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ABSTRACT 
 

An analytical model is presented to predict the influence of 

nonlinearities associated with supersonic fluid flow on the 

dynamic and stability behavior of thin isotropic cylindrical 

shells. 

The method developed is a combination between finite 

element method, sander’s shell theory and nonlinear 

aerodynamic theory (third-order piston theory). The shell is 

subdivided into cylindrical finite elements, the displacements 

functions are derived from exact solutions of Sanders equations 

for thin cylindrical shells and the influence of stress stiffening 

due to internal or external pressure and axial compression is 

also taken into account. Expressions for the masse and stiffness 

matrices are determined by exact analytical integration.  

With the nonlinear dynamic pressure, we develop nonlinear 

matrices: stiffness, damping and coupling matrices for flow. The 

nonlinear equation of motion is then solved using a fourth-order 

Runge-kutta numerical method. Frequency variations are 

determined with respect to the amplitude of the motion for 

different cases. This is a powerful model to predict linear, 

nonlinear vibrations and stability characteristics of cylindrical 

shells subjected to external supersonic flow that can be applied 

for the aeroelastic design of aerospace vehicles. 

 
INTRODUCTION 

 

 Analysis of thin shells subjected to supersonic flow has 

been the focus of many investigations. Most of these researches 

efforts have involved linear analysis of thin shells subjected to 

supersonic flow [1,2,3,4,5,6,7], but the obtained results are not 

satisfied sufficiently for accurate satisfactory design. Therefore 

a non-linear analysis becomes necessary [2,8]. This study 

presents the effect of the nonlinearities of fluid pressure in the 

dynamic behavior of cylindrical shells under supersonic airflow. 

The method is based on a combination of finite element method 

and linear sanders theory [9,10,11,12] and nonlinear 

aerodynamics theory. The finite element proposed was 

cylindrical (Figure 1) with four degree of freedom at each node: 

axial, radial, circumferential, and rotation. This geometry made 

it possible to use Sanders theory to determine displacements 

functions. 

 

  

 

 

 

 

 

 

 

 

       Figure1:  Cylindrical shell and flow direction 

 

 

This method satisfies the finite element method 

convergence criteria [9] and shows greater accuracy than the 

more usually chosen polynomial functions. 

The treatment of this problem involves two steps: 

1 - Using the linear strain-displacement and stress-strain 

relationships which were introduced into Sanders equation of 

equilibrium, we determined the displacement functions by 

solving the linear equation system. We then determined the 

mass and stiffness matrices for the finite element and assembled 

the matrices for the complete shell.  

2 - From third order piston theory we derived an expression 

of nonlinear pressure as a function of:  

- The nodal displacement of the shell element 

- A combination of non linear effects. 

Using this dynamic pressure, we obtained three nonlinear 

matrices from second order and four nonlinear matrices from 

third order piston theory. 
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NOMENCLATURE 
 

a∞  = freestream speed of sound 

 [B]  = defined by Equation 7  

D  = defined by Equation 3 

E     = Young’s modulus 

{Fp}     = force vector due to the aerodynamic pressure  

                            field 

h  = shell thickness 

K  = bending stiffness of shell, defined by 

                            Equation 3 

[K]  = global stiffness matrix for a shell 

[Kf]  = global aerodynamic damping matrix  

[KI]  = global initial stiffness matrix for a shell  

[k]  = stiffness matrix for a shell element 

[kf]  = local aerodynamic stiffness matrix 

[kI]  = initial stiffness matrix for a shell element 

L  = shell length  

M     =    Mach number 

[Ms]      =  global mass matrix for a shell 

n                    =   circumferential number 

[m]      = mass matrix for a shell element 

Nx Nθ, Nxθ          =   stress resultant for a circular cylindrical shell 

xN , N     =   stress resultant due to shell internal pressure 

                            and axial compression 

[N]  = defined by Equation 5 

Pa  = aerodynamic pressure 

P∞  = freestream static pressure 

Pm, Px  = shell internal pressure and axial compression 

[P]  = elasticity matrix 

Qx, Qθ                 =   transverse stress resultant for a circular  

                            cylindrical shell      

R  =   shell radius 

r  = radial coordinate 

U  =  axial displacement 

Ui  = potential energy due to initial strain 

V     =  circumferential displacement 

W     =  radial displacement 

x     =  longitudinal coordinate 

δi, δj     = displacement at node i and j  

λj     = complex roots of the characteristic equation  

υ     = Poisson’s ratio 

γ     = adiabatic exponent 

θ     = circumferential coordinate 

ρ     = shell density 

ρf     = fluid density 

ω     = oscillation frequency 

φxx, φxθ, φn      = elastic rotations for a circular cylindrical shell 

{σ}                 = stress vector 

 

