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ABSTRACT 
In the 80’s a number of theoretical models were developed 
to model fluidelastic instability, primarily for single phase 
flows. The models ranged from purely analytical models to 
semi-empirical models requiring considerable experimental 
data as input. 
 
While these models were very successful in uncovering the 
nature of fluidelastic instability and the underlying 
mechanisms in single phase flow, this work seemed to stop 
short of getting to the next step of practical application to 
two-phase flows. During the same period, Connors formula 
became ‘entrenched’ in industry to the extent that the 
formula now forms part of the design norms against 
fluidelastic instability.  
 
In an ongoing research program the quasi-steady model has 
been chosen as a possible candidate for modeling fluidelastic 
instability in two-phase flows. This paper discusses the 
challenges associated with accurate modeling of fluidelastic 
instability in two phase flows using this and other models. 
The unsteady model is shown to have limitations when it 
comes to measuring accurately the necessary unsteady fluid 
force coefficients. 

 
A comparison of the stability analysis results with 
experimental measurements shows that the quasi-steady 
model can give a reasonable estimate of the instability 
velocity as well as the inter-tube dynamics.  
 
Finally, the remaining challenges, before the quasi-steady 
model and possibly other models can be fully implemented 
for prototypical conditions are discussed. In particular the 
need for more work to understand the flow itself is 
highlighted. 

      
1. INTRODUCTION 
Fluidelastic instability remains a challenging problem for 
operating steam generators and heat exchangers. The 
instability is a self-sustained fluid-structure interaction that 
can cause tube fretting wear and failure in a short period. The 
mechanisms behind fluidelastic instability, particularly in 
two-phase flow remain to be fully elucidated. Thus, while 
design guidelines are quite conservative, questions remain. 
Besides causing instability, fluidelastic forces may affect the 
effective damping of tubes subjected to random turbulence 
excitation. Indeed as noted by Baj and de Langre (2002) and 
Hirota et al. (2002), flow velocity independent two-phase 
flow damping does not strictly exist. Thus the effective 
damping of a tube in a bundle will always depend on the 
conditions of the surrounding flow. As future generation 
steam generators are expected to last as long as 60 years, the 
interaction between fluidelastic forces and turbulence 
excitation becomes an important factor to be considered as 
well.  
 
Several theoretical models have been developed for the 
prediction of fluidelastic instability. An excellent review of 
these models is given by Price (1995). The models are, 
however, yet to be implemented in industrial applications. 
Design engineers presently use the Connors model for design 
verification against fluidelastic instability. This simple 
empirical model, based on numerous experimental data, gives 
a conservative estimate for the fluidelastic instability velocity. 
The model, however, must be employed with care.   
 
For operating steam generators, estimation of tube wear due 
to vibration-induced tube-support impacting is vitally 
important. For fluidelastic excitation this requires a realistic 
model for the excitation fluid forces. The Connors model 
cannot be used to estimate the fluid forces during instability; 
although some (strictly incorrect) attempts have been made to 
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estimate the flow energy from this model. For flow 
velocities below the instability threshold the model gives no 
fluidelastic forces. Price (2001) has discussed the 
shortcomings of the Connors model for fluidelastic 
instability prediction. The quasi-steady model, developed by 
Price and Paidoussis (1986) has been shown to give 
reasonable agreement with experimental results for single 
phase flow. Recently the authors have presented results of 
experimental measurements of fluidelastic forces in air-water 
two-phase flows (Mureithi et al., 2006). The work reported 
here is part of an ongoing effort to develop two-phase flow 
fluidelastic instability models based on realistic 
experimentally measured fluid forces. The paper presents an 
overview as well as some of the challenges associated with 
prediction of fluidelastic instability for two-phase flows.    

 
 
2. TWO-PHASE FLOW PARAMETERS 
Several two-phase flow parameters will be regularly referred 
to in the paper. These parameters are defined here for 
convenience. The homogeneous void fraction is defined as 
the ratio of volumetric flow rate to the total volumetric flow 
rate.  
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Employing the homogeneous void fraction,β , the average 
fluid density, ρ , and viscosity ,ν , are estimated as 
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The average free stream velocity can be approximated 
dividing the total volumetric flow rate by the free stream 
area: 
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One may also define the homogeneous phase velocities 
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The pitch velocity, based on the homogeneous model, is 
defined as 
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The steady force coefficients, presented later, are calculated 
based on the upstream velocity U as 
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where DF  and LF  are the measured drag and lift forces, 
respectively and S the tube frontal area. 
 
