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ABSTRACT
The standard model for damping is the linear viscous

dashpot which produces a force proportional to velocity.
Although other sources of linear damping are known to exist,
such as that due to viscoelasticity, it is not clear what range of
mathematical forms damping models can take. Here it is
suggested that there are only three types of damping model.
These models are deduced by examining three configurations of
mechanical components. These configurations include
combinations of springs and dashpots and, most significantly, a
semi-infinite beam. It is found that these models are best
examined in the Laplace or s-plane so that features of the
damping models may be expressed in terms of complex variable
theory. The three types of damping model revealed by this
analysis correspond to poles lying off the imaginary axis, poles
on the negative real axis and pole like forms on the negative
real axis that give rise to branch cuts. It is conjectured that these
are the complete set of mathematical models that describe
damping.

1 INTRODUCTION
What is the most general mathematical model for a mass-

spring oscillator with arbitrary damping? When is the standard
damping model of a linear viscous dashpot, in which the
damping force is proportional to the velocity, adequate? How
does damping influence a system with many degrees-of-
freedom? How can damping be appropriately modeled in a
computer simulation? It is surprising that all these questions
remain open and that so little is known about damping and the
way it influences structures.

This paper considers various alternative models for
damping with the objective of understanding what mathematical
form a general damping model may take.

Although numerical values for damping must be obtained
from experimental measurements an experimental approach is

not particularly fruitful in deducing the mathematical form of a
damping model. This is because the inevitable errors associated
with measurement mask underlying trends. Furthermore, it is
not possible to fit damping data to a model unless there is a
mathematical formulation for the model. Consequently, trying to
examine damping experiments in the hope of seeing a damping
model is problematic.

The approach taken here is to investigate combinations of
components which exhibit damping and have a full
mathematical description. In particular variants of mass-spring-
dashpot combinations are examined. An important additional
component, which is combined with a mass and springs, is the
semi-infinite beam. This component does not depend on
frequency in a simple way and is thus representative of a
viscoelastic material.

In investigating the mathematical models for the effect of
damping extensive use is made of complex variable theory.
Thus the mathematical models are represented in the complex
plane as complex frequency response functions. Although the
complex frequency plane, in which complex values of the
frequency  (in radians per second), could be used it emerges
that it is much simpler to use the complex s-plane in which

s = i  and 1i . The s-plane is the plane obtained when
using the Laplace transform although it is often simpler to start
in the frequency plane and then to convert to the s-plane.

The novel content of this paper is the identification of three
types of damping which it is conjectured cover all possible
damping forms.

The literature on damping is small with four text books
providing most of the current thinking: Lazan[1], Nashif et al.
[2], Mead [3] and Jones [4]. An early attempt at modeling
damping was the hysteretic approach. This was well developed
by Snowdon [5] but fails because it yields non-physical results.
Another approach to damping has been developed by
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Woodhouse [6] and by Woodhouse and Adhikari [7]. Their
approach is a top down investigation which starts with multi-
degree of freedom systems. Here a bottom-up approach is made
which starts with a single-degree-of-freedom system.

2 NOMENCLATURE

A Coefficient in partial fraction expansion of receptance
B Coefficient in partial fraction expansion of receptance
C Coefficient in partial fraction expansion of receptance
EI Beam bending stiffness
M Mass in beam system
R Receptance = complex displacement / complex force

c Dashpot coefficient
k Spring stiffness
m Mass or mass per unit length
s Laplace variable
z Complex variable

 Non-dimensional frequency

 Dimensionless stiffness ratio
 Dimensionless damping ratio
 Damping ratio
 Dimensionless beam factor
0 Beam parameter
 Frequency in radians per second
0 Dimensionless frequency

3 EXAMPLES OF DAMPING BEHAVIOUR

Some of the most interesting damping behaviour may be
found by examining a viscoelastic material; Figure 1 shows a
typical example. This data is tabulated in reference [4] and
corresponds to a proprietary compound called LD-400. The
data has been reworked from its original form and expressed as
a receptance i.e. the ratio of the harmonic displacement due to
an applied harmonic force and includes modulus and phase. The
receptance has been normalised so that at zero frequency it has
value 1.0. The huge dynamic range of the material should be
noted with the frequency range covering 18 decades and the
receptance a factor of 50. The empirical fit has also come from
[4] and is given by the equation
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where R indicates the receptance and  is the frequency in
radians per second. Note that the frequency is raised to the
power of 0.47. This is a fractional power and is the gradient of
the sloping part of the modulus function. Viscoelastic materials
exhibit a wide range of gradients that lie between 1 and 0.

