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ABSTRACT
Because of their flexibility, trees and other plants deform

with great amplitude (reconfigure) when subjected to fluid flow.
Hence the drag they encounter does not grow with the square
of the flow velocity as it would on a classical bluff body, but
rather in a less pronounced way. The reconfiguration of actual
plants has been studied abundantly in wind tunnels and hydraulic
canals, and recently a theoretical understanding of reconfigura-
tion has been brought by combining modelling and experimenta-
tion on simple systems such as filaments and flat plates. These
simple systems have a significant difference with actual plants in
the fact that they are not porous: fluid only flows around them,
not through them. We present experimentation and modelling of
the reconfiguration of a simple poroelastic system. Proper scal-
ing of the drag and the fluid loading allows comparing the recon-
figuration regimes of porous systems to those of simple systems.
It is found that in the large reconfiguration regime, the scaling
of the drag with flow velocity is independent of the porosity for a
range of parameter values.

INTRODUCTION
In most traditional engineering applications, structures are

designed to be rigid such that the loads they bear do not de-
form them substantially. In nature, the opposite is true [1]; es-
pecially for trees and plants whose largest abiotic stresses are

∗Address all correspondence to this author.

aero/hydrodynamic fluid loadings [2]. Plants are flexible where
man-made structures are stiff. The great flexibility of plants
comes as the solution to an optimization problem plants face:
that of maximizing surface area and height to capture sunlight
with a finite quantity of material [3]. It is essential to understand
the fluid loadings on plants in order to devise better models to
comprehend and predict wind damages to forests and crops, as
well as to study the adaptation of aquatic and terrestrial plants to
their environment.

Trees and other plants deform with great amplitude when
subjected to fluid flow like wind or water current. We term this
global change of shapereconfiguration[3]. By bending and
twisting under fluid loading, plants reconfigure and the drag they
encounter does not grow with the square of the flow velocity as
it would on a classical bluff body, but rather in a less pronounced
way. We express in a simplified way this modification of the de-
pendence on velocity of the drag by the Vogel exponentV [1,3],
such that

F ∝ U2+V
∞ , (1)

whereF is the drag force andU∞ is the flow velocity. For exam-
ple, the leaf of the tulip tree rolls up into a cone when subjected
to increasing wind speed [4] hence decreasing its cross-sectional
area and becoming more streamlined. This reconfiguration has
for effect that the drag on the leaf increases more or less linearly
with flow speed (V ∼−1). The reconfigurations of many species
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of plants have been studied in wind tunnels, tow tanks and hy-
draulic canals. Collections of measures of reconfiguration and
Vogel exponents for various species can be found in Vogel [1, p.
143] as well as Harder et al. [5].

Recently a more fundamental understanding of the mecha-
nisms of reconfiguration has been brought by combining mod-
elling and experimentation on simple systems such as filaments
and flat plates [6–10]. Alben et al. [6] studied the reconfigu-
ration of a flexible filament supported at its centre in a 2D soap
film flow. The drag reduction and the bending deformation of the
filament measured experimentally were properly modelled with
a potential flow theory coupled with a Euler-Bernoulli beam for-
mulation. From their experimental and theoretical results, Alben
et al. [6] concluded that the scaling of the drag of the fibre transi-
tioned from a rigid regime (V = 0) to a large deformation regime
with V = −2/3 as the hydrodynamic force was increased with
respect to the rigidity of the fibre.

Gosselin et al. [10] compared drag measurements of flexi-
ble thin plates in a wind tunnel with predictions from a simpli-
fied model based on an empirical drag formulation. The sim-
plified model predicts well the reconfiguration of plates and fur-
ther comparisons showed that the reconfiguration of a rectangu-
lar flexible plate supported at it centre in a wind tunnel is iden-
tical to that of a filament in a soap film as studied by Alben et
al. [6]. Moreover, Gosselin et al. showed that in the regime of
large deformation, the scaling of the drag with the flow velocity
can be deduced by dimensional analysis through the assumption
that as the deformation is large, the original characteristic length
becomes irrelevant.