 
3. THE GENERAL UNSTEADY MODEL 
The general unsteady model of Chen (1983) and Tanaka & 
Takahara (1981) is in principle the most accurate model for 
fluidelastic instability prediction. The motion dependent fluid 
forces ( jg and jh ), in the lift and drag directions, on a given 

tube j within a tube bundle are expressed as: 
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where Chen’s notation is followed for easy referencing. In 
equation (7) ku  and kv  are the tube displacements in the lift 
and drag. The fluid forces are grouped into three components, 
fluid inertia, fluid damping and fluid stiffness forces. To 
analyze the stability of a fully flexible tube bundle a large 
number of force coefficients is required since the interaction 
between each tube and its immediate neighbors must be 
considered. 
 
3.1 Unsteady Fluid Forces in Single and Two-Phase Flows 
In the typical kernel of the triangular tube bundle shown in 
Fig.1(a) each tube interacts with six neighbors.  Assuming 
symmetry, 10 auto and cross-coupling force components must 
be measured.  For the square array, Fig.1(b), eight force 
coefficients are needed.  
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Besides the large number of parameters needed, dynamic 
tests must be done to obtain them.  Dynamic tests are 
necessary since not only the force magnitude but also the 
phase difference between tube motion and the fluid force 
must be measured in order to determine the fluid damping 
force. What has typically been done, for single phase flow, is 
to oscillate the ‘central’ reference cylinder at a given 
frequency (f) and low amplitude.  The oscillation frequency 
and flow velocity (U) are varied to yield the force 
coefficients as functions of the reduced velocity U/fD, where 
D is the tube diameter.    
 
 

 
 

Fig.1 Typical tube bundle kernels for fluid force 
measurement (a) rotated triangular array, (b) normal 

square array. 
 
The reduced velocity U/fD has been shown to be the 
important parameter on which these parameters depend – for 
single phase flows over a reasonable range of Reynolds 
numbers.   Fig.2 shows typical data measured in water flow 
by Mureithi et al. (1996) and Tanaka and Takahara (1980) 
which confirm the U/fD dependence. In the figure the 
magnitude and phase of the fluid-elastic lift force on a 
periodically oscillated tube (C in Fig.1(b)) is shown. 
 
Fig.2 confirms the strong variation in force magnitude and 
particularly phase as the reduced velocity is increased for 
single phase flow. The interested reader may refer to the 
complete set of data for square arrays published by Tanaka et 
al. (2002) for single phase flows. For steam-water data, see 
Mureithi et al. (1996, 2002). 
 
Using these unsteady fluid forces, Tanaka and Takahara 
(1980) and Chen (1983) showed that fluidelastic instability 
in the corresponding flexible tube bundle could be very 
accurately predicted by the general unsteady model. 
 
The following question then arises – can similar forces be 
measured ‘with accuracy’ for ‘reasonably small’ tube 
oscillation amplitudes in two-phase flows?   
 

 
Fig.2 Unsteady  fluid forces on an oscillating cy linder 
measured b y Mu reithi et al. (1996); th e so lid line shows 
data by Tanaka & Takahara (1980). 
 
The condition of small oscillation amplitudes is particularly 
important since, in principle, the theoretical model is based on 
a stability analysis of the array at its equilibrium position 
hence the fluid forces should be measured in the 
neighborhood of ‘zero’ tube displacement. The caveat of 
course is that for two-phase flows other fluid forces, unrelated 
to tube motion, are far from insignificant relative to the 
motion dependent forces  and may even be predominant when 
tube motions are small. This is the challenge that must be 
faced during any attempts to measure the unsteady fluid 
forces for two-phase flows. To the authors’ knowledge, this 
attempt has been made by Mureithi et al. (1996, 2002) and 
Inada et al. (2002). We note in addition the work of Baj and 
de Langre (2003) who, although studying flow-induced 
damping specifically, did arrive at very noteworthy 
correlations for damping and in particular dimensionless 
parameters that could be used to quantify the fluid forces 
considered here. 
 