I - Structural model 

1- Masse and Stiffness Matrices 

 

 The equations of motion of an isotropic cylindrical 

shell in terms of U, V, and W (axial, tangential and radial 

displacements) (Figure. 2) are written as follows: 
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Where ( 1,2,3)JL J   are three nonlinear partial differential 

equations presented in [13], and ijP  are elements of the 

elasticity matrix which, for an isotropic shell are given by:     
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The displacement functions associated with the circumferential 

wave number are assumed in the normal manner, as: 
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Figure 2:   Finite element discretization and nodal displacement   

                 
The final form of the displacement functions was obtained from 

Lakis and Paidoussis study [9]: 
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and   [N]  represents the displacement function matrix.  

The constitutive relation between the stress and deformation 

vector of cylindrical shells is given as:  
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The mass and stiffness matrices for each element are derived 

using the classical finite element procedure and can then be 

expressed as: 
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Where   is the density of the shell, h its thickness, 

dA rdxd . The matrices [m] and [k] are obtained 

analytically by carrying out the necessary matrix operations 

over x and θ in the equation, the global matrices  sM  and  sK  

may be obtained, respectively, by superimposing the mass and 

stiffness matrices for each individual finite element.  

2- Stress Matrix: 

 

The potential energy formulation is given as [14]: 
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Where xN , N are stress resultants due to shell internal pressure 

mP  and axial compression xP  respectively given by:  
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l is the element length,  
xx is the strain rotation about x  ,   

is about normal to the x  plane and 
n  is the rotation about 

the normal to a shell element. This rotation vector is expressed 

as [12]: 

)
1

(
2

1

)(
1

x

VU

R

W
V

R

x

W

n

xx





























 
 

After replacing the displacements expressions given in Eq. (5), 

we obtain the potential energy in terms of nodal degree of 

freedom, and can then obtain the initial stiffness matrix for each 

element in the following form: 
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The global initial stuffiness matrix may be obtained, by 

assembling the matrix for each individual finite element, and 

adding to get the global stiffness matrix.  

II-  Aerodynamic model: 
 

      Piston theory was first proposed by Lighthill for application 

to vibrating airfoils, and it was first introduced into the field of 

aeroelasticity by Ashley and Zartarian[15].  

 

The pressure on the body surface may be approximated by the 

pressure experienced by a piston moving in the flow with a 

velocity equivalent to the superposition of the velocity due to 

the changing body shape and the velocity due to the rigid-body 

motion of the body.  

 

This pressure is given by [15,16]: 
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Where   is the velocity of the piston. Selecting terms up to the 

third order in the binomial expansion of Eq. (13), we obtain 
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Substituting (15) in (14), the pressure relation is given by: 
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the direction of the pressure loading is always into the body 

surface, opposite to outward pointing surface normal of the 

structure.   

 

The form of the radial displacement [9] is: 
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where j  is the j
th

 root of the characteristic equation and   

the natural angular frequency. 

 

Substituting Eq. (17) into Eq. (16), we obtain the equation for 

the aerodynamic pressure on the cylinder wall: 
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By introducing the displacement function into the aerodynamic 

pressure expression and performing the matrix operation 

required by the finite element method, the damping and stiffness 

of second order and third order for fluid are obtained by 

evaluating the integral: 
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III- Nonlinear Analysis 
 

     The motion of a cylindrical shell subjected to an external 

supersonic flow is governed by the equation of motion which 

we shall write as: 
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 where subscripts s and f refer to the shell in vacuo and fluid, 

respectively and    is the degrees of freedom vector for the 

total nodes . 
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linear system and  q is a time-related vector. Numerical 

solution of the coupled system (20) is difficult and costly. We 
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(17) 

(18) 

(20) 

(21) 

(22) 

(23) 

(16) 

(14) 

(15) 
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NL

ii
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 3

2

NL

ii

i

ii
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t

m
   ;

   2

2

NL NL

ii ii

i

ii

K C
t

m
  ;

   2

2

NL NL

ii ii

i

ii

K C
t

m
   ; 

 3

2

NL

ii

i

ii

C
t

m
    . 

