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ABSTRACT 

Flow‐excited acoustic resonance of trapped modes in ducts 

has been reported in different engineering applications. The 

excitation mechanism of these modes results from the 

interaction between the hydrodynamic flow field and the 

acoustic particle velocity, and is therefore dependent on the 

mode shape of the resonant acoustic field, including the 

amplitude and phase distributions of the acoustic particle 

velocity. For a cavity‐duct system, the aerodynamic excitation 

of the trapped modes can generate strong pressure pulsations 

at moderate Mach numbers (M>0.1). This paper investigates 

numerically the effect of mean flow on the characteristics of 

the acoustic trapped modes for a cavity-duct system. 

Numerical simulations are performed for a two-dimensional 

planar configuration and different flow Mach numbers up to 

0.3. A two‐step numerical scheme is adopted in the 

investigation. A linearized acoustic perturbation equation is 

used to predict the acoustic field. The results show that as the 

Mach number is increased, the acoustic pressure distribution 

develops an axial phase gradient, but the shape of the 

amplitude distribution remains the same. Moreover, the 

amplitude and phase distributions of the acoustic particle 

velocity are found to change significantly near the cavity shear 

layer with the increase of the mean flow Mach number. These 

results demonstrate the importance of considering the effects 

of the mean flow on the flow‐sound interaction mechanism.  

INTRODUCTION 

Noise and vibration problems caused by free shear flow 

over cavities have been reported in the literature for more than 

50 years [1].  Rockwell & Naudascher [2] provide an 

extensive review of cavity flow oscillations. The oscillation of 

the cavity free shear layer produces acoustic energy that can 

excite the acoustic resonance inside the cavity itself or of the 

enclosed domain that the cavity is attached to. The excitation 

process is self-sustained by a feedback mechanism. The two 

main components of this mechanism are the inherent 

instability of the cavity shear layer and the interaction between 

the free shear layer and the acoustic field.  The shear layer 

instability causes small vorticity perturbations at the cavity 

leading edge to grow rapidly as they travel downstream with 

the flow. The amplified vorticity fluctuations interact with the 

acoustic particle velocity (the velocity fluctuation associated 

with the resonant acoustic field) near the cavity downstream 

edge such that part of the flow perturbation energy is 

transformed into acoustic energy to excite, or sustain the 

excitation of the acoustic resonance. Subsequently, the particle 

velocity of the excited acoustic mode triggers the free shear 

layer near the cavity upstream edge to close the feed‐back 

loop, and thereby starts a new cycle of oscillation. From this 

cycle of events, it is clear that the excitation process is 

strongly dependent on the shape of the resonant acoustic 

mode, and therefore the effect of the mean flow on the 

amplitude and phase distributions of the resonant acoustic 

mode needs to be clarified. 

Flow over cavities is known to be capable of exciting 

different types of acoustic resonances. For example, the 

acoustic modes of the cavity volume “alone” can be excited 

for deep cavities at low Mach number flows (East [3], Ziada 

[4]) shallow cavities can also be excited by grazing flows, but 

only at moderate and high Mach numbers [5; 6]. At low Mach 

numbers, unconfined shallow cavities do not generally 

produce strong resonances because of the associated high 

radiation damping. However, when they are confined, the 

acoustic modes of the confinement can be strongly excited by 

low Mach number flows over shallow cavities. For example, 

Davies [7], Nomoto and Culick [8], Rockwell & 

Schachenmann [9; 10], Stubos et al. [11] and Geveci et al. [12] 

investigated the coupling between an internal cylindrical 

cavity and the longitudinal acoustic modes in the attached 

pipes. The longitudinal modes here refer to the acoustic plane 

waves along the main flow duct. On the other hand, the 

acoustic trapped modes of ducted cavities can strongly be 

excited by the oscillation of the cavity shear layer.  Keller & 
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Escudier [13] and Ziada et al. [14] studied experimentally the 

coupling between the cavity shear layer and the trapped modes 

of the cavity-duct system. The excitation of trapped modes can 

generate excessively high sound pressure levels as a result of 

their low radiation losses. 

