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ABSTRACT 
The flutter analysis of a swept aircraft wing-store 

configuration subjected to follower force and undergoing a roll 
maneuver is presented. Concentrated mass, follower force, and 
roll angular velocity terms are combined in the governing 
equations which are obtained using the Hamilton’s principle. 
The wing is modeled from a classical beam theory and 
incorporates bending-torsion flexibility. Heaviside and Dirac 
delta functions are used to consider the location and properties 
of the external mass and the follower force. Also, Peter's 
unsteady aerodynamic pressure loadings are considered and 
modified to take the wing sweep angle effect into account. The 
Galerkin method is applied to convert the partial differential 
equations into a set of ordinary differential equations. 
Numerical simulations are validated with available published 
results. In addition, simulation results are presented to show the 
effects of the roll angular velocity, sweep angle, follower force, 
and engine mass and location, on the wing flutter.  Results are 
indicative of the significant effect of the rigid body roll angular 
velocity and the follower force on the wing-engine dynamic 
stability. Furthermore, distances between the engine center of 
gravity and the wing elastic axis contribute considerable effects 
in the wing-engine flutter speed and frequency. 

 
INTRODUCTION 
 Civil and military airplane wings are subjected to a variety 
of non-conservative forces, such as aeroelastic forces, 
maneuver loads, and follower forces. Since rigid body rotations 
due to maneuver angular velocities, such as the one produced 
by a roll maneuver, can adversely affect the aircraft aeroelastic 
stability region, it is critical to include maneuvering angular 
velocities in aeroelastic analysis. Furthermore, a wide variety 
of external stores, such as heavy engine nacelles, in the case of 
transport aircraft, or missiles, for military aircrafts, are usually 
present in typical modern aircraft configuration. The 
geometrical and physical parameters of such external stores 

have a complex influence on the flutter characteristics of 
aircraft wings, primarily because of the store inertial and elastic 
coupling effect with the wing. Also, modern aircraft wings are 
usually subjected to several types of follower forces, for 
example produced by jet propulsion, rocket thrusts, thermal 
loading, only to name a few. The interaction between follower 
forces and aerodynamics, particularly for wing-store 
configurations, has important effects on the aeroelastic stability 
of the aircraft. Therefore, for a reliable aeroelastic analysis of 
aircraft wings it is necessary to develop refined simulation 
models and tools to account for the effects of external stores, 
follower forces and maneuver angular velocities, and all 
conditions need to be considered simultaneously.  
 The wing aeroelasticity is an old and practical problem and 
numerous papers have been published in this field, too many to 
list them all. Only a few relevant contributions will be 
discussed next. One of the first research contributions is the 
paper by Goland [1] on the determination of the flutter speed 
for a uniform cantilever wing by integration of the differential 
equations of the wing motion. An extension was provided for a 
uniform wing with tip weights [2].  Harry and Charlz [3] 
analyzed the flutter of a uniform wing and made a comparison 
between the analytical and the experimental results. The 
aeroelastic stability of a swept wing with tip weights for an 
unrestrained vehicle has been considered by Lottati [4]. In his 
work a composite wing was studied and it was observed that 
flutter occurs at a lower speed as compared with a clean wing 
configuration. Gern and Librescu contributed to show the 
effects of externally mounted stores on the static and dynamic 
aeroelasticity of advanced swept cantilevered wings [5, 6]. The 
dynamic response of adaptive cantilevered beams carrying 
externally mounted stores and exposed to time-dependent 
external excitations has been considered by Na and Librescu 
[7]. Moreover, Librescu and Song [8] investigated the free 
vibration and dynamic response to external time-dependent 
loads of aircraft wings carrying eccentrically located heavy 

Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and  
8th International Conference on Nanochannels, Microchannels, and Minichannels 