The study of the reconfiguration of idealised systems [6–10]
allowed understanding the basic mechanisms of drag reduction
affecting trees and vegetation. However, a major difference sep-
arates beams and plates from actual trees: fluid must flowaround
simples obstacles while wind passestrough a porous structure
such as a tree. The elements composing the plants like the leaves
and the branches perceive an effective flow velocity modified
from that of the free stream velocity. Because the plant is a
poroelastic system, when reconfiguring, it modifies this effective
flow velocity. It is the goal of the present paper to characterise
the effect on reconfiguration of poroelasticity. Extensive wind
tunnel testing was realised on poroelastic bodies as well as flex-
ible filaments. These experimental results allow us to define a
proper Cauchy number which governs the problem of reconfigu-
ration and accounts for geometry, Reynolds and porosity effects.
Moreover, with a simple theoretical model for the reconfigura-
tion of the systems studied, we investigate the mechanisms of
drag reduction and study the effect of porosity on reconfigura-
tion.
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FIGURE 1: Schematic diagram of the support holding 50 identi-
cal filaments and details of one filament.

EXPERIMENTS
To understand the effect of porosity on the problem of recon-

figuration, we performed experiments in a wind tunnel to mea-
sure the drag of simple filaments as well as that of poroelastic
bodies.

Methodology
We measured the drag of flexible cylindrical filaments of di-

ameterd, lengthℓ and flextural rigidityB (figure 1). Three spec-
imens of filaments supported at their centre were tested, their
properties are given in table 1. Because the filaments were small
and had little drag, 50 identical filaments were mounted on a spe-
cially designed support to test them in the wind tunnel (figure 2).
A significant measure of drag could thus be obtained. The spac-
ing between the filaments on the support was of 10 diameters in
the transverse direction and 40 diameters in the streamwise di-
rection. The interaction between filaments is thus neglected. To
avoid a bidimensional deformation, the filaments were mounted
vertically in the wind tunnel. Hence, the lower half of a filament
is rigidified by gravity and the upper half is effectively more flex-
ible. At first order, on the whole filament, the effects of gravity
is compensated and at high flow velocity, aerodynamic loading
becomes much larger than weight. In addition, rigid cylinders of
the same dimensions as the three flexible filaments were tested.

The poroelastic system studied is a ball of diameterD made
of N round filaments of diameterd tied together at the center of
the ball (figure 3). The core of the ball where all the filaments are
tied is relatively rigid and has a diameterDi . The ball is screwed
onto a downstream support which transmits the drag force to the
force sensor. The specimens were manufactured by Hasbro and
sold as toys under the name of “Koosh balls”. The flexural rigid-
ity B of the filaments forming the ball was found by measur-
ing the natural frequency of a single cantilever filament using a
high-speed camera. Two poroelastic specimens were tested in
the wind tunnel, their characteristics are given in table 2. More-
over, a rigid porous specimen built with finishing nails planted in
a styrofoam ball was tested (figure 4).

These laboratory experiments were conducted in a small Eif-
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FIGURE 2: Photograph of the support holding 50 filaments of
lengthℓ = 7.4 cm subjected to an air flow of 20 m/s.

ℓ d B
(cm) (cm) (10−6 Nm)

f1 4.0 0.094 127
f2 7.4 0.094 127
f3 11.6 0.094 127
c1 4.0 0.094 -
c2 7.4 0.094 -
c3 11.6 0.094 -

TABLE 1: Parameter values of the tested flexible filaments and
rigid cylinders.

F

D

Di

d

U∞

FIGURE 3: Schematic of the poroelastic system.

D Di d B N
(cm) (cm) (cm) (10−6 Nm)

FP1 8.9 3.1 0.094 127 900
FP2 5.4 1.6 0.068 38.1 1150
RP 8.9 3.0 0.09 - 530

TABLE 2: Parameter values of the tested flexible and rigid porous
specimens.