Many researchers studied the momentum and energy 

exchanges occurring between the hydrodynamic field and the 

acoustic field e.g. [15; 16; 17], by the superposition the 

acoustic field and the fluctuating hydrodynamic field. It has 

been shown that the relative phase between the vorticity field 

and the acoustic particle velocity of the resonant mode is the 

controlling parameter for whether the acoustic energy will be 

produced or absorbed by the vorticity field. Also, the amount 

of energy generation (or absorption) depends on the amplitude 

of the acoustic particle velocity where the energy exchange 

takes place [18]. However, to the author knowledge, all the 

studies reported in the literature, consider the acoustic field at 

zero flow velocity; and thereby ignore the effects of the mean 

flow and the coupling mechanism on the amplitude and phase 

distributions of the particle velocity associated with the 

resonant acoustic mode. This approach is based on the 

argument that these effects are negligibly small as long as the 

Mach number of the mean flow is small. This argument has 

not been critically examined to date.   

To examine the effect of the mean flow on the acoustic 

particle velocity, a numerical model is developed to simulate 

this phenomenon. The work presented in this paper predicts 

the effect of mean flow on the trapped mode shape of a ducted 

cavity. The excitation of this type of modes has been reported 

for various valve configurations including, for example, gate 

valves [19]. Keller & Escudier [13] studied the excitation of 

these modes at Mach numbers close to unity and Ziada et al. 

[14] found that the excitation level is proportional to the Mach 

number. The latter authors reported also that self‐sustained 

resonances can occur at Mach numbers as low as 0.1. More 

recently, Aly and Ziada [20] reported acoustic resonances of 

the lowest three trapped modes of a cavity‐duct system at 

Mach numbers ranging from 0.1 to 0.4 Therefore, determining 

the effect of the mean flow on the acoustic field will allow for 

better understanding of the excitation mechanism and for the 

development of suitable suppression techniques. 

Acoustic trapped modes are known to exist in unbounded 

fluids and wave guides where the perturbation energy is 

localized in regions accommodating some changes in the 

domain geometry or the fluid properties [21]. For the 

cavity‐duct configuration, the cavity represents the 

geometrical change which introduces the trapped mode to the 

system response. The acoustic pressure of the trapped mode 

along the wave guide decays exponentially with the distance 

from the cavity. Duan et al. [22] determined numerically the 

characteristics of the trapped modes at zero flow velocity for a 

two‐dimensional cavity‐duct system. These modes have a 

vanishingly small imaginary part which corresponds to small 

radiation from the ducts ends. Hein and Koch [23] and Koch 

[24] extended Duan et al’s work and predicted numerically the 

existence of “nearly trapped” diametral modes for 

axisymmetric cavity‐duct configurations, also for zero flow 

condition. In practice, these modes can be strongly excited by 

the flow over the cavity opening [20], as they experience very 

small damping.  

The effect of the mean flow on the resonance frequency 

of flat plate cascade was studied by Koch [25]. Lee [26] 

studied the effect of the mean flow Mach number on the 

resonance mode of a wind-tunnel with plenum. Both, Koch 

and Lee reported decrease in the resonance frequency with the 

increase of the Mach number. Moreover, Lee reported that the 

mode shape at the slotted wall between the wind-tunnel and 

the plenum changes with the increase of the Mach number. 

Also, the effect of the mean flow on the acoustic resonance of 

constant and variable area ducts has received considerable 

attention by researchers working in the area of sound 

propagation and radiation from jet engine fans. For example, 

Eversman [27], Nayfeh et al. [28] and Li et al. [29] are among 

numerous authors who studied the effect of mean flow on the 

sound propagation in ducts. Eversman [30] provides a 

comprehensive review of this subject. 

In this paper, the results of a numerical simulation of 

trapped modes are presented for the case of a cavity‐duct 

system with mean flow. The objective is to explore the effect 

of the mean flow on various aspects of the resonance mode 

characteristics, such as the amplitude and phase distributions 

of the acoustic pressure and particle velocity. In order to 

validate the accuracy of the simulation, the trapped mode 

frequency obtained from the simulation will be compared with 

the experimental data. The numerical approach and schemes 

are outlined in section 2. The technique of determining the 

frequency of the trapped mode is described in section 3. In 

section 4, the characteristics of the first (or lowest) trapped 

mode of the 2‐D planar cavity‐duct system are presented. 