FEDSM-ICNMM2010 
August 1-5, 2010, Montreal, Canada 

FEDSM-ICNMM2010-30378 
 



 2 Copyright © 2010 by ASME 

stores. In these contributions the authors have modeled the 
wing as a thin-walled anisotropic composite beam.  
 Follower forces are frequently encountered in structural 
engineering, and they can be either static or dynamic. Bolotin 
[9] provided a general understanding of the effect of non-
conservative forces on elastic systems. The lateral stability of a 
beam under the transverse follower force was analyzed first for 
a pinned configuration. The correlation between stability and 
quasi stability regions of elastic and viscoelastic systems 
subjected to non-conservative forces was investigated by 
Bolotin and Zhinzher [10]. The equations for a cantilevered 
thin beam were derived by Kalmbach et al [11]. They examined 
the possibility of controlling, through feedback, a thin-
cantilevered beam subjected to a non-conservative follower 
force. The static and dynamic instabilities of a cantilevered 
beam and a simply supported plate under non-conservative 
forces have been studied by Zuo and Schreyer [12]. For the 
beam model the governing partial differential equation and 
associated boundary conditions of the continuous model have 
been solved exactly. Detinko [13] used a simple model of a 
slender beam loaded by a transverse follower force to show that 
the lateral stability analysis of a beam under the follower load 
should include realistic amount damping to reach a correct 
evaluation of the critical load.  
 In these contributions the effects of transverse follower 
forces on the elastic stability of the structures have been 
studied. However, much of the research in this field is on the 
stability of the structures subjected to different types of 
follower forces and there is very little literature concerned with 
the aeroelastic stability of such structures. It seems that the 
stability problem of a cantilever wing containing a mass excited 
by a transverse follower force and subjected to aerodynamic 
loads has not received much attention in the literature. Como 
[14] analyzed the bending-torsional stability of a cantilevered 
beam subjected at its end section to a lateral follower force. 
The distributed mass and inertia properties of the beam were 
neglected, although a concentrated mass and inertia at the tip 
were included. Feldt and Herrmann [15] investigated the flutter 
instability of a wing containing a mass subjected to the 
transverse follower force at the wing tip in the presence of 
airflow.  Only one value of the bending stiffness to torsional 
stiffness ratio was considered in their study, a value for which 
thrust is destabilizing. Their results generally did not agree with 
previous works.  Hodges et al have shown the effects of the 
lateral follower force on flutter boundary and frequency of 
cantilever wings [16, 17]; however, they did not take into 
account the external concentrated mass effects. The bending-
torsional flutter characteristics of an un-swept wing containing 
an arbitrarily placed mass under a follower force have been 
studied by Fazelzadeh et al [18]. The Theodorsen unsteady 
aerodynamic model is used for flutter analysis. The important 
influence of the location and magnitude of the mass and the 
follower force on the flutter speed and frequency of the un-
swept wing was highlighted. In a subsequent work Mazidi and 

Fazelzadeh [19] emphasized the effects of the wing sweep 
angle on the flutter boundaries. 
 In high-speed advanced flight vehicles some non-
conservative terms in aeroelastic governing equations are 
caused by complex maneuvering conditions. The effect of the 
aircraft maneuvers on the wing instability has not been 
thoroughly investigated. Nonlinear equations of motion for 
elastic panels in an aircraft, executing a pull-up maneuver of 
given velocity and angular velocity, were derived by Sipcic and 
Morino [20]. The effect of the maneuver on the flutter speed 
and on the limit cycle amplitude was discussed for various load 
conditions. Meirovitch and Tuzcu [21, 22] have presented 
different works on simulating the motion of flexible aircrafts 
and derived some integrated approaches to control the complex 
maneuvering of an airplane. Two flight dynamics problems 
including the steady level cruise and a steady level turn 
maneuver were considered. The aeroelastic modeling and 
flutter characteristics of wing-stores configuration under 
different maneuvers was investigated by Fazelzadeh et al. [23, 
24]. They have showed that the combination of flexible 
structural motion and maneuver parameters affects the flutter 
speed of the wing-stores configuration. 
    According to the best of the authors' knowledge the 
aeroelastic modeling and flutter analysis of aircraft wings 
containing an arbitrarily placed powered-engine and subjected 
to roll maneuver have not yet been addressed and will be 
presented in this study. 