Mureithi et al. performed unsteady fluid forces measurements 
in two-phase steam-water flow for both homogeneous and 
non-homogeneous flows. Tests were conducted on a normal 
square array with spacing P/D=1.46 at 3.0 & 5.8MPa 
(homogeneous flow) and 0.5 MPa (non-homogeneous flow).  
As an example of their results, Fig.3 shows the reference tube 
displacement and forces measured in the lift direction on the 
reference tube (C)  as well as its neighbors (tubes C, 1 and 2 
in Fig.1(b)) at 3.0 MPa.  
 
 

C

1 

2 

(a) (b) 
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Fig.3 Measurements at 3.0MPa sh owing (a) tube motion, 
and lif t force on, (b) tube C,  (c) tube 1 and (d) tube 2 
(from Mureithi et al., 1996, 2002); P/D=1.46. 
 
The reference tube executes periodic motions in the lift 
direction with amplitude 0.3mm. Note that while the lift 
force on the tube itself is clearly periodic, the forces on the 
neighboring tubes are clearly dominated by the motion 
independent ‘turbulence’ forces. This was further confirmed 
by a correlation analysis where the coherence between the 
reference tube (C) motion and the measured fluid forces on 
tubes ‘1’ and ‘2’ was well below 50% at the forcing 
frequency. Clearly one possible solution is to increase the 
tube oscillation amplitudes during the tests; however, as 
stated above, this may well compromise the basic 
assumptions of the theoretical model. Equally, large tube 
amplitudes may effectively alter the local flow field around 
the tube again affecting the model accuracy. Clearly further 
work is needed to answer this question on the limits of the 
tube oscillation amplitude. The steam-water measurements 
were compared with measurements in Freon two-phase flow 
by Hirota et al. (1997); Fig.4 shows an example of the 
comparison for the reference tube lift force magnitude and 
phase. Clearly Freon two-phase flow yields fluidelastic 
forces closely similar to those measured in steam-water. This 
is a particularly encouraging result since it suggests that 
fluid forces measured in Freon can be used for the prediction 
of fluidelastic instability and estimation of tube response in 
steam-water. Air water-tests have been conducted by Inada 
et al. (2002) where tube oscillation amplitudes up to 7mm 
(0.318D) were achieved. The authors, however, only 
measured the forces on the oscillating cylinder and not its 
neighbors. Some important work was, however, done to 
investigate the effect of nonlinearities. An amplitude of 
approximately 0.20D was found to be the limit beyond 
which the amplitude force relationship became nonlinear. 
This may be large enough to yield better correlated fluid 
forces between neighboring tubes. However, see discussion 
below regarding nonlinear effects. 
 
3.2 Unsteady Fluid Force Parameters 
Another important question is with regards to parameter 
dependence of the fluid forces. Recall that for single phase  

 
Fig.4 Comparison of unsteady fluid forces in steam-water 
and Freon tw o-phase flow; (lift forces on the oscillated 
central cylinder are shown). 
 
flows, U/fD has been shown to be the key parameter on which 
the forces depend. For two-phase flows, however, Mureithi et 
al. (2002) have shown that U/fD is not the (single) governing 
parameter. Hence, the fluid forces were found to be multiple 
valued for the same U/fD where for two phase flows U is the 
mean homogeneous velocity, defined in Equation 3(a). This 
can be seen to some extent in Fig.4. The effect was, however, 
even more drastic for non-homogeneous flows. The reader is 
referred to Mureithi at al. (2002) for the experimental data. 
The multiple valued nature of the unsteady fluid forces was 
not found for single phase flows, e.g.Fig.2; in this case the 
data collapsed for given U/fD.  In the two-phase flow tests, 
Mureithi et al. could vary three parameters, the gas and liquid 
phase velocities and the tube frequency f.  The homogeneous 
velocity U was kept fixed and the tube oscillation frequency 
varied. It was found that changing U resulted in a well 
defined shift in the force data. This showed that the 
homogeneous velocity is not the correct parameter in the case 
of two-phase flows.  
 