 

NUMERICAL APPROACH  

A two-step approach was adopted to allow consideration 

of the effect of the mean flow on the acoustic mode shape and 

frequency. In the first step, the mean flow was simulated by 

solving steady state Reynolds Average Navier-Stokes 

equations. A commercial finite volume code was used. The 

turbulence quantities were modeled using Reynolds stress 

model to ensure accurate treatment of the free shear layer. The 

unsteady acoustic field is simulated in the second step, which 

involves solving a system of linearized acoustic perturbation 

equations. This approach allows the investigation of the effect 

of the mean vorticity and velocity gradient, in addition to the 

convection effect, on the acoustic field. However, the effect of 

the energy exchange on the mode shape is not considered 

because at the trapped mode frequency, the radiation damping 

is very small and the amount of energy exchange at the shear 
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layer becomes relatively small compared to the total acoustic 

energy in the computation domain.   

A FORTRAN finite difference code was developed to 

solve the lineariezed acoustic perturbation equations. The 

system of governing equations and the schemes used to 

calculate the spatial and temporal derivatives are discussed in 

the next subsections. 

System of governing equations 

      A linearized system of “Acoustic Perturbation equations” 

(APE), developed by Ewert & Schröder [31], was used to 

describe the acoustic propagation. Unlike the linearized Euler 

equations (LEE), the APE does not support the vorticity 

equation. Therefore, APE can be used to simulate the acoustic 

field in the free shear layer region without suffering from the 

excitation of the hydrodynamic instability. Ewert & Schröder 

[31] separated the different eigienmodes of the linearized 

Euler equations in the frequency wave number domain. The 

eigenmodes governing the vorticity and entropy wave were 

then removed and the system of equations was transferred 

back to the spatial-time domain. The resulting APE for 

multidimensional domain without source terms can be written 

as follows: 

𝜕𝑝𝑎

𝜕𝑡
+ 𝑐2∇  ρ0𝑈   𝑎 + 𝑈   

𝑝𝑎

𝑐2 = 0                            1 

 
𝜕𝑈𝑎

𝜕𝑡
+ ∇ 𝑈   . U   a + ∇(

𝑝𝑎

𝜌0
) = 0                               2 

 

where, 𝑝𝑎  is the acoustic pressure perturbation, 𝑈   𝑎  is the 

acoustic particle velocity vector, 𝑈    is the mean velocity 

obtained from the simulation of the RANS equations, 𝜌0 is the 

mean density and 𝑐 is the mean acoustic speed, which is set to 

340 m/s. The source terms are ignored as they describe mainly 

the effect of the turbulence or the entropy fluctuations on the 

acoustic field.   

Calculation of the spatial derivatives  

The spatial derivatives were calculated using the three 

points stencil optimized prefactored compact finite difference 

scheme developed by Ashcroft & Zhang [32].  This scheme is 

a fourth order accurate with low dissipation and low 

dispersion characteristics. Therefore, this scheme is suitable 

for accurate simulation of acoustic wave propagation. Also, 

this scheme requires a relatively small stencil, as well as fewer 

boundary stencils that allow a simple formulation of the 

boundary conditions. A minimum of 5 points per wavelength 

is needed to accurately resolve the propagation of a certain 

wave.  

Time marching scheme 

A two-step 5/6 stages low-dissipation and low dispersion 

Runge-Kutta scheme (LDDRK) was used to perform the 

numerical integration with time [33]. This is a fourth order 

accurate scheme with optimized coefficients to minimize the 

numerical dissipation and dispersion. This optimization 

increases the time step limit that is based on the level of 

numerical dissipation. The 2N-storage form of the scheme 

[34] is used. An 8th – order filter is also applied at each stage 

of the Runge-Kutta scheme [35]. 

Treatment of the boundary conditions 

Appropriate numerical boundary conditions are needed to be 

implemented for each boundary of the computational domain 

including hard wall and duct open ends. The description of 

each numerical boundary condition is given in the following.  

 

Wall boundary condition At the grid nodes of the wall, 

the velocity is set to zero and the velocity derivative in the 

perpendicular direction on the wall is calculated using one-

sided explicit formulas provided by Ashcroft & Zhang. [32].  