GOVERNING EQUATIONS 
A schematic of a roll maneuvering aircraft wing-engine is 

presented in Fig. 1. Distances between the airplane center of 
gravity and the wing root, where the roll angular velocity acts, 
are clearly indicated in this figure. The wing typical section is 
represented in Fig. 1(b), where ey  and ez  are the distances 

between the center of gravity of the engine and the elastic axis 
of the wing. Also, points wcgACAE ,, and ecg  refer to the 

wing elastic axes, aerodynamic center of the wing, wing center 
of gravity and engine center of gravity, respectively. Because of 
the wing complicated dynamic, several coordinate systems are 
used. The orthogonal axes ZYX ,,  are fixed on the wing root. 
This coordinate system is called the un-swept wing coordinate 
system and rotates with respect to inertial frame at maneuver 
angular velocities. Another coordinate system is the swept wing 
coordinate system, xyz, in which the x axis lies along the length 
of the un-deformed wing. The last wing coordinate system is 
deformed wing coordinate system, zyx  , where x   lies along 

the deformed wing. After the wing deformation, the shear 
center of the cross-section located at x is displaced by an 
amount w  in the z direction. Additionally, the angle of twist of 
the cross-section changes to   about the x axis. This is because 
all equations will be expressed in xyz coordinate, but angular 
velocities of maneuvering airplane are expressed in 

ZYX ,, coordinate. It should be noted that while deriving the 
kinetic energy of the wing the angular velocity vector must be 
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first transformed into the wing coordinate system. For swept 
wings xyz coordinate can be achieved from ZYX ,, by one 
rotation. 

 

 

(a) 

 

(b) 

Fig. 1. (a)  Schematic of the wing in rolling maneuver, (b) 
The wing typical section. 

 
The transformation between ZYX ,,  and zyx ,, coordinate 

systems is 
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The equations of motion are derived using Hamilton's 
variational principle that may be expressed as [25] 
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where U  and T  are strain energy and kinetic energy, and W  
is the work done by non- conservative forces. The indices w  
and e identify the wing and engine, respectively. The equations 
of motion for a wing-engine under roll maneuver are obtained 
as 
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where eiwiweiwwi CCCC  ,,,  are roll coefficients expressed 

in annex A. In Eqs. (4) and (5) the Heaviside and Dirac delta 
functions are used in order to accurately consider the location 
and properties of the thrust force and the attached mass, 
respectively, while the index e  indicates the “engine” 
contributions. It should be noted here that the engine 
aerodynamic is not accounted for in governing equations.      

The aerodynamic forces are derived from the finite-state 
aerodynamic model of Peters et al [26]. The wing sweep angle 
contribution is considered by appropriate modifications in 
aerodynamic model, the details are reported in [19]. Therefore, 
the modified Peter’s sectional lift and aerodynamic moment 
modified to account for the swept angle are  
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where 0  is the induced-flow velocity. It should be noted that 

this model does not include drag force and it is assumed that 
drag effects are negligible.  

SOLUTION METHODOLOGY 
Due to intricacy of governing equations, it is difficult to 

get the exact solution. Therefore, in order to solve the above 
equations in a general way, the Galerkin’s method is used [27]. 
To this end, ,w  are represented by means of series of trial 

functions, i  that should satisfy the boundary conditions, 

multiplied by time dependent generalized coordinates, iq .  
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Substituting Eqs. (6- 8) in Eqs. (4, 5) and applying the 
Galerkin procedure on these governing equations and using the 
orthogonal properties in the required integrations the following 
set of ordinary differential equations are obtained.  
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Herein, M, C and K denote the mass matrix, the damping 
matrix and the stiffness matrix, respectively, while q is the 
overall vector of generalized coordinates 
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Six bending modes, six torsion modes, and six 
aerodynamic states are considered in the Galerkin method to 
transform Eqs. (4, 5) in a set of first-order coupled ordinary 
differential equations as 
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The problem is now reduced to the classical eigenvalue 
solution, to find the eigenvalues of matrix  A  for a given 

values of the air speed parameter U . The eigen-value   is a 

continuous function of the air speed U . For 0U ,   is in 

general complex, )Im()Re(  i . When 0)Re(   and 

0)Im(   the wing is said to be in critical flutter condition. At 

some point, as U  increases, )Re(  turns from negative to 

positive so that the motion turns from asymptotically stable to 
unstable.  