 

where t represents the shell thickness. The square root of 

coefficient /ii iik m represents the i
th 

linear vibration frequency 

of system. The solution  if  
of these ordinary nonlinear 

differential equations which satisfies the initial conditions (22) 

is approximated by a fourth-order Runge-Kutta numerical 

method. The linear and non-linear natural angular frequencies 

are evaluated using a systematic search for the  if  roots as a 

function of time. The /NL   ratio is expressed as a function 

of the non-dimensional ration /A t . 

 

IV-  Results and discussion 
 

 An additional hypothesis was required to develop our 

analytical model. We simplified the parameters and limited our 

dynamic analysis strictly to consideration of those shell-fluid 

systems which lead to a symmetric matrix system of 

eigenvalues. This simplifying hypothesis is validated if the 

resultant eigenvalues come close to the original system. Tables 

1-4 of Lakis and Laveau [13], show the variance between the 

eigenvalues in the original and simplified systems. These results  

seem to validate our approach since the two systems are seen to 

have comparable dynamic behavior. 

 

The shell and flow properties are given by: 

 
6 10 2

2 4 3

16 10 / (11 10 / )

0.35

0.0040 (0.0001015 )

15.4 (0.381 )

8.00 (0.203 )

0.000833 / (8900 / )

3.00

8400 / (213 / )

s

E lb in N m

h in m

L in m

R in m

lb s in kg m

M

a in s m s







  









 





 

The influence of non-linearities associated with nonlinear piston 

theory on the cylindrical shells subjecting to a supersonic flow 

is main focus of our analysis. 

 

1- Effect of circumferential number 

 

 Figure 3 shows how the flutter frequency varies with 

flutter amplitude for different circumferential numbers. In all 

cases, the flutter frequency first decreases very slightly and then 

increases with amplitude at the higher amplitudes. The final 

hardening nonlinearity shown by the frequency curve in the 

figure may be attributed to the nonlinear terms in the piston 

equation. This same result is found in several publications 

[2,17,18]. 

 

       

   

Figure3 : Non-dimensional flutter amplitude vs non-

dimensional flutter frequency for pressurized shell ( mp = 0.5psi). 

 

2- Effect of initial strain 

 

In figure 4, the behavior is the same as that seen for the 

case of effect of circumferential number except, when the shell 

is not subjected to internal pressure, in which case the non-

dimensional frequency is greater than those of the pressurized 

shell.  
 

a) b) 

c) d) 

(24) 

n=23 n=24 

n=22 n=21 
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Figure4: Non-dimensional flutter amplitude vs non-

dimensional flutter frequency for 
mp = 0.0 psi and 

mp = 0.5 psi. 

V- Conclusion 
 

     This paper deals with some of the problems that arise when 

flow nonlinearities are considered in combination with a linear 

structural model in the study of dynamic and stability behavior 

of elastic isotropic cylindrical shells. An efficient linear hybrid 

finite element method and nonlinear aerodynamic piston theory 

were used to develop the nonlinear dynamic equations of the 

coupled fluid-structure system. By investigation several 

parameters that are dependent on structure and flow we can 

predict the limit cycle amplitudes, non-dimensional frequency 

and freestream static pressure, and the stabilizing effect of the 

internal pressure. In all cases, the uncoupled equation of motion 

gives wrong results, only the coupled problem gives correct 

nonlinear results for the presence of coupling between 

asymmetric and axisymmetric modes. This results in new 

knowledge concerning the contribution of flow nonlinearities on 

fluid-structure interaction in a supersonic regime. 
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APPENDIX 

 

 

 

Sander’s linear equations for thin cylindrical shells in terms of axial, tangential and circumferential displacements are:  

 

 

 

                                                               

 

 

 

 

 

Matrices 33][ T , 83][ R , and 88][ A  are defined as: 
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Matrix 
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