Although a good fit to the data the empirical formula is not
satisfactory because for some frequency ranges it creates non
physical features in the receptance. It is for this reason that
physical components with exact receptance values are used
within this investigation.

A spring-dashpot system that has been used in an attempt to
model this material is given in Figure 2. Note that although this
spring-dashpot system fits some of the data the gradient is too
steep with a value of -1. The phase is also a very poor fit.

The measured data of Figure 1 shows the type of damping
system for which mathematical models are required.

4 THE MASS-SPRING-DASHPOT-MODEL
The standard and simplest model for a damped oscillating

system is shown in Figure 3. This system will be briefly
reviewed as a template for other systems and to identify the first
way in which damping enters a mathematical model.

The well known equation for the frequency response
function of this system is
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where R is again the receptance and the symbols correspond to
the labelled items in Figure 3. The equation may be reworked to
throw most terms into a non-dimensional form as follows

  2

2
0

2

0

21
11

21

11



















ik

i
k

R
(3a)

where

00
0 ,

2
,






 

m

c

m

k
(3b)

It is not possible to make all the terms non-dimensional and the
stiffness k has been left un-normalised. This stiffness then
becomes a reference value that is used in Equation 3b to make
the other terms non-dimensional. Equation 3a may also be
expressed in the Laplace s-plane by writing
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where the correspondence with the frequency response function
is made by setting s = i .

The denominator is a quadratic function in s with real
coefficients. The fundamental theorem of algebra states that the
denominator has either two real roots or two complex conjugate
roots. For  < 1 the two roots are complex while for  > 1 the
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two roots are real. If = 0 there is no damping and the roots are
pure imaginary and equal to  i. Figure 4 shows these
possibilities for the location of the roots on the complex plane.
The roots of the denominator correspond to poles of the
receptance function.

This is the first mathematical model for damping. The
damping, when modelled in the complex s-plane, causes a shift
of the poles of the un-damped system which takes them off the
imaginary axis into the left half plane. With large damping the
poles are shifted onto the negative real axis.

5 VARIANTS ON MASS-SPRING AND DASHPOT
MODELS
Figure 5 (a) and (b) show a mass with two springs and a
dashpot. This configuration captures some of the attributes of
the viscoelastic material described in section 3. At low
frequencies the dashpot produces only a small force and
stiffness dominates. Alternatively, at high frequencies the
dashpot produces a large force and may lock-up (i.e. have little
motion), again stiffness will dominate. Thus there is a frequency
range within which the damper can operate. The two
configurations in Figures 5 (a) and (b) lead to very similar
equations for the frequency response function and consequently
just configuration 5 (a) will be developed.

The receptance for the system in Figure 5 (a) is
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A non-dimensional form may be developed by defining
dimensionless parameters ,  and  as follows.
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These parameters represent the ratio of the two stiffnesses, a
normalised dashpot coefficient and a non-dimensional
frequency. In terms of these parameters and converting to the s-
plane the receptance becomes
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The denominator of the receptance is a cubic in s and thus
may be expanded by means of a partial fraction decomposition.
Two forms are possible depending on whether the denominator
has three real roots or one real root and a pair of conjugate

complex roots. (These two possibilities are proscribed by the
fundamental theorem of algebra.)

The case with three real roots may be written
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where r1, r2 and r3 are the three roots (all on the negative real
axis of the s-plane) and A1, A2 and A3 are the residues of the
poles (all real values).
The case with one real root and a pair of complex conjugate
roots may be written
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where r is the real root and the conjugate complex roots have
been combined to give the denominator of the standard single-
degree of freedom model. This not only gives meaning to the
receptance but makes all parameters including A, B and C real.
This receptance can be viewed as a single-degree-of-freedom
system to which an additional term has been added. All the
parameters , 0, r, A, B and C depend on the normalised
stiffness ratio  and normalised damping  .

Figure 6 (a) and (b) identify the behavior of 0 and  as 
and  are varied. The region in which there are three real roots
is contained between the lines label AOB with O being located
at the point  = 8 and  =  334  0.7698. These lines are
found by determining the discriminant of the denominator in
Equation 7.

The region underneath OB is the case where the stiffness k2

is large compared to k1 and consequently the system looks like
the standard single-degree-of-freedom system of Figure 3.
However, above the line OA the system has a large dashpot and
a large stiffness k2. In this case the stiffness k1 is negligible and
as the dashpot value is increased it locks-up causing the natural
frequency to increase and the damping ratio to decrease.

This configuration of a mass with two springs and a
dashpot gives rise to the second damping model. Here as well
as there being damping associated with poles lying off the
imaginary axis there is at the same time a pole on the negative
real axis. Generalizations of this damping model in which more
poles are present on the negative real axis are considered in
section 7.

