cossu and Morino [2] stressed that for mass ratios higher
than 7, vortex-induced vibrations occur at a Reynolds number as
low as 23.5. In Mittal and Singh [3], vortex-induced vibrations
at subcritical Reynolds (Re < Rec) have been studied. Selected
cases were studied for mass ratios of 4.73 and higher and reduced
velocities ranging from 5 to 11. They found that vortex-induced
vibrations occur at a Reynolds number as low as 20. In fact no
vibrations are obtained at 20 but a maximum vibration amplitude
of 0.17 is obtained at Re=21. Thus, it appears that vibrations are
likely to happen for low Reynolds number values.

In the objective to determine the limiting Reynolds-Reduced
velocity curve that separates the non-vibrational area from the
possible vibrations occurrence area, we propose to perform sim-
ulations for a mass ratio equal to zero - the cylinder possesses no
mass - and no structural damping. It seems natural to introduce
zero external damping in this problem. However, it is not trivial
to think that the lowest possible cylinder mass will favor the oc-
currence of vibrations. From Mittal and Singh [3] we learned that
increasing the mass ratio decreases the reduced velocity range of
VIV for a given Reynolds number. This is in accordance with
several other results (see e.g. Stappenbelt and Lalji [4], Shiels et
al. [5]). Moreover, for a given reduced velocity, VIV will occur
at a higher Reynolds number. Mass ratios higher than 4.73 were
considered in Mittal and Singh [3].

Here, we show the result of a parametric study with respect
to the reduced velocity Ur = U/( fcD) and Reynolds number
Re =UD/ν , with U the uniform flow velocity, fc the natural fre-
quency of the cylinder in still water [ fc =

√
k/(mc +ma)/(2π)]

and D its diameter. k is the rigidity of the spring that supports a
unit length cylinder, mc is its mass per unit length and the added
mass due to the surrounding water is ma = ρ f πD2/4. For zero
mass cylinders, the mass ratio defined as m∗ = ρc/ρ f is also null.
This results in fc =

√
k/ma/(2π). Thus, the reduced velocity in

water of a massless circular cylinder is Ur = πU
√

ρ f π/k.
We begin with the equations modeling this fluid-structure

interaction problem. Then, the numerical model used will briefly
be described. Finally, after validation tests, results for various
values of the Reynolds number and reduced velocities will be
shown.

2 Numerical Method
In this section, we describe the numerical method that has

been used for all the computations presented herein.

2.1 Governing Equations
The flow of an incompressible fluid, in an arbitrary time-

dependent coordinate system is described by the continuity and
momentum equations [6] written as

∇∇∇ ·u = 0 (1)
ρ f u,t +ρ f [(u−v) ·∇∇∇]u = ∇∇∇ ·σσσ (2)

where v is the velocity of the moving reference frame, ρ f the
fluid density, u the fluid velocity, σσσ the total fluid stress tensor
(pressure and viscous forces). Eq. (1) and (2) are expressed in an
Arbitrary Lagrangian Eulerian (ALE) coordinate system. Details
of its development may be found in [7]. Assuming that the fluid
is Newtonian, its constitutive equation is given by

σσσ = τττ− pI with τττ = µ[∇∇∇u+(∇∇∇u)T ]

where µ is the dynamic viscosity and p is the fluid pressure. The
flow equations are closed with the following boundary condi-
tions,

σσσ ·n = t on ΓN (3)
u = u on ΓD

where ΓN denotes a boundary on which Neumann conditions are
applied in the form of prescribed surface forces (tractions) t, and
ΓD corresponds to a Dirichlet boundary on which the velocity, u,
is imposed.