 

Zero pressure boundary condition The pressure is set to 

zero at the inlet and outlet of the cavity-duct system. This 

boundary condition reflects all pressure waves back inside the 

domain. The rationale behind this implementation is discussed 

later on with the presentation of the simulation results. It 

suffices to mention here that the simulated cross‐mode has 

been found to be either trapped or nearly trapped [23] which 

has a negligibly small radiation damping. The pressure 

derivative perpendicular to the boundary is calculated using 

the same one sided explicit formulas [32]. The velocity 

derivative perpendicular to the boundary is set to zero. 

DETERMINATION OF THE RESONANCE 
FREQUENCY 

      The first step to simulate the acoustic resonance is to 

determine the frequency of the resonance mode of interest. 

Experimentally, the resonance frequency can be determined by 

exciting the physical domain using a loudspeaker driven by a 

random signal. Using a technique analogous to this 

experimental method, the numerical domain is excited by a 

broadband excitation by vibrating the cavity floor. 

 

      To produce a broadband excitation, the cavity floor was 

forced to oscillate according to the following function: 

 

𝑣𝑒 𝑡 = 0.5
 sin (2𝜋𝑓𝑒(𝑡−aa ))

2𝜋𝑓𝑒(𝑡−aa )
                                         3 

 

where 𝑣𝑒 𝑡  is the instantaneous vertical velocity of the cavity 

floor, 𝑓𝑒  is the maximum frequency of excitation, 𝑎𝑎 is a shift 

in the time to ensure that the vibration at the beginning of the 

simulation has low amplitude, as shown in Fig. 1. This 

prevents the generation of high frequencies in the solution due 

to the discontinuity of the initial condition, which cannot be 

handled by the numerical grid.   

The Fourier analysis of the cavity floor oscillation 

function shows that the cavity floor oscillation can be 
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described by a rectangular function in the frequency 

domain= 
1

𝑓𝑒
𝑟𝑒𝑐𝑡  

𝑓

2𝑓𝑒
 . The rectangular function is described as 

follow:  

 

𝑟𝑒𝑐𝑡  
𝑓

2𝑓𝑒
 =

 
 
 

 
 0       

𝑓
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1
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1
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Figure 1 Time signal of the cavity floor forced oscillation 

 

Figure 2 shows the amplitude spectrum of the cavity floor 

vibration velocity as implemented in the program. The 

amplitude and the shape of the perturbation agree perfectly 

with the analytical formula given by equation 4.  

 
Figure 2 Amplitude spectra of the cavity floor forced oscillation 

 

Figure 3 shows the amplitude spectrum of the pressure 

fluctuation corresponding to the 2-D cavity duct system 

excited by the forced oscillation described by equation 3. The 

2-D duct has 2 cavities attached to the middle of the duct on 

the top and bottom walls. The cavities are 25 mm in length 

and 25 mm in depth and the duct height is 150 mm. The 

amplitude spectrum is for pressure time trace at the middle of 

the cavity floor. The maximum frequency, 𝑓𝑒 , of the random 

excitation was set to 10000 Hz. The floors of both cavities 

were forced to oscillate out-of-phase to excite the first trapped 

cross-mode and to avoid exciting the longitudinal modes. The 

power spectrum shows a strong peak at 1109 Hz which 

corresponds to the first trapped mode. The finite element 

analysis solving the mass-stiffness matrix for the same 

geometry without flow results in a frequency of 1112 Hz. This 

demonstrates the good agreement between the current 

methodology, in the case of zero flow velocity, and the 

solution of the mass-stiffness matrix. As can be seen in Fig. 3, 

numerous other peaks with smaller amplitudes appear in the 

spectrum. These peaks represent the combined cross-

longitudinal modes. 

 

 
Figure 3 Spectrum of the pressure fluctuation resulting from the 

broad band excitation of the numerical domain 

 

RESULTS OF THE 2-D PLANAR GEOMETRY  

The results of this section detail the changes which occur 

in the first trapped mode with the increase in the mean flow 

velocity. First, the results of random excitation at different 

flow Mach numbers are presented to show the effect of the 

mean flow field on the acoustic mode frequency. This is 

followed by the simulation results showing the effect of the 

mean flow field on the acoustic mode shape.  