This deficiency of the homogeneous model was also found by 
Inada et al. (2002) in their fluid force measurement tests. The  
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authors replaced the homogeneous model by the drift-flux 
model of Zuber and Findlay to account for the slip between 
the liquid and gas phases. Using the drift-flux model based 
velocity, the authors found very good collapse in the fluid-
stiffness dimensionless forces as functions of reduced 
velocity. Interestingly, such a collapse was not found for the 
dimensionless fluid-damping force. This suggests that 
further work is still needed to determine the parameters 
governing the unsteady forces in two-phase flows. 
 
3.3 Homogeneous and Separated Flow Models 
Rather than model the detailed dynamics in each phase 
during intermittent flow, Feenstra et al. (2003) have recently 
studied the phenomenon of fluidelastic instability in 
homogeneous and intermittent flow where their 
measurements (and those of others – e.g. Pettigrew et 
al.(1989), Joly et.al (2009))  show that a significant drop in 
the reduced instability velocity occurs when the flow pattern 
changes from homogeneous to intermittent. This is clearly of 
concern (from a practical point of view) because on the 
traditional stability map, relating the reduced velocity to the 
mass-damping parameter, the instability data for intermittent 
flow falls below the K=3 line, where K is the Connors 
constant.  Feenstra et al. showed that by introducing a more 
realistic void fraction model, and corresponding flow 
velocity, good data collapse is achieved, and more 
importantly the K value remains above 3.  
 
While this may be somewhat comforting (since K>3 now) it 
does raise questions regarding the use of the Connors 
constant for two-phase flows, since the definition of velocity 
is clearly model dependent. A question which may be even 
more important is with regard to the true physical nature of 
fluidelastic instability in intermittent flow as we see next. 
 
  
4. THE NAKAMURA MODEL 
Perhaps one the most innovative models developed for two-
phase flow fluidelastic instability is that by Nakamura et al. 
(2002).  This was the first attempt to explicitly take into 
account the different flow patterns or to distinguish 
homogeneous flows from non-homogeneous (intermittent) 
flows. For the intermittent flows the fluid force acting on the 
tube is changed according to whether the tube is 
instantaneously in liquid or gas flow. The corresponding 
excitation forces lF  and gF  are computed based on the 

particular fluid phase. An energy balance method is then 
used to establish the stability boundary.  By treating the 
phases separately, the authors showed that it was possible for 
‘intermittent fluidelastic instability’ to occur either in the 
liquid or gas phase depending on the phase flow velocities.  
Their experimental tests showed that intermittent fluidelastic 
instability was the primary instability observed for 
intermittent flows. The latter means that instability was 

caused by only one of the phases – and the tube would be 
effectively stable (temporarily) when surrounded by the non-
destabilizing phase. This conclusion seems to be supported by 
experiments.  
 
 
5. THE QUASI-STEADY MODEL 
 
5.1 Model Outline 
The quasi-steady theory (Price and Paidoussis, 1986) 
provides an approximate semi-empirical approach for the 
estimation of the fluid components in the cross-flow and 
inflow directions, assuming small displacements are be 
expressed as: 
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where DC  and LC  are, respectively, the drag and lift force 

coefficients and U∞  the upstream flow velocity. The factor 
‘a’ relates the gap velocity to the upstream velocity (Price and 
Paidoussis, 1986). The quasi-steady theory takes into account 
the time ( iτ ) required for the fluid force field to readjust to a 
new cylinder position. The induced incidence and the time 
delay effect lead to apparent displacements, ii ηχ ,  in the x- 
and y-directions, respectively, of the neighbouring cylinders 
relative to the reference cylinder. The fluid force coefficients 
are expressed as first order Taylor series based on these 
relative displacements. For the central cylinder in the tube 
array shown in Fig.1(a) for instance, this leads to the 
expressions 
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( )expg λτ= −  and /D aUτ μ ∞= .  

