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ABSTRACT 
In this work, a hybrid finite element formulation is 

presented to predict the flutter boundaries of circular 
cylindrical shells made of functionally graded materials. The 
development is based on the combination of linear Sanders thin 
shell theory and classic finite element method. Material 
properties are temperature dependent, and graded in the shell 
thickness direction according to a simple power law 
distribution in terms of volume fractions of constituents. The 
temperature field is assumed to be uniform over the shell 
surface and along the shell thickness. First order piston theory 
is applied to account for supersonic aerodynamic pressure. The 
effects of temperature rise and shell internal pressure on the 
flutter boundaries of FG circular cylindrical shell for different 
values of power law index are investigated. The present study 
shows efficient and reliable results that can be applied to the 
aeroelastic design and analysis of shells of revolution in 
aerospace vehicles. 

 
INTRODUCTION 
 Increasing need to manufacture light-weight aerospace 
structure has resulted in the production of new advanced 
materials like new composite materials. Consequently, 
application of functionally graded materials (FGM) in the 
advanced aircraft structures has attracted wide attention 
recently among the aerospace engineers. Since the skin of 
aerospace vehicles are made of cylindrical shell and experience 
high temperature field, the use of FGMs as their protection 

materials can be efficient. Therefore, an appropriate design and 
analysis method for analysis of such structures is needed. 

A comprehensive description about the FGMs properties and 
their applications can be found in Refs. [1] [2]. Recently, 
vibration and dynamic analysis of shell and plates made of 
FGMs subjected to high temperature environmental has 
received attention among the researches [3-8]. Those 
investigations are conducted either analytically or numerically 
on the prediction of dynamic (vibration) and static (buckling) 
stabilities of the structure due to different thermal and 
mechanical loadings. Material properties are graded mostly 
based on the simple power law distribution in terms of volume 
fraction of constituents. But aerothermoelastic analysis of shell 
and plates made of FGMs has been investigated by a few 
studies. Prakash et al [9],  Navazi et al [10] and Hesham et al 
[11] works predicts the flutter of FG plates. Haddadpour et al 
[12] investigated the post-flutter prediction of FG plate. 
Aeroelastic analysis of FG circular cylindrical shells has been 
addressed in Ref. [13] and for a truncated conical shell in Ref. 
[14]. Those mentioned aeroelastic studies although provides a 
good prediction for supersonic flutter speed but for such a 
problem which contains complex structures, boundary 
conditions, material and loadings, an analytical model becomes 
very complicated and  it is not sufficiently a powerful method 
to contain all the features affecting flutter boundaries. Also they 
are computationally expensive, which is not desired during the 
preliminary design of a modern aircraft structures. Therefore 
the objective of this study is to propose an efficient FEM to 
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adequately describe supersonic flutter of a FG cylindrical shell 
at less computational cost and effort. The linear Sanders thin 
shell theory is combined with classic finite element method to 
derive the exact solution for shape functions rather than 
approximation by polynomial functions. This method leads to a 
very fast and precise convergence where it was applied by the 
same authors [15], for flutter prediction of isotropic cylindrical 
shells subjected to supersonic flow. 

 
 

STRUCTURAL MODELING 
Strain vector in terms of displacement fields, axial U , radial 

 and circumferential  directions; based on the linear 
Sanders thin shell theory is written in cylindrical coordinate 
system as [16]: 
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where xε , θε , xθε  are the normal strain referred to mid-
surface and xκ , θκ , xθκ  are the change in curvature of mid-
surface normal. 
 
CONSTITUTIVE RELATION 
 Functionally graded materials (FGM) are made from the 
combination of different material with different volume fraction 
of their constituents.  Their material properties could be 
temperature dependent and are graded in the shell thickness. In 
this work, the material properties  are considered 
temperature dependent as [1]: 
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where  is working temperature in Kelvin and  

(2) 

 
T 1P− ,  and 

  are constant coefficients with different values for different 
materials. Also it is assumed that the shell is made from the 
mixture of a ceramic as high-resistant material against high 
temperature loading and a metal as an element to support 
mechanical loadings. Material properties are graded along 
thickness of shell where the effective one is defined as: 
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and  are material properties of ceramic and metal 
respectively with their corresponding volume fractions  and 

. It is assumed that the outer skin of the shell is ceramic rich 
and the inner side is metal rich; therefore, the volume fractions 
based on the simple power law distribution are found as: 
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where  is the shell thickness and  is the volume fraction 
exponents. Upon selection of different values for , variation 
of material properties along the shell thickness are reported in 
the Fig. 1.  
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Fig. 1 Variation of ceramic volume fraction 

  
The constitutive relation for non zero strains are given by: 
 

{ } [ ]{ }Pσ ε=   (6) 
 