The trend of the frequency change obtained from the 

simulation is compared with the experimental data reported by 

Aly [36]. To simplify the comparison, the dimensions of the 

simulation domain are chosen to be the same as those of the 

test rig used by Aly [36]. Figure 4 shows a schematic of the 

geometry of the 2-D cavity-duct system.  The duct has 2 

cavities attached at its center to the top and bottom walls. The 

cavities are 25 mm long and 25 mm deep. The duct height is 

chosen to be 150 mm. A relatively long duct, 2 m, is 

considered to ensure that the artificial boundary conditions of 

zero pressure at the duct ends would not influence the general 
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behaviour. Three different mean flow Mach numbers (0.1, 0.2, 

and 0.3) were simulated in addition to the case of zero flow. 

Effect of mean flow on the resonance frequency 

The cavity-duct geometry was simulated considering 

different average mean flow Mach number. A uniform mesh 

with grid spacing of 1.5625 mm was used in the simulation of 

the different flow rates. With this grid spacing, about eight 

grid points existed within the free shear layer thickness. This 

is to ensure adequate representation of the effect of the 

velocity gradient of the free shear layer on the pressure wave 

propagation and to minimize the generation of spurious wave 

due to corner singularity. Reducing the grid spacing to 1.25 

mm changed the resonance frequency by about 0.5% at low 

Mach number. Therefore, the 1.5625 mm grid spacing was 

used in the simulation of all the cases to ensure no effect from 

changing the grid spacing on the comparison between the 

resonance frequencies of the different flow Mach number 

cases. 

Figure 5 shows the resonance frequency of the first 

trapped mode (f1) for different mean flow Mach numbers as a 

ratio to the resonance frequency at zero flow (f1(M=0)). At 

zero flow velocity, the trapped mode frequency is 1109 Hz, 

which is about 0.98 of the cut-off frequency of the main duct. 

Referring to Fig. 5, the numerical results show that the 

resonance frequency decreases with the flow Mach number.  

The rate of the frequency drop increases with the Mach 

number. Similar behaviour was observed in the experimental 

results of Aly [36] as shown in Fig. 5, and in the numerical 

simulation results reported by Koch [25] and Lee [26] for 

other flow configurations. The experimental data shown in 

Fig. 5 corresponds to a cavity with 12.5 mm depth and 50 mm 

length. This experimental case has a trapped mode frequency 

at a very low flow velocity of about 0.975 of the main duct 

cut-off frequency. This ratio proved to be a good 

dimensionless parameter that can be used to characterize the 

impact of the mean flow on the resonance frequency. At a 

Mach number of 0.3, the difference between the experimental 

and numerical dimensionless frequencies is about 0.008 which 

is considered good given all the simplifications implemented 

in the numerical model. 

 
Figure 5 Dimensionless frequency of the trapped mode as a 

function of the mean flow Mach number 

Effect of mean flow on the mode shape 

In this section, the effect of the mean flow on the mode 

shape of the first trapped acoustic mode is discussed. This 

includes the characterization of the mean flow effect on the 

spatial distributions of: (a) the acoustic pressure; (b) the 

acoustic pressure phase; (c) the particle velocity amplitude and 

(d) the particle velocity phase. 

To obtain the pressure and particle velocity fields, the 

numerical domain, which is shown in Fig. 4, is excited at the 

resonance frequency by vibrating the cavity floor. This 

artificial method of exciting the domain has no effect on the 

mode shape because trapped acoustic mode under 

consideration is very lightly damped. Consequently, the ratio 

of the input energy to the acoustic energy inside the domain at 

steady state is small. Therefore, this excitation method does 

not change the shape of energy distribution in the domain. The 

grid spacing used is the same as described in the previous 

section for the random excitation to ensure the same resonance 

frequency in both cases. The solution for the pressure field 

amplitude and phase was considered adequate when the cycle-

to-cycle change of the maximum pressure amplitude at the 

cavity floor became less than 0.5% of the maximum 

amplitude. This requirement ensured that the effect of 

transient response on the results is negligible.   