                         
 

The fluid force coefficients of eq.(9) have recently been 
measured for air-water mixtures by the author and co-workers 
(Shahriary, 2007, and Shahriary et al., 2007). The 
homogeneous model was used to represent the two-phase 
mixture. The simplest form of the time delay is also used, 
hence 1μ =  in equation (9) above. Shahriary (2007) has 
tested the effect of varying μ  on the predicted stability 
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velocity found that the predicted critical velocity, 
particularly for a single flexible cylinder can vary 
considerably. Currently ongoing work indicates that the 
velocity U∞  should perhaps be replaced by the liquid phase 

velocity lU for a better representation of the underlying 

flow effects. The velocity lU  needs to be estimated from a 
void fraction model. The promising model at the moment is 
that of Feenstra et al. (2003). Note that for the case of 
multiple flexible cylinders, the effect of the time delay is less 
important because the inter-tube phase plays a predominant. 
 
5.2 Measured Fluid Forces 
The force measurements were conducted on a rotated 
triangle tube array having dimensionless pitch spacing 
P/D=1.5. Referring to Figure 1(a), the effect of tube ‘C’ 
displacement on the lift and drag force coefficients on the 
five tubes ‘C’,1-4 was considered.  
 
Figure 5 shows the measured lift ( LCC ) and drag ( DCC ) 
coefficients for tube ‘C’ for 80% and 60% void fractions as 
well as in liquid flow for comparison. Previous air-flow 
results (for a smaller spacing, P/D=1.375) by Price and 
Paidoussis (1986) are also indicated by dashed lines. The lift 
coefficient shows strong dependence on the dimensionless 
transverse displacement ( /y y D= ).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
                       
 
The first important observation is that the force coefficients 
are very well defined functions of tube position. This is a 
highly desirable result for stability analysis. Furthermore the 
60% superficial void fraction force coefficients are close to 
those measured for 80% void fraction, particularly for the all 
important lift coefficient shown in Fig.5(b).  It is remarkable 
that the trend of the water-flow test is very different. 
 

The nonlinear relation between force and displacement in the 
lift direction, Fig.5(b), is also important to note. Referring to 
the dynamic tests by Inada et al. discussed above, we notice 
here that linearity may only be guaranteed for tube 
displacements of  only up to 10% D. 
 
The complete set of measurements (see Shariary et al., 2007) 
shows that tube ‘C’ displacement has the strongest effect on 
tubes in the same column, i.e. tubes 1 and 4 (see Fig.1(a)) as 
well as tube ‘C’ itself. Tubes 2 and 3 in the neighboring 
column show significantly less sensitivity to tube ‘C’ 
displacements. This suggests that there is reduced interaction 
between tubes in different columns particularly in the lift 
direction; tube 2 drag was, however, found to be significantly 
affected by tube ‘C’ transverse ( y ) displacement. This 
interaction between tube ‘C’ and its neighbors is depicted 
schematically in Fig.6 where the size and direction of arrows 
indicates the level and direction of interaction. Open arrows 
indicate that the cylinder ‘C’ direction of motion is normal to 
the cylinder force direction, hence transverse tube ‘C’ 
displacement significantly affects the drag force on tube 2.  
 

 
Fig.6 Influence of tube ‘C’ on its neighbors for 80%β =  
each arrow indicates the magnitude and direction of the 
most important force derivative. Open arrows indicate that 
the cylinder ‘C’ direction of motion is normal to the 
cylinder force direction.  
 
 
5.3 Quasi-Steady Model Based Stability Analysis 
The fluidelastic instability velocity for a single flexible tube 
as well as a flexible cluster of 7 tubes within the rigid array 
was determined for the same tube array considered in the 
force measurements. In the flexible cluster experiments, the 
seven vibrating cylinders were flexibly mounted on 
cantilevered flexible supports. Details of the fluidelastic 
instability tests and results may be found in Violette et al. 
(2006). For accurate comparison between theory and 

-0.2 -0.1 0 0.1 0.2-1

0

1

-0.2 -0.1 0 0.1 0.2-1

0

1

-0.2 -0.1 0 0.1 0.22

4

6

-0.2 -0.1 0 0.1 0.22

4

6

Cx Cy  

DC  

LC  

(a (b) 

(c) (d)

Fig.5. Measured lift (a,b) and drag (c,d)  for tube ‘C’, 
              80% β = ,* 60%β = ,    0%β = ., ----- air flow 
in Re=1.4x104 , P/D =   1.375 (Shahriary et al.2007). 
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experiments, the complete 14 degree-of-freedom problem 
was solved in the theoretical analysis.  
  