In above relation [P] is the reduced stuffiness matrix and 
defined as: 
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  where  
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In the above relations,  is module of elasticity and ( )E z ( )zν  is 
the Poisson’s ratio for assumed FG cylinder. Carrying the 
integration of Eq. (6) along the shell thickness results the 
normal stress and moment resultants and by replacing them in 
the Sanders equations of equilibrium, following implicit 
relations in terms of displacements components and their 
derivatives are obtained: 
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Details of above equations are reported in Appendix. 
Considering the displacements as period functions, they can be 
expressed in Fourier series as: 
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Upon substitution of these functions in the Eq. (9), with the 
help of solution for roots of obtained characteristic equation, 
the final form of displacements can be found as [15]: 
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where the matrices [T] and [R] are defined in Appendix. 
Relation (11) states the exact solution of displacements 
obtained from the Sanders thin shell theory. 
 
FRUSTUM ELEMENT 
Cylindrical shell is discretized by finite frustum elements ( see 
fig. 2). Each finite element has two nodal lines with four 
degrees of freedom. Because of type of elements, the shape 
functions estimating the elements deformation along its lengths 
between two nodal lines, are found from exact solution of shell 
theory. Consequently it leads to the very fast and precise 
convergence compared to the traditional finite element method 

where the shape functions are approximated by polynomial 
functions.  

 
Fig. 2 Shell element geometry  

The accuracy of this method has been established well in Ref. 
[15]. Assuming the nodal degrees of freedom vector in terms of 
element displacement vector, it is expressed as: 
 

{ } { }, , / , , , , / , [ ]
Ti

ni ni ni ni nj nj nj nj i
j

u w w x v u w w x v A C
δ
δ
⎧ ⎫⎪ ⎪ = ∂ ∂ ∂ ∂ =⎨ ⎬
⎪ ⎪⎩ ⎭
 (12) 
  
where the components of matrix [ ]A  is found from the element 
of  ( see Appendix). Therefore, displacement vectors (Eq. 
(11)) with the help of Eq. (12) is rewritten as: 
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where  matrix is corresponding to the shape function of 
this proposed hybrid analytical-finite element method. 

[ ]N

 
STRUCTURE MASS AND STIFFNESS MATRIX 
Strain vector can be expressed in terms of nodal degree of 
freedom with the help of eq. (13) as: 
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where matrix [  is reported in Appendix. Following the 
standard procedure in finite element method structure stiffness 
matrix [ and structure mass matrix [  are found as: 
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The pre-buckling membrane stress resultants corresponding to 
pressure differential across the shell , axial compression mP xP  
and temperature difference , represented by the 
components of the following diagonal matrix: 
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where α  is the thermal expansion of the shell. The geometric 
stiffness matrix of a shell element can be found from the 
expression for the potential energy due to this initial strain: 
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where { }β  is the elastic rotation vector based on Sanders thin 
shell theory [16]: 
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Upon substitution of displacement fields based on the shape 
function in the above equation and then replacing back in the 
Eq. (2), element geometric stiffness matrix is found as: 
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where  is the derivative matrix of shape functions 
comprised from inserting the displacement fields in Eq. (21). 
This stiffness matrix is added to the one developed in Eq. (15). 

0C⎡⎣ ⎤⎦

 based on the first order piston theory where 
 is expressed as: 

 

 

AERODYNAMIC MODELING 
In this study aerodynamic pressure loading due to supersonic 
airflow is modeled
it
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where p∞ , U∞ , M  and γ  are the freestream static pressure, 
freestream velocity, Mach number and adiabatic expansion of 
air, respectively. With the help of shape function relation for 
radial deflection (Eq. (13)), this pressure field in terms of nodal 

egree of freedom is written as: 
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nd and third terms result in aerodynamic stiffness 
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ress condition due to mechanical and thermal loading will be: 
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where the first term results in aerodynamic damping matrix and 
the seco
m
 
AEROELASTIC MODEL 
The final form of governing equation in global system for a FG 
cylindrical shell subjected to a supersonic flow and under pre-
st
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the system while the real part shows 
e oscillation frequency. 

d in th Table1. The characteristics of airflow is considered 
:

  
where subscripts S , a  and G  refer to structure, aerodynamic 
loading and geometric stiffness due to initial membrane forces; 
respectively. Aeroelastic stability of the shell is investigated by 
studying the eigenvalue of Eq. (25) in the complex plane. 
Flutter onset occurs when the imaginary part of the eigenvalue 
changes from positive to negative value.  That imaginary part 
represents the damping of 
th
 
RESULT AND DISCUSSION 
In this study considered cylindrical shell is made of ceramic, 
Silicon Nitride (Si3N4), at the outer surface and stainless still 
(SUS304) on the inner surface. Their material properties can be 
foun e 
as  3M = , 213 /a m∞ s= , 49tT C∞ = o .  
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Table1. M rial propertie , f. [1] 
P P P P
ate s of FGM  Re