Amplitude of the acoustic pressure Figure 6 shows the 

contour plot of the pressure amplitude of the first trapped 

acoustic mode of the planar cavity‐duct system. The plot 

corresponds to zero mean flow velocity. The plot shows that 

the maximum pressure amplitude is located at the center of 

cavity floor. The amplitude decreases with the distance from 

the cavity center. This agrees with the general description of 

the cross‐modes of symmetric ducts. For the cases with mean 

flow Mach numbers of 0.1, 0.2 and 0.3, the distributions of the 

pressure amplitude are found to be generally similar to those 

shown in Fig. 6. 

Figure 7 shows the ratio of the pressure amplitude along 

the duct wall and the cavity mouth to the pressure amplitude at 
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the middle of the cavity floor for the four simulated mean flow 

Mach numbers. In all simulations presented in this paper, the 

flow direction is from the left to the right and the x-axis is the 

distance measured from the center of the cavity. The pressure 

amplitude is seen to decay exponentially with distance from 

the cavity in all four cases. According to Kinsler et al. [37], the 

exponential decay of a transverse wave with a frequency 

below the cut-off frequency of a constant cross-section infinite 

wave guide is given as follows: 

Pa(x) = Ae−kk  x                                            5 

kk =
 ωk

2−ω22

c
                                                6 

where, Pa(x) is the pressure amplitude in the x-direction, ωk  is 

the cut-off frequency of the wave guide (rad/s), ω is the 

frequency of the decaying transverse wave (rad/s) and c is the 

speed of sound.  

 

For the case of zero flow, the cut-off frequency of the 

main duct is 1133.3 Hz and the trapped mode frequency is 

1109 Hz. Using equation 6, the exponential decay coefficient, 

kk, for the case of zero flow velocity is 4.32 m
-1

. From the 

numerical results, the exponential decay exponent is 4.47 m
-1

. 

This indicates acceptable level of accuracy in predicting the 

acoustic wave propagation using the current numerical 

method. For the other flow velocities, the exponential decay 

coefficient decreases with the increase of the flow Mach 

number. At a Mach number of 0.3, the decay coefficient is 

4.15 m
-1

 upstream of the cavity and 4.0 m
-1

 downstream of the 

cavity.  The difference in the rate of decay between the 

upstream and downstream sides of the duct is evident in all 

simulated cases. However, in all the cases, the pressure 

amplitude 0.5 m away from the center of the cavity is an order 

of magnitude lower than the amplitude at the cavity center. If 

the same exponential decay is maintained for the rest of the 

simulated duct, the pressure amplitude at the duct termination, 

1 m away from the cavity, will be two-order of magnitude 

lower than at the center of the cavity. Therefore, the artificial 

reflective boundary condition which is applied at the duct ends 

has extremely small effect on the mode shape. This is also 

evident in the perfect exponential decay predicted by the 

simulation.   

Referring again to Fig. 7, the pressure amplitude at the 

cavity mouth is around 84% of the pressure amplitude at the 

cavity floor in the case of zero flow. As the Mach number 

increases, the pressure amplitude increases near the 

downstream edge of the cavity. At a Mach number of 0.3, the 

pressure amplitude at the downstream edge is almost equal to 

the amplitude at the center of the cavity floor. 

Phase of the acoustic pressure It is well known that, at 

zero flow, the change in the phase of the acoustic pressure of 

the trapped acoustic mode along the axial direction of the duct 

is zero. In the transverse direction, the phase change is zero 

everywhere except across the duct centerline, where the 

pressure switches polarity and a phase jump of 180
0
 occurs.  

The current numerical results follow exactly this description at 

zero flow velocity. However, the numerical results show an 

axial change in the pressure phase when the mean flow 

velocity is greater than zero. Figure 8 shows several snap shots 

of the pressure contours over almost half a cycle. Note that the 

snap shots are equally spaced in time, the mean Mach number 

is 0.2 and the flow direction is from the left to the right. As 

shown in these contour plots, the pressure mode shape travels 

upstream in the opposite direction to the flow. The traveling 

speed (group speed) and consequently the axial phase 

distribution are found to depend on the Mach number.   