Fig.7 shows a comparison of the predicted versus measured 
dimensionless instability velocities as functions of the void 
fraction for a 7-tube flexible cluster within a rigid array. The 
results are also presented in Table 1. Further details may also 
be found in Shariary et al. (2007). The predicted critical 
velocities are within 30% of the measured velocities. This is 
significantly better than previous theoretical estimates which 
have, to date, been based on single phase flow 
considerations. The quasi-steady model also predicts the 
correct trend as a function of void fraction which is 
encouraging. The single flexible tube case can be a tougher 
challenge for the quasi-steady model due to the stronger 
influence of the poorly known time delay. Fig.8 shows the 
results for the single flexible tube where comparison is made 
with experiments, as well as with Connors equation 
assuming K=3.  

 
 

Table 1 Comparison of the predicted reduced velocity with the 
dynamic measurements for the 7 tube cluster 

β  Total mass-
damping 
parameter 

Reduced 
velocity 

prediction 

Reduced 
velocity 

Measured 
0% 0.126 1.68 2.29 

60% 1.32 3.49 5.2 
80% 1.46 4.54 6.52 

 
 

The latter equation cannot be expected to predict the correct 
instability velocity, however, it is important here to show 
that the equation also gives the incorrect trend in the 
variation of  the  critical flow velocity with homogeneous 
void fraction. 
 
Perhaps most importantly, the present results confirm that 
the quasi-steady theory is a feasible model for the prediction 
of fluidelastic instability in two-phase flow. This is clearly a 
consequence of the fluid forces which show very well 
defined trends with tube position, void fraction and flow 
rate.   
 
 
6. DISCUSSION  
    The agreement between the quasi-steady theory and 
experiments is, however, not perfect as seen in Figs.7-8, 
even for this controlled test case where fluid force 
measurements and stability tests are conducted using the 
same test setup. This suggests that the two-phase flow itself 
must be studied more closely to facilitate model 
improvement. It was also noted that the application of the 
more complex unsteady fluidelastic instability theory raises 

some real practical challenges, particularly with regards to 
measurement of the unsteady fluid forces. 

 
 

 Fig.7 Comparison of measured ( ) and predicted ( ) 
instability velocities in single phase (water) and two-
phase (air-water) flows for a fully flexible array. 
 
 
 

 
 

Fig. 8 Comparison of predicted instability with 
experimental results and Connors model, for a single 
flexible tube in a rotated triangular array. 
 
 
6.1 Nonlinear effects in the fluidelastic forces 
The work of Inada et al. showed that for the inline array 
(P/D=1.5), a linear relation exists between the unsteady fluid 
force amplitude and the oscillation amplitude up to 0.2D. This 
is, however, a significantly large amplitude when compared 
with typical amplitudes at the onset of and during fluidelastic 
instability. From a stability analysis point of view, the tube 
cannot be deemed to be in the vicinity of its equilibrium point 
which may make the measured fluid forces questionable. The 
maximum allowable amplitude depends on the nonlinearity of 
the fluid force. For the rotated triangular array, for instance, 
the steady lift forces is strongly nonlinear as a function of 
tube position in the lift direction as was shown in Fig.5. Note 

K=3 (Connors) 

experiments 

QS theory 
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that in the range +/-0.2D the lift force undergoes a large 
variation, and linearity holds only up to 0.1D.  One can 
expect that the resulting unsteady fluid force would be 
significantly affected by this nonlinear variation in the 
average lift force.   
 
6.2 Limitations of the homogeneous flow model 
In the quasi-steady analysis, homogeneous model based two-
phase flow parameters are used. Ongoing work, however, 
indicates that this model is often far from representative of 
the fluid dynamics. In general, the liquid phases tends to 
play a much more important role. As mentioned above, the 
time delay introduced in the quasi-steady model seems to be 
better related to the liquid phase velocity than the 
homogeneous mixture velocity. More concretely, Inada et al. 
(2002), Nakamura et al. (2002), Mureithi et al. (2002) and 
others have shown that homogeneous model based 
parameters do not capture the correct flow physics, 
particularly for intermittent flows. The dynamic force 
measurements of Mureithi et al. and Inada et al. show that 
the homogeneous model cannot be valid for intermittent 
flow. Separated flow models have been shown by Inada et 
al. (2002) and Feenstra et al. (2003) to be invaluable. The 
model of Feenstra et al. has been shown to be very accurate 
and makes it possible to access the true phase velocities thus 
better modeling the flow physics. The work of Baj and de 
Langre (2002) is also notable. The authors have introduced 
dimensionless parameters which show good collapse of the 
measured damping forces with a newly defined reduced 
velocity. 
 