NUMERICAL RESULTS 
The classical Goland’s wing extended to variable wing 

sweep angles is considered.  Pertinent data for this particular 
wing are  
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In Table 1, for the purpose of model validation, the results 
for the swept wing without external mass are compared with 
Karpouzian and Librescu [29] and good agreement is reported 
in the range of 3010  . For other ranges small 
differences come from the fact that the Peter's model is used 
here while in [29] the Theodorsen’s model was used.  It can be 
seen from this Table that both backward and forward sweep 
angles increase the flutter speed, significantly. 

In addition, in the absence of the external mass and sweep, 
comparisons are also made with [17], in Fig. 2. There are some 
differences between the present results and those in [17] 
associated with the fact that the Galerkin method is used here 
while the finite element method was used by them in the 
solution procedure. The same wing characteristics used in this 
reference are selected for model validation. In this figure the 
flutter boundary for a clean straight wing subjected to a lateral 
follower force is illustrated. A continued decrease in the flutter 
speed accompanying the increase in the follower force is seen. 
Clearly an increase in the magnitude of the follower force is 
destabilizing and leads to instability at lower speeds. 
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Table 1 Validation of the non-dimensional flutter speed for 
a swept clean wing  

Wing sweep angle 
(deg) 

Ref. [9] Present Error (%) 

-30 13.3 12.31 7.4 
-20 12 11.5 4 
-10 11.2 11 1.7 
0 10.8 10.77 0.2 

10 10.9 10.84 0.5 
20 11.3 11.2 0.8 
30 11.9 11.8 0.8 

 

 

P

fv

Fig. 2. The flutter boundary for an un-swept clean wing 
subjected to thrust force 

 
Figure 3 shows the variation of the flutter speed and 

frequency of a clean wing for selected values of the roll angular 
velocity due to variations in the wing sweep angle. It can be 
seen from this figure that both flutter speed and frequency 
significantly decrease by increasing the roll angular velocity. 
Furthermore, both backward and forward sweep angles 
improve the stability domain of the wing. The trend in these 
figures is similar to the one reported in [5, 6].   

Figure 4 shows a parametric study investigating the effect 
of the roll angular velocity on the flutter boundary for the wing 
carrying a powered engine. The wing is considered to have a 
sweep angle of 30 . Furthermore, the engine is considered 
to have 5.0e  and located at 5.0eX , 25.0eY . There 

is a continuous decrease in the magnitude of the thrust required 
for instability with an increase in airspeed. This happens 
because the destabilizing effect of the aerodynamic forces is 
added to the system, leading to instability at lower levels of the 
follower force. Also, it is clear that increasing the roll angular 
velocity constricts the stability domain of the wing-engine, 
significantly. This is more obvious for higher values of the roll 
maneuver angular velocities. 

 

 

fv



 

f



Fig. 3. Effects of the sweep angle on the clean wing flutter 
boundary for selected values of roll angular velocities:(a) 

Flutter speed, (b) Flutter frequencies 
 

Figures 5-7 show the influence of the spanwise location of 
the engine on the flutter speed and frequency of the wing for 
different design parameters. In these figures, the engine is 
considered to have 5.0e  and located at 25.0eY . Figure 

3 shows the variation of the flutter speed and frequency of the 
wing for selected values of the roll angular velocity due to 
variations in the spanwise location of the external mass. The 
wing sweep angle is 30  deg and the engine thrust is 

2P  in this case.  
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P

fv

Fig. 4. Effect of the maneuver angular velocity on the wing 
flutter boundaries for 5.0e , 5.0eX , 25.0eY and 

30  deg. 
 

 

fv

eX

 

f

eX

Fig. 5. Effects of the spanwise position of the engine on the 
wing flutter boundary for selected values of roll angular 
velocities and for 25.0eY , 5.0e , 30  deg and 

2P :(a) Flutter speed, (b) Flutter frequencies. 