The cylinder is supported by constant rigidity springs with-
out mass and dampers. Time is non dimensionalized as t =
Ut∗/D. Its equations of motions cylinder are

(
2π

Ur

)2

x∗ =
2
π
[Cd,Cl]t (4)

with x∗ = [x/D,y/D]t the non-dimensional cylinder vector dis-
placement and [Cd,Cl]t the non-dimensional force coefficients
(Drag and Lift) in x and y directions. These force coefficients
are written as functions of fx and fy the fluid loading for each
direction as follows

Cd =
fx

1
2 ρ f DU2

(5)

Cl =
fy

1
2 ρ f DU2

(6)

There remains the issue of how to generate and control the
grid motion and mesh velocities, i.e. manage the domain de-
formation. This can be done in several ways which only affect
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the ability of the solver to cope with more or less complicated
domain deformations and mesh motions [8, 9]. We have opted
to implement mesh control with the pseudo-solid approach of
Sackinger [9] because it allows for a fully coupled continuum
formulation. The pseudo-solid model provides physics-based
rules using elasticity equations to describe the deformation of
the time-varying domain.

2.2 Solution Strategy
We use a monolithic solution strategy coupling all degrees

of freedom. The degrees of freedom in the fluid domain are the
velocity vector, the pressure and the pseudo-solid displacements.
They are fully coupled to the cylinder point mass displacements
and velocities. In this approach all equations are treated implic-
itly in the time integration scheme and thus solved simultane-
ously. We use the 3rd order Radau IIA implicit Runge-Kutta
(IRK) scheme which is temporally 3rd order accurate for velocity
and 2nd order accurate for the pressure (see Hairer et al. [10]).

This methodology is applicable not only for flows on de-
forming meshes but also to fully implicit monolithic treatment of
unsteady Fluid-Structure Interactions. Linearisation of the flow
and mesh equations must account for all implicit dependencies
to ensure quadratic convergence of Newton’s method. These
steps are implemented simply and in a straight forward manner
through the use of numerical Jacobians. This approach is very
robust and applicable to a broad spectrum of problems.

The fluid velocity and displacement fields are discretized us-
ing 6-noded quadratic elements. Fluid pressure is discretized by
piecewise linear continuous functions. The resulting sparse ma-
trix system is solved using the PARDISO software [11, 12]. De-
tails of the finite element flow solver and its verification with
respect to time order accuracy and geometric conservation law
on deforming domains can be found in Etienne et al. [13].

3 Validation and numerical details
Validation of computations is performed in two steps. A grid

size and time step convergence study is performed. Then, pre-
dictions are compared with available results in the literature for
configurations close to those studied here. All the cases treated
here have one same set of boundary conditions. Dirichlet BC at
the inflow boundary, Symmetry conditions at the top and lower
boundaries and Neumann-free conditions at the outflow bound-
ary. No-slip is applied on the cylinder. These conditions as well
as the geometry are illustrated on Fig. 1

3.1 Convergence study
Briefly, a convergence study has been conducted showing

that a non-dimensional time-step U∆t/D = 0.1 and a grid size
made of 30K P2-P1 nodes is sufficient to ensure an accuracy
of at least 3 significant digits of the Drag and Lift coefficients.

FIGURE 1. Geometry and boundary conditions.

We made comparisons with a 60K P2-P1 grid and a time-step of
U∆t/D = 0.02 . This tells us that sufficient accuracy is obtained
with selected parameters. Note that third order time accuracy al-
lows us to take a large time-step compared to lower order time
integrators at the cost of a double-sized matrix. The grid used for
computations is shown on Fig. 2 and 3.

FIGURE 2. Computational grid used for all computations.

3.2 Validation tests
With the parameters described in section 3.1, we show two

well documented comparison tests. The first one is that of a fixed
circular cylinder in cross-flow at Re=200 while the second is a
classical validation test for VIV.

For the case of a single fixed cylinder in cross flow, Table 1
compares results from different references (all numerical refer-
ences) with those obtained with the present formulation. The
drag and lift coefficients and the Strouhal number have been ob-
tained by analysis over a time length of 20 vortex sheddings pe-
riods. The drag coefficient is the mean value of the in-line non-
dimensioned force and the lift coefficient is computed as the root
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FIGURE 3. Close-up view of the computational grid at cylinder prox-
imity.

mean square of the non-dimensionalized transverse load. The
transient phase corresponding to the 50 first non-dimensional
time units has been discarded. Our results are in good agree-
ment with those obtained in the literature. However, while the
Strouhal number is well captured, lot of scatter can be observed
with regards to the lift coefficients among the numerical results
collected here. The value we computed is close to the average of
the previously computed values.