6 BEAM DAMPERS
A beam of infinite length may carry waves to infinity with

no reflected waves returning; it therefore represents a system
which absorbs energy. The significant feature of an infinite
beam is that it has a frequency response function that is a
fractional power of frequency. In this way it is similar to a
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viscoelastic material. Thus when such a beam is incorporated
into a damping system it gives an exact mathematical model
that can be fully analysed. This avoids the difficulties of the non
physical model found in the empirical fit of the viscoelastic
material.

Figure 7 shows a configuration in which a mass on a spring
is located near the intersection of two beams which are
considered infinite. This is a plausible model for a machinery
installation in a building.

Figure 8 shows a development of this system in which there
is a spring, k1 which represents the static stiffness of the system.
The beam AB is considered to be a rigid lever of length L which
inputs vibration into the infinite flexible beam BC.

The two springs in Figure 8 act like those in Figure 5 and
control the low frequency and high frequency behaviour.

The receptance of the lever at point A, in the absence of the
spring is given by
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where E I is the bending stiffness of the beam (modulus of
elasticity times second moment of area about the neutral plane)
and m is the mass per unit length of the beam. Note the
fractional power (square root) of frequency in this receptance.
In the second form of the equation the mechanical properties
have been consolidated into a parameter 0.

The square root of frequency in the receptance requires
some special attention because it is multivalued and furthermore
must take complex values. In complex variable theory such
functions require the definition of a branch cut so that just one
of the complex values may be considered at a time. The
selection of the branch cut will be delayed until the final
receptance and its conversion to the s-plane has been
established.

The receptance of the whole system in Figure 8, due to the
force applied to the mass, may be constructed by combing the
mass and the two springs with the receptance of the infinite
beam to give the following expression
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This receptance may be thrown into a non-dimensional form
along the same lines as that used in Section 3 and Section 4.
The non-dimensional form in the frequency and s-plane are
given by
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where the following substitutions have been made
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The presence of the s on the denominator and numerator
means that Equation 12 cannot be expressed in terms of a
partial fraction expansion. Consequently some further
manipulation is required in order to gain some understanding.
Figure 9 shows the complex s-plane that will be used to
describe the features of Equation12. The wiggly line drawn
from - to 0 is a branch cut which is introduced to select one
value of the square-root function. All values of s are restricted
to have an argument, , that is limited to   .
Numerical evaluation indicates that there is a pair of complex
poles in the left hand side of the complex s-plane; these are also
shown. These poles exist for all positive values of  and .. The
existence of these poles has been established numerically. No
case has been found where the poles are located on the real
axis. A mathematical proof of their existence within the left
plane with the exclusion of the real axis has yet to be found.

The form of Equation 12 and Figure 9 gives the third form
of damping model. Here as well as poles off the imaginary axis
there are branch-cut features that contribute to the damping.

In order to further understand the branch-cut features and to
simplify Equation 12 the following substitution is made to
remove the square root

2or zszs  (14)

It should be noted that the transformation is not fully
reversible since there are values of z that cannot be reached by
the square root of s according to the branch-cut restriction of
Figure 9. The result of making the transformation from s to z is
to turn Equation 12 into a simple ratio of two polynomials given
by
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The denominator of Equation 15 is a polynomial of order 5
and has real coefficients. There are thus three possibilities for
roots: 5 real roots or 3 real roots and one complex conjugate
pair or one real root and 2 pairs of complex conjugate roots.

The results of a numerical investigation are shown in
Figure 10. The lines OA and OB are found by determining the
discriminant of the denominator of Equation 15. As the
parameter space of  and  is divided into just two regions only
two of the above possibilities occur for roots. It is found that the
case of one complex pair occurs within OAB and that outside
this region there are two complex pairs.

These two regions give rise to two possibilities for the
partial fraction decomposition. The general form of the partial
fraction decomposition of Equation 15 is
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where the zi are the five roots of the denominator and the Ai are
the residues of each pole. At least two of the roots will be
complex conjugate pairs and if the values of  and  lie outside
AOB then there will be two such pairs. The values of the roots
and of the residues all depend on the values of  and .

Following the partial fraction decomposition on the z-
plane it is necessary to invert the transformation to find an
expression in the s-plane. To facilitate this transformation let
the first two terms of Equation 16 correspond to the complex
pair that will remain in the s-plane. (The other roots will not be
found on the s-plane but will express themselves through the
branch-cut.). Now add the additional terms
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which deliberately sum to zero adding nothing. The modified
version of Equation 16 can now be written
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where terms have been combined to give a quadratic form that
is convenient for conversion back into the s-plane. Converting
back into the s-plane using the transformation in Equation 14
gives
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Here the first term corresponds to the standard form of a
single-degree-of-freedom system with a damping ratio and
natural frequency. The remaining terms do not have roots on the
complex plane and because of their square root dependence are
simple terms involving the branch cut.