Figure 9 shows the distribution of the phase of the 

acoustic pressure in the axial direction for Mach numbers of 

0.1, 0.2 and 0.3. These results correspond to the trapped mode 

pressure distributions shown in Fig. 7. The phase of the 

pressure at the mid-length of the top cavity floor is taken as a 

reference during the phase calculation.  To determine the 
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Figure 7 Simulation results of the planar cavity-duct system 

showing the acoustic pressure amplitude along the duct wall as a 

ratio to the amplitude of the pressure at the centre of the cavity 

floor. Flow direction is from right to lift 

Figure 6 Contours of the pressure amplitude of the first 

transverse acoustic mode of planar cavity-duct system. M=0, 

L=25mm, d=25mm and the duct height = 150mm. 
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phase at a selected point, the time period between the 

occurrence of maximum pressure amplitude at this point and 

the occurrence of maximum amplitude at the middle of the 

cavity is calculated. Thereafter, this time difference is 

multiplied by the angular frequency to determine the phase 

difference between the selected point and the middle of the 

cavity floor. This procedure is repeated for all the grid point to 

obtain a comprehensive picture of the phase change within the 

computational domain. 

 
Figure 8  Snap shots of the contours of the acoustic pressure over 

half a cycle of the trapped mode of the cavity-duct system. The 

contours amplitude is linearly distributed from +1 to -1. M=0.2. 

 

As can be seen in Fig. 9, the rate of the axial phase 

change of the trapped mode appears to be constant along the 

axial direction. This rate increases with the increase of the 

Mach number.  It is noteworthy that there is no phase change 

in the transverse direction except the change of pressure 

polarity at the center line, see Fig. 8. To quantify the rate of 

the phase change, the axial phase speed was calculated. The 

phase speed is the speed at which the phase is propagating in a 

certain direction. The local phase speed was calculated as 

follow: 

cp = −ω
Δx

Δphase
                                             7 

 
Figure 9 Simulation results of the first trapped mode of the 

planar cavity-duct system showing variation of the pressure 

phase in the axial direction along the duct wall.  

where, 𝛚, is the angular frequency. The negative sign 

indicates that when 
𝚫𝐱

𝚫𝐩𝐡𝐚𝐬𝐞
 is positive the wave propagates in 

the negative 𝐱-direction. Figure 10 shows the distribution of 

the absolute value of the phase speed along the axial direction 

for M=0.2. The average phase speed away from the middle of 

the duct, where the cavity is located, is about 1595 m/s. In the 

vicinity of the cavity location, the phase speed decreases. This 

phenomenon is observed also in the results of M=0.1 and 0.3. 

The average phase speed for M=0.1 and 0.3 is about 3290 m/s 

and 1010 m/s, respectively. Similar behaviour was predicted 

for transverse modes of straight ducts [30].  

 
Figure 10 Simulation results of the first trapped mode of the 

planar cavity-duct system showing axial Phase speed of the 

pressure for M=0.2. 

Amplitude of the acoustic particle velocity The 

acoustic power production during the aerodynamic excitation 

of the acoustic resonance depends on amplitude and phase 

distributions of the acoustic particle velocity of the resonant 

mode. More specifically, for the two‐dimensional geometry 

under investigation, Fig. 4, the power production is strongly 
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related to the vertical component of the acoustic particle 

velocity. Therefore, this section focuses on the characteristics 

of the particle velocity vertical componernt. Figure 11 shows 

the contour plot of the vertical particle velocity for zero flow 

condition. The results for Mach numbers of 0.1, 0.2 and 0.3 

are found to be similar to the zero flow condition near the 

centerline of the duct, except that the location of the maximum 

particle velocity at the centerline shifts slightly downstream as 

the Mach number increases. As an example, for Mach number 

of 0.3, the location of the maximum particle velocity shifts by 

7 mm downstream.  However, the main changes in the 

amplitude of the vertical particle velocity occur at the cavity 

mouth where the acoustic power is produced.  

Figure 12 shows the contour plots of the vertical particle 

velocity near the cavity mouth for the four studied flow Mach 

numbers. All figures correspond to the same acoustic pressure 

at the center of the cavity floor. At zero flow, the distribution 

of the particle velocity amplitude is symmetric with the 

amplitude increasing near the cavity edges. For a Mach 

number of 0.1, the amplitude is higher near the upstream edge 

of the cavity. For Mach numbers of 0.2 and 0.3, the maximum 

amplitude starts to move toward the downstream edge. These 

results underline the significant change in the distribution of 

the vertical particle velocity with the mean flow Mach 

number, and its consequent effect on the mechanism of sound 

generation during acoustic resonance.  