 

fv

eX

 

f

eX

 
Fig. 6. Effects of the spanwise position of the engine on 

the wing flutter boundary for selected values of thrust 
forces and for 25.0eY , 5.0e , 30  deg 

and 25.0 y :(a) Flutter speed, (b) Flutter frequencies. 

 
The effect of the roll angular velocity on the wing flutter 

speed is clearly highlighted. The results show that an increase 
of roll angular velocity can induce a lower flutter speed. This 
means that rolling maneuver decreases the maneuvering ability 
of the airplane. For large values of the roll angular velocity the 
diagram coincides with zero-velocity line when the engine is 
located toward the wing tip. This means that rolling maneuver 
may lead to instability even in the absence of the air flow. 

Figure 6 demonstrates the effect of the spanwise location of 
the powered-engine on the wing flutter boundary for the 
selected values of the thrust force. The wing sweep angle is 

30 deg and the maneuvering aircraft is considered with 
25.0 y . In the absence of the engine thrust, the lowest value 

of the flutter speed is around 7.0eX . There is a marked 

difference between this result and one obtained for non-
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maneuvering aircraft. For the case of the wing with a mounted 
engine, it can be seen that increasing the distance of the engine 
from the wing root will decrease the flutter speed. This is more 
apparent for greater values of the engine thrust. 

 

fv

eX

 

f

eX

 
Fig. 7. Effects of the spanwise position of the engine on 

the wing flutter boundary for selected values of the wing 
sweep angle and for 25.0eY , 5.0e , 2P  and 

25.0 y : Flutter speed, (b) Flutter frequencies. 

 
The flutter speed drops to zero for large values of the engine 
thrust when the engine is located toward the wing tip. This can 
be qualitatively explained as the increase of the destabilizing 
effect of the engine mass and thrust leading to instability, even 
at zero air speed. 

Effects of the spanwise location of the engine on the wing 
stability region for selected values of the wing sweep angle are 
shown in Fig. 7. The engine thrust is again 2P  and the 
maneuvering aircraft is considered with 25.0 y . Results 

indicate that the engine mounting location considerably affects 
the dynamic stability of the wing. It can be seen in Fig. 7(a) 

that increasing the distance of the engine from the wing root 
will decrease the flutter speed. Figure 7(b) also reveals that the 
flutter frequency drops by moving the engine towards the wing 
tip. In addition, effects of the wing sweep angle on the wing 
flutter speed and frequency is highlighted. Results show 
continued increase of flutter speed and frequency with 
increased sweep angle. This means that the wing sweep angle 
could positively affect the aeroelastic performance of the wing.  

 

 

fv

eY

 

f

eY

 
Fig. 8. Effects of the chordwise position of the engine on 

the wing flutter boundary for 5.0eX , 30 deg, 2P  

and 5.0e a) Flutter speed, (b) Flutter frequencies. 

 
Figure 8 demonstrates the influence of the chordwise 

location of the engine on flutter speed and the frequency of the 
wing for different values of the roll maneuver angular velocity. 
The engine is located at the middle of the wing span and 
considered to have 5.0e . Moreover, the wing sweep angle 

is 30 deg and the engine thrust is 2P . It can be seen that 
the engine chordwise location contributes considerably on the 
wing-engine stability.  When the engine is located toward the 
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leading edge of the wing there is an increases the flutter speed, 
in the case of the wing carrying the engine without the follower 
force. However, it is evident that the flutter speed decreases in 
both positive and negative region of the diagram due to the 
presence of the follower force on the engine. Indeed, increasing 
the distance of the engine from the wing elastic axes in 
chordwise direction increases the destabilizing effects of the 
follower force and consequently decreases the flutter speed. 
Although, this is true for all values of the roll angular velocity, 
the stability domain is dramatically restricted by increasing the 
maneuver angular velocity. Furthermore, as is shown in Fig. 
8(b), when the engine is located toward the leading edge of the 
wing the flutter frequency decreases for normal maneuvering 
angular velocities. This behavior is dependent, obviously, on 
the value of the roll angular velocity. For higher values of the 
maneuvering angular velocities different behaviors can be seen 
in both flutter speed and frequency diagram.  