This is the typical mathematical form for the third form of
damping model.

7 GENERAL FORM FOR DAMPING
As a consequence of investigating the response of a mass-spring
system with various examples of damping components three
types of mathematical model for damping have been identified.

To summarise:
i) Damping associated with off-imaginary-axis poles.
ii) Damping associated with poles on the negative real axis.
iii) Damping associated with branch cut behaviour.

The first damping model is familiar from the standard study of
the single-degree-of-freedom system. The other two types of
damping give rise to terms which are additional to that of the
single-degree-of-freedom model. These terms disappear as
damping is set to zero.

These forms of damping can be easily generalised. For
example, in Figure 11 the second form of damping is extended
to have several poles by adding further springs and dashpots.

Similarly the beam damper can be generalised by
considering a dependence on frequency that depends on other
fractional powers. Mixtures of these models are also possible.
However, whatever generalisations are used the resulting forms
can be categorised as belonging to one of the three types listed
above. It is conjectured that this applies to all damping models.
Furthermore the simplification of the equations to that given
above (by means of partial fractions or the generalisation of
partial fractions for the third type) may prove to be useful.

8 DISCUSSION
The partial fraction expansion of the frequency response
functions leads to a convenient mathematical form for further
study. In particular, it would be nice to know when terms are
important or can be ignored. This is not an easy task and may
depend on the circumstances in which the model is used. If for
example the model is part of a larger system and damping is
important it is not clear how the damping of the whole system
will depend on the details of the model.

A useful observation for those taking measurements and
fitting mathematical models is that it is always correct to fit a
single-degree-of-freedom system. Note that each of the models
has this as one term. However, this work has shown that the
single-degree-of-freedom model may not be sufficient and that
more terms may be required.

The use of the s-plane has been particularly
satisfactory. In this transformation the frequency response
functions have all real coefficients. This simplifies numerical
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work and makes the identification of complex conjugate terms
straightforward.

It is suggested that there can be no other forms of damping
than the three types identified here. This suggestion is based on
the idea that there are a limited number of features that the
complex plane can exhibit while still maintaining, as it must, an
analytic domain in the right half plane. It should be noted that
except for the off-axis poles all the other features are associated
with the negative real axis. This is perhaps necessary because
features away from the axis would lead to oscillatory behaviour.

9 CONCLUSIONS
The following conclusions may be drawn.

1. The study of damped dynamic systems that are based on
theoretical models rather than experimental data allows a
deep and full understanding of general linear damping
behaviour.

2. Mass-spring-damping systems may be conveniently
analysed in the frequency domain and the Laplace s-plane.
The s-plane is particularly convenient because coefficients
of the frequency response function are real and complex
conjugates may be easily identified.

3. The behaviour of an infinite beam provides an example of
a damping mechanism that is frequency dependent (with
frequency raised to a fractional power) in a manner similar
to a viscoelastic material.

4. A method of breaking down a frequency response function
into a number of terms which can be studied
independently has been developed. For some cases this is
just a partial fraction decomposition. However, a method
for decomposing a rational polynomial involving
fractional powers has also been developed and illustrated.

5. When expressed in a decomposed form the well
known single-degree-of-freedom system is always
present as one of the terms. However, the presence of
damping creates additional terms that have been
revealed by this analysis.

6. Damping emerges in mathematical models in three
ways. Firstly it causes poles on the imaginary axis to
move into the left hand side of the complex s-plane.
Secondly, it results in poles on the negative real axis
and thirdly it gives rise to branch-cut terms which can
be written in pole-like forms.
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Figure 2. A two-spring-dashpot combination representing a damping
system. Springs k1 and k2 with dashpot c.

k c

m

F X

Figure 3. The standard mass-spring-dashpot system with stiffness k, dashpot coefficient c and mass m. The harmonic
force amplitude and displacement response are F and X.
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c. The harmonic force amplitude and displacement amplitude are F and X.
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Figure 7. A mass-spring system connected to a system of infinite beams.
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Figure 8. A mass on two springs is attached to a lever A B which operates an infinite flexible beam B C.

Figure 9. The complex s –plane showing the location of the branch cut (wiggly line) and
the two poles of Equation 12
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Figure 10. Regions of pole combinations for Equation 15. Within AOB one pair of
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conjugate roots, outside AOB, two pairs of conjugate roots.
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Figure 11. A generalisation of Figure 5 to many springs and dashpots.
The dots indicate where additional items could be placed.