FIGURE 4: Photograph of the rigid porous specimen. It has the
same dimensions as the first poroelastic specimen, but is made of
less cylinders (N = 530).

fel wind tunnel with a test section of 0.180m by 0.180m. The
wind stream is produced by a centrifugal fan mounted down-
stream and exhausting air vertically. The mean velocity in the
test section can be varied from 5 to 30m/s with a turbulence
level of 1.5% at 10m/s.

Different specimens tested were mounted on a support con-
nected to a five-axis force sensor located under the wind tunnel.
The force sensor measured the drag of the specimen and a pitot-
static system measured the flow velocity. For every specimen
at each flow velocity tested, the 24 bit data acquisition system
collected the measurements of the drag and the flow velocity for
one minute and time-averaged the values. The drag on the sup-
port alone was measured and subtracted from the drag of each
specimen.

Reconf guration and drag measurements
The deformation of the first poroelastic specimen (FP1) is

shown in figure 5 for four flow velocities. At 5m/s (figure 5
a), the deformation is small. As the flow velocity is increased
further, the deformation becomes important and the filaments
bend with the flow. Note that on figure 5 (c), a dynamic co-
herent movement of the filaments makes the picture blurred. We
presume that these coherent movements are due to a passive re-
sponse of the filaments to vortex shedding on the ball. At 14m/s,
the standard deviation of the fluctuations of the drag measure-
ments is less than 8% of the time-averaged value. For this reason,
in this study of static reconfiguration, we neglect any dynamic ef-
fect due to vortex shedding, turbulence or other coupling mech-
anisms.

The drag measurements of the filaments and the rigid cylin-
ders are shown on figure 6 (a) while those for the three porous
specimens are shown on figure 6 (b). For both the cylinders and
the porous systems, the increase of drag with flow velocity on
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(a) (b)

(c) (d)

FIGURE 5: Photographs of the deformation of the first poroelas-
tic specimen in the wind tunnel at flow velocities of 5 (a); 8 (b);
14 (c); and 29 m/s (d).
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FIGURE 6: Drag of flexible filaments and rigid cylinders (a), as
well as porous specimens (b): f1 (�); c1 (N); f2 (�); c2 (△); f3
(�); c3 (N); FP1 (•); FP2 (◦); RP (×).

the rigid specimens is almost quadratic. However, the drag of all
flexible specimens has a smaller dependence on the flow velocity.

To analyse the effect of flexibility on drag, we must first
characterise the drag of the rigid benchmark specimens. We de-
fine a drag coefficient and a Reynolds number for the rigid cylin-
dersCD = 2F/ρdℓU2

∞ andRe= ρdU∞/µ whereF is the mea-
sured drag force,U∞ is the flow velocity andρ andµ are the fluid
density and dynamic viscosity. Similarly for the rigid porous
specimen, we define a drag coefficientCD = 8F/πρD2U2

∞ and

use the same definition of Reynolds number based on the diam-
eter of a cylinder of the porous ball. Due to the lack of space,
the variations of drag coefficients with Reynolds number for the
rigid cylinders and the rigid porous balls are not shown. Overall,
it found that in the range of Reynolds number studied here vary-
ing between 200 and 2000, the drag coefficient of the porous ball
follows a similar trend to that of the isolated rigid cylinders.

Using the data of the rigid benchmark specimens in figure 6,
we can thus isolate the effect of flexibility on the drag variation
of the flexible specimens as the flow velocity is varied. To extract
from the drag measurements the variations due to flexibility and
thus fully appreciate the effect of reconfiguration, we develop
appropriate dimensionless numbers.