 

 

fv

e

 

f

e

 
Fig. 9. Effects of the engine mass ratio on the wing 

flutter boundary for 5.0eX , 25.0eY  and 2P :(a) 

Flutter speed, (b) Flutter frequencies. 

Figures 9 shows the effects of the engine mass on the 
flutter speed and frequency of the swept wing for different roll 
angular velocity values. The engine is located at the middle of 
the wing span and 25.0eY . Also, the wing sweep angle is 

30 deg and the engine thrust is 2P .  Results show that 
the engine mass decreases the flutter speed and plays a 
destabilizing role in the dynamic stability of the wing.  For high 
roll angular velocity values, increasing the engine mass may 
lead to instability at zero air speed. This means that increasing 
the engine mass increases the destabilizing effects of the roll 
maneuver. Furthermore, the effects of the roll angular velocity 
on the wing flutter speed and frequency can be observed in this 
figure. As expected, by increasing the roll angular velocity both 
the flutter speed and the flutter frequency of the wing decrease.   

CONCLUSIONS 
The effect of the rolling maneuver, one of the most popular 

flight maneuvers, on flutter of an airplane wing carrying an 
arbitrary placed powered-engine is considered. The governing 
equations include effects of both maneuver induced and lift and 
aerodynamic moment induced forces. Results are indicative of 
the important influence of the roll angular velocity on flutter 
speed and frequency of the wing-engine. The results show that 
the rolling maneuver has a detrimental effect on the dynamic 
flutter and restricts the wing dynamic stability region. Because 
of the destabilizing effect of the maneuver induced forces, 
dependent to wing-engine characteristics, for large values of 
the roll angular velocity, the flutter may take place at zero air 
velocity. On the other hand, increasing the rolling moment 
always seems to lower the flutter frequency. Furthermore, The 
engine parameters, such as e , eX , eY  and also the engine 

thrust, acts as a transverse follower force, causing remarkable 
changes in the wing-engine flutter speed and frequency. Clearly 
the effect of the roll angular velocity on the flutter speed is 
strongly dependent to the engine mass and its location. It is 
found that the flutter speed and frequency in the case of a 
heavy store is lower than those obtained for a light one, 
independent of the maneuver conditions. 

NOMENCLATURE 

b  = Wing semi chord  

E  = Young's modulus  

G  = Shear modulus         

H  = Heaviside function 

I  = Wing cross-section moment of inertia 

J  = Wing cross-section polar moment of inertia 

K,J,I ˆˆˆ  = Unit vectors of un-swept coordinate system 

k,j,i ˆˆˆ  = Unit vectors of un-deformed wing 
coordinate system 
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k,j,i  ˆˆˆ  = Deformed wing coordinate unit vectors 

l = Wing length  

mk  = Mass radius of gyration of wing  
cross-section 

L , M  = Wing sectional lift and moment 

m  = Mass of the wing per unit length  

eM  = Engine mass 

P  = Non-dimensional follower force 

eR  = Engine displacement vector 

T  = Kinetic energy 

U  = Strain energy 

U  = Air stream velocity  

fv  = Non-dimensional flutter speed  

w  = Displacement in z direction 

W  = Work done by non-conservative forces 

ZYX ,,  = Base coordinate system 

zyx ,,  = Undeformed swept wing coordinate system 

zyx  ,,  = Deformed wing coordinate system 

eee ZYX ,, = Nondimensional engine location in  
x, y and z directions, respectively 

y  = Distance between center of gravity 
 and elastic axis of the wing 

  = Variational operator 

D  = Dirac delta function  

,  = Wing cross-section local coordinates  

e  
= Nondimensional engine mass 

  = Wing sweep angle 

n  = Induced flow states 

  = Twist angle 

  = Wing material density 

  = Air density  

y  = Non-dimensional roll angular velocity 

f  = Flutter frequency 

  = Torsional  frequency 
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