Material 0 -1 P1 2 3

Silicon nitride      
E (pa) 348.43E9 0 -3.07E-4 2.160E-7 -8.946E-11 

5.  9.095E-4 

3 23 0 

St
     

2.160e-7 -8.946e-11 

-2.002e-4 
3

α ) 
Υ 
(/K 8723E-6 0 0 0 

0.2400 0 0 0 0 
ρ (kg/m ) 

 
ainless –

7 0 0 0 0 

Steel 
E (pa) 201.04e9 0 3.079e-4 
α ) 
Υ 
(/K 12.33e-6 0 8.086e-4 0 0 

0.3262 0 0 0 
ρ (kg/m ) 8166 0 0 0 0 

 
A convergence test for a simply supported FG cylindrical shell 
with different gradual variation of material properties has been 
reported in Tables 2.  It shows a very fast convergence with 
only 12 elements therefore, using  20 elements will be 

fficient to obtain reliable results for further analysis. 
 

Tale 2 for cri tter onset
Cer =0 

su

 Convergence test tical flu  
 amic rich, N N=3 N=20 

No. Elements P  P ) P ) ∞ (KPa) ∞ (KPa ∞ (KPa
5 20.86 0.38 0.13 
8 29.79 7.60 5.67 

10 31.12 8.89 6.66 
12 31.72 9.48 7.13 
15 32.14 9.95 7.47 
18 32.35 10.12 7.67 
20 32.43 10.21 7.71 

 
 In order to see the effect of material volume fraction N  
the aeroelastic stability prediction, for a ceramic reach 0N

 , on
=   

shell and 3N = , real and imaginary parts of eigenvalue versus 
freestream static pressure have been plotted in Figs. 3 and 4, by 
increasing the static pressure, real parts of first and second 
axial mode converge to each other, and eventually they merge 
together, representing the oscillation frequency. When we have 
crossed zero for one of the imaginary parts of eigenvalues 
representing the ing of utter onset h s. 

 
damp  the system, fl

It occurs  at a  and for 
app
N

en
3for 0N = 33000P P∞ = = at 

1000∞ = 0P P . a

 

 

b)

Fig.3 a) Real part b) imaginary part of eigenvalue versus freesteram 
static pressure, n=25; ceramic rich N=0  

 

a)

 

b)

a) 

Fig.4 a) Real part; b) imaginary part of eigenvalue versus freesteram 
static pressure, n=25; N=3  

 
It can be seen that, for N=0, shell losses its stability at higher 
freestream static pressure compared to the case of N=3. This 
critical flutter onset for different values of  and internal 
pressure has been reported in Fig. 5. It shows that for smaller 

, shell has more flutter resistant, since the material properties 
are close to ceramic (N=0). Also for pressurized shell, flutter 
instability occurs at higher freestream static pressure. 

N

N
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Fig. 5 Flutter boundaries for pressurized FG cylindrical shell 

 
In Table 3 the effect of temperature rise on flutter boundaries 
has been reported for free internal pressure shell. It is assumed 
that temperature is under the critical buckling temperature and 
it has uniform distribution along the shell length and thickness 
where it has reached that initial final temperature. The free 
stress temperature for shell is 300 K. It can be seen that how 
temperature raise will decrease the critical flutter freestream 
static pressure.   
 

Table 3 Effect of Temperature on flutter boundaries  
 ∆T=50 ∆T=100 ∆T=150 

N P∞(Pa) P∞(Pa) P∞(Pa) 
0 22800 6870 4440 

0.3 17500 1880 1330 
1 13900 1120 920 
3 4700 530 230 

 

CONCLUSION 
An efficient hybrid analytical-finite element method has been 
developed for aerothermoelastic instability prediction of 
cylindrical shell made of functionally graded materials. This 
linear method will be useful to detect the bifurcation points for 
further nonlinear analysis of stability threshold. Due to smaller 
value of power index for ceramic volume fraction shell shows 
more flutter resistant while for larger values, shell losses its 
stability at higher velocities through coupled mode flutter. 
Since the shell becomes stiffer by increasing the internal 
pressure, the flutter velocity is predicted at higher value for 
pressurized FG shell.  Increasing temperature will affect the 
stability of the shell where the flutter onset happens at lower 
velocities. This proposed method can provide efficient and 
reliable results at less computation time and efforts compared 
to the other analytical and commercial FEM  and can be 
applied with high fidelity for aerothermoelastic analysis of 
aerospace structures.  
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APPENDIX 
 
I. Sanders equations of equilibrium in terms of displacement 
components and their derivatives are ( Eq. (9)):  
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where  are the component of reduced stiffness matrix 

defined in Eq. (7). 
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