TABLE 1. Fixed cylinder at Re = 200.

Fixed single cylinder C̄d Cl rms St

Halse [14] (1997) 1.35 0.62 0.196

Sa& Chang [15] (1991) 1.13 0.34 0.186

Braza [16] (1981) 1.38 0.76 0.190

Present Results 1.36 0.67 0.195

We now turn our attention on the second validation case
that exercises the whole computational methodology. We have
chosen the documented case of an isolated cylinder in cross
flow. The cylinder is supported by constant rigidity springs and
dampers in both directions. For this case, we rewrite the equa-
tions of motion of the cylinder taking into account that both its
mass and structural damping are non-zero. We will use the mass
ratio m∗ = ρc/ρ f to non-dimensionalize the equations of motion

of the cylinder. We get

ẍ∗+2ζ

(
2π

Ur∗

)
ẋ∗+

(
2π

Ur∗

)2

x∗ =
2

πm∗
[Cd,Cl]t (7)

with x∗ = [x∗,y∗]t = x/D the vector of displacements in x and
y, fx and fy the fluid loading in each direction. For this case,
we compare with numerical results reported by Blackburn et al.
(2000) [17] and Yang et al. (2008) [18]. In both studies as well as
in the present validation case, the Reynolds number value is set
to 200, the damping ratio ζ is equal to 0.01, the reduced velocity
Ur∗ = U/( fairD) = 2πU/(

√
k/mD) is equal to 5 and the mass

ratio m∗ is equal to 4/π . Fig. 4 shows the periodical trajectory

FIGURE 4. Trajectory of an isolated cylinder in cross-flow at Ur∗=5
and Re=200.

of the cylinder. Note that the horizontal and vertical scales differ
x∗ ∈ [0.58,0,72], y∗ ∈ [−0.8,0.8]. The small range in x explains
why disparity between the three results is magnified in the in-line
direction. However, there is small discrepancy between them.
Yang et al. (2008) [17] results are 3% downstream in terms of
the center of the eight type trajectory compared to Blackburn et
al. (2000) [18] and present results. In the present computations,
we have verified that results are converged in terms of time step
and space discretization.

These validation tests show that results obtained with the
finite element code and selected time steps and grid size are re-
liable. In particular, VIV validation results were performed at
a much higher Reynolds number than those presented hereafter.
This comforts us in our choice of parameters.
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4 Results
Computations have been performed for Reynolds number

values below 47. As our aim is to get vibrational results of the
cylinder, we accelerate the process by perturbing the flow at the
beginning of the simulation. The inflow velocity is defined as
follows

u = cos(π(sin(2πt/T )) (8)
v = sin(π(sin(2πt/T )) (9)

for t ∈ [0,T ] and

u = 1 (10)
v = 0 (11)

for t ≥ T . We chose the non-dimensionalized period T = 8.5.
The reason for such a choice comes from the Strouhal number
value of 0.12 of the flow around a steady circular cylinder at
Re∼ 50. We set T = 1/St = 1/0.12 = 8.33∼ 8.5.

The perturbation at the initial stage of the simulation forces
vortex-shedding and initiate vibrations. Oscillations will fade
out if vibrations are not likely to occur. We consider to be in
such a situation when the vibration amplitude becomes lower
than 0.01D. We observe that for a given reduced velocity, the
amplitude of vibration decreases rapidly to zero as the Reynolds
number is decreased. Thus, we expect no vibration for Reynolds
number values below those giving a maximum transverse ampli-
tude of 0.01D.

The simulation time for all cases varies between 500 and
2000 non-dimensionalized time units. For cases with fast con-
vergence toward a vibrational periodic result, simulations were
stopped at 500. For near to the limit and non-vibration cases,
simulation time was extended to 2000. We have performed
around 50 simulations trying to encompass the vibrational fron-
tier.