Phase of the acoustic particle velocity The phase 

distribution of the acoustic particle velocity is important in 

determining the Strouhal number at which the aerodynamic 

excitation of the trapped mode reaches its maximum strength.  

In this section, the change in the phase distribution of the 

vertical particle velocity with the mean flow Mach number is 

discussed.  Figure 13 shows four snap shots of the vertical 

particle velocity contours over half a cycle. The snap shots are 

equally spaced in time. The Mach number for these snap shots 

is 0.2 and the flow direction is from the left to the right side. 

As shown in the contour plots, the vertical particle velocity 

distribution follows the pressure in the main duct, Fig. 8, by 

traveling upstream in the opposite direction to the flow. 

However, in the area surrounding the cavity free shear layer 

and inside the cavity, the contours of the vertical particle 

velocity progress downstream with the mean flow.  Similar 

behaviour is observed in the other two cases with M=0.1 & 

0.3. 

1  m 

Figure 11 Simulation results of the planar cavity-duct system 

showing the contour plot of the amplitude of the vertical particle 

velocity at zero flow for the first trapped mode. 

Particle 

velocity 

Figure 13 Simulation results of the first trapped mode of the 

planar Cavity-duct system showing snap shots of the vertical 

particle velocity contours for M=0.2. The contours legend is 

just to demonstrate the relative amplitude of the contours 

M=0.0 M=0.1 

M=0.3 M=0.2 

Figure 12 Contour plots of the amplitude of the vertical particle 

velocity for the first trapped mode of the planar cavity-duct 

system. The contours legend is just to demonstrate the relative 

amplitude of the contours. 
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Figure 14 shows the distribution of the phase of the 

vertical particle velocity along the cavity mouth of the top 

cavity for Mach numbers of 0.1, 0.2 and 0.3. The axial 

distance is normalized by the cavity length L. The phase of the 

acoustic pressure at the mid-length of the top cavity floor is 

taken as a reference during the phase calculation. The phase is 

calculated following the same procedure used to calculate the 

phase distribution of the pressure. For zero flow, the numerical 

results show that the phase between the pressure and particle 

velocity is nearly constant with an average of π/2, which 

agrees with the analytical results of constant phase of π/2. The 

small error in the numerical solution arises from the physical 

singularity at the cavity corners. For Mach numbers of 0.2 and 

0.3, the phase distribution over the mouth is almost linear. For 

Mach number of 0.1, the phase decreases steadily over the 

upstream half of the cavity mouth and fluctuates around  𝝅/𝟐 

over the downstream half. The rate of the phase change 

decreases slightly with the increase in the Mach number and, 

on average, the phase difference increases with the increase of 

the Mach number. 

 
Figure 14 Phase of the vertical particle velocity along the cavity 

mouth for the first trapped mode of the planar cavity-duct 

system. 

CONCLUSIONS 

A numerical code has been developed to study the effect 

of the mean flow on the trapped mode of 2-D planar cavity-

duct systems. Four different mean flow Mach numbers      

(M= 0.0, 0.1, 0.2 & 0.3) have been considered in the 

investigation.  

The numerical simulation shows that the frequency of the 

acoustic mode decreases with the increase of the mean flow 

Mach number. This is in full agreement with the experimental 

results reported for similar flow geometry As a result of the 

mean flow convection of the acoustic field an axial phase 

gradient of the acoustic pressure and particle velocity is 

developed. The phase speed corresponding to this gradient is 

in the opposite direction of the mean flow, except near the 

cavity mouth where the particle velocity phase speed is in the 

same direction as the mean flow. The amplitude of the 

pressure field does not change noticeably due to the mean 

flow. However, the particle velocity amplitude near the cavity 

mouth changes significantly with the mean flow. These 

changes in the amplitude and phase of the particle velocity are 

bound to influence the sound production process when trapped 

modes are excited by the mean flow, even at relatively low 

Mach numbers. 
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