6.3 Flow Visualization  
Many of the results presented and much of the discussion 
points to the fact that there is still preciously little known 
about the detailed dynamics of two-phase flows in 
geometries as complex as tube bundles. This problem is 
exacerbated when interactions with moving structures come 
into play. Much more work therefore needs to be done to 
quantify two-phase flows in tube bundles. Accurate two-
phase flow pattern maps for tube bundles are badly needed 
for instance. Ongoing developments in numerical and 
experimental methods may also begin to bear fruit. 
 
As an example, recent developments in Particle Image 
Velocimetry (PIV) show that the method, when carefully 
applied, can provide additional information on the flow 
structure in tube bundles. The author, together with co-
workers have recently carried out tests to visualize the two-
phase flow within a rotated triangle configuration at low 
void fractions. The particle image velocimetry (PIV) method 
was employed in an air-water experimental loop which has a 
10cm x 10cm x 2m test section made of transparent 
Plexiglas. A close-up view of the test section and PIV system 
is shown in Figure 9. Aluminum half cylinders are mounted 
on the inner wall to simulate a single flow path within a 

rotated triangular tube array with P/D=1.5. A laser light sheet 
is introduced, in the middle section containing transparent 
half-cylinders, perpendicular to the tube axes. The air-water 
mixture flows vertically upward. To visualize the two phases  
 

 
 
 
Figure 9 View of test section with laser and one camera in place. 
 

 
Figure 10 (a) Flow image and (b) average gas phase velocity                    
field for, β=39%. 

(b) 

(a) 

test 
section 

caméra 

laser 
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separately, a pair of cameras fitted with green and orange 
filters, respectively, is used to image the gas and liquid 
phases. The liquid phase (water in this case) is seeded with 
buoyant microscopic fluorescent particles.  A typical image 
of the gas phase for a low void fraction of 39% is presented 
in Fig.10. Note direct measurement of the gas phase velocity 
makes it possible to accurately the void fraction.  The non-
uniformity of the instantaneous flow is evidenced the large 
scale structures visible in the main flow channel. Such 
structures, involving bubble coalescence and separation, can 
be expected to generate significant unsteady excitation. The 
average velocity vector field  shown in Fig.10(b) on the 
other hand suggests that the tube will also be subjected to a 
well defined average force field despite the unsteady flow 
structures of Fig.10(a). This can be viewed as an 
encouraging result with respect to applicability of the quasi-
steady model for stability analysis of tube bundles (if similar 
results are obtained at higher void fractions). Clearly, 
however, this is only a starting point and much work needs 
to be done to better understand the complex two-phase flow 
in tube bundles. 
 
 
7. CONCLUSION 
An overview of the challenges associated with accurate 
modeling of fluidelastic instability in two-phase flows using 
existing models developed for single phase flows has been 
presented. The unsteady model was shown to have 
limitations when it comes to the accurate measurement of the 
unsteady fluid forces. Careful consideration of not only the 
dimensionless parameters but also nonlinear effects is 
needed.  
 
A comparison of the stability analysis results with 
experimental measurements shows that the quasi-steady 
model can give a reasonable estimate of the instability 
velocity as well as the inter-tube dynamics. This model 
therefore holds potential for two-phase flow applications. 
There are, however, remaining challenges before the quasi-
steady model can be fully implemented. In particular the 
need for more work to understand the flow itself is 
highlighted. Several researchers have already proposed 
separated flow models which hold promise for the 
quantification of the two-phase fluid forces. However, it is 
not clear yet, whether unsteady fluid forces, practically 
useful for a stability analysis, can be obtained. 
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