4.1 Frequencies
Fig. 5 shows the evolution of cylinder vibration frequencies

times the reduced velocity as a function of the reduced velocity
for all cases performed. For values of the reduced velocity below
3.5, no vibration occurred up to Re = Rec = 47. But, for values
higher, vibrations occurred for values beyond a certain Re value
itself below Rec. We can see on Fig. 5 that the reduced frequency
does not depend on the cylinder frequency. It appears then that no
lock-in is evidenced from this figure. This result is in accordance
with those obtained by Shiels et al. [5] at m∗ = 0 and Re = 100.

Fig. 6 shows the non-dimensional cylinder effective vibra-
tion frequency as a function of the reduced velocity. Even if the
number of simulations treated should be increased, we observe

FIGURE 5. Cylinder vibration frequency times reduced velocity as a
function of reduced velocity.

that when Ur is decreased for Ur < 10, f ∗ tends to increase. for
Ur > 10, f ∗ increases slowly. All values are near to 0.1 and vary
between 0.095 and 0.12. This is not so far from the Strouhal
value at Re = 50. These results are in agreement with those ob-
tained by Buffoni [19] who obtained Strouhal values experimen-
tally for Reynolds numbers in the range [20,50] by triggering
vibrations of a cylinder. Our results allow to shed light on Buf-
foni’s results.

FIGURE 6. Non-dimensionnal cylinder effective vibration frequency.
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4.2 Limit of vibrations

Fig. 7 shows the rough identification of the Reynolds num-
ber limit as a function of the reduced velocity beyond which vi-
brations of the cylinder occur. A finer resolution may be obtained
by performing new computations around the limit. However, it
seems clear from Fig. 7 that vibrations occur even for reduced
velocities as high as 40 at a Reynolds number of 30. This is far
below the critical Reynolds number value of 47.

We have also indicated on Fig. 7 for each vibrational case the
maximum amplitude of vibration. We observe that, for a given
Reynolds number, the amplitude tends to decrease with Ur for
Ur > 10. For a given reduced velocity, amplitude increases with
the Reynolds number.

FIGURE 7. Vibrational frontier for m∗ = 0 in the (Re, Ur) plane.

Fig. 8 shows vorticity fields at final simulation times for
Ur=7.5 and Re=20, 22, 24. We observe that at Re = 20, the wake
doesn’t resembles to a vortex street. We could define this con-
figuration as wake-induced vibrations rather than vortex-induced
vibrations. For Re =22 and 24, oscillations may be qualified as
vortex-induced vibrations. If the vortex formation length is quite
large, vorticity cells are well defined in the wake. Fig. 8 shows
vorticity fields at higher reduced velocities and for a Reynolds
number value of 35. The occurrence of a vortex street evidenced
for these two cases. We may infer that most of cases can be qual-
ified as vortex-induced vibrations and that only cases for which
the vibration amplitude (A/D) is lower than 0.05 would corre-
spond to wake-induced vibrations.

FIGURE 8. Vorticity field at final time, Ur=7.5 and Re=20, 22, 24
from top to bottom.

5 Conclusion
Vortex-induced vibrations of an isolated circular with zero

mass and zero structural damping for values of the Reynolds
number below the first Hopf bifurcation have been simulated. It
has been shown that VIV and wake-induced vibrations for am-
plitude lower than 0.05D are likely to occur for values of the
Reynolds number as low as 20. The cylinder undergoes vibra-
tions at least up to values of 40 of the reduced velocity (Ur). Our
results follow observations obtained by Mittal et al. [3] in the
sense that VIV are likely to occur for values as low as 20 when
the reduced velocity is near to 7. We did not observe in-line vi-
brations. As a matter of fact, in-line vibrations are expected for
reduced velocities below 3 and we performed simulations for re-
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FIGURE 9. Vorticity field at final time, Ur=30, 40 from top to bottom
and Re=35.

duced velocities higher or equal to 3.5.
Present results could be improved by increasing the number

of simulations in order to better resolve the low Reynolds number
limit of vibrations. Also, in Mittal and Singh [3] it is shown that
the maximum amplitude of vibration increases with mass ratio.
By performing another study with a mass ratio of m∗ =0.1, we
should be able to determine if the boundary obtained for m∗ = 0
corresponds to the ultimate boundary of transverse vibrations in
the (Re, Ur) plane.
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