Dimensionless numbers
We consider the dragF of a flexible slender cylindrical fila-

ment of lengthℓ, diameterd and flexural rigidityB bending due
to a fluid flow of densityρ and velocityU∞. We express this
problem using the Cauchy number and the reconfiguration num-
ber:

C̃Y = CD
ρℓ3U2

∞d
16B

, R =
F

1
2ρCDℓdU2

∞
. (2)

The Cauchy number characterises the reconfiguration of an elas-
tic medium subjected to flow [10–13]. It is equal to the ratio
of the aerodynamic force produced by the fluid on the original
shape of the structure over the rigidity of the structure. We use
the definition introduced by Gosselin et al. [10] which includes
the drag coefficient. This allows to take into account effects of
geometry and Reynolds number. The reconfiguration numberR

emphasises the effect of flexibility on the drag by comparing the
drag of the flexible filament to that of an equivalent rigid cylinder
at the same Reynolds number.

For the poroelastic system, similar Cauchy and reconfigura-
tion numbers can be defined based on the cross-sectional area of
the ball, and a new quantity, the surface density, is introduced

C̃Y = CD
ρ (D−Di)

3U2
∞d

16B
, R =

8F
ρπD2CDU2

∞
,

η =
NdD

2
1
4πD2

=
2Nd
πD

.

(3)

We define the surface density as the ratio of the cross-sectional
area of all the components of the porous body (theN filaments
composing the ball) over the cross-sectional area of the unde-
formed poroelastic body.

The variation ofR in function of C̃Y is shown in figure 7
for the three specimens of filaments(�). The new experimental
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FIGURE 7: Superposition of the experimental measurements of
drag on flexible slender systems: 3 flexible filaments tested in
a wind tunnel(�); 5 rectangular plates tested in a wind tunnel
by [10] (∗); and 2 fibres tested in a soap film flow by [6](�); the
theoretical model of [10] (—— ).

points are shown along with the results of Gosselin et al. [10]
on flexible rectangular plates (∗) and those of Alben et al. [6]
on flexible fibres in a soap film flow(�). Despite the different
geometries, dimensions, rigidity and type of flow, all the data
points collapse on a single curve. This confirms that the prob-
lems of reconfiguration of a filament and a rectangular plate in a
wind tunnel, as well as a fibre in a soap film flow are essentially
the same problem, i.e., the same dimensionless numbers char-
acterise them and their reconfiguration is the same. Note that
superposition is only possible with the use of the Cauchy num-
ber definition of equation 2 which includes the drag coefficient
CD. Values ofCD for the different specimens plotted in figure 7
vary from 0.7 for the shortest filaments at the highest Reynolds
number to 7 for the fibres in the soap film flow. The inclusion
of the drag coefficient in the Cauchy number allows to fully iso-
late effects of flexibility on the drag from Reynolds number and
geometry effects. For the sake of comparison, the reconfigura-
tion curve predicted by the model of Gosselin et al. [10] which
couples an empirical drag formulation to the large deformation
of a Euler-Bernoulli beam is shown in solid line in figure 7. The
agreement between the experiments and the model is very good,
and for this reason, the model is extended to poroelastic systems
in the following section.

The Cauchy number governs the problem of the reconfigu-
ration of slender systems (figure 7). For small values ofC̃Y, the
points are aligned on a horizontal line which indicates that the
drag on the flexible objects varies as it would on a rigid object.
At values ofC̃Y between 1 and 10, the reconfiguration number
starts to decline as the specimens deform. AsC̃Y increases fur-
ther, the decline ofR seems to follow a constant logarithmic
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FIGURE 8: Variation of the drag reduction of the poroelastic sys-
tems for increasing Cauchy number: first flexible specimen, (•);
second flexible specimen, (◦). The curves predicted by the the-
oretical model of equations 13-15 withη = 6.1 and 9.2 corre-
sponding respectively to the first (—— ) and second ( – – – )
specimens are also shown.

slope. Upon fitting a least square power law on the data points

of figure 7 wherẽCY > 100, one finds thatR ∝ C̃Y
−0.29

which
corresponds toF ∝ U1.42

∞ or V = −0.58. This value of Vogel
exponent is in agreement with the dimensional analysis of Gos-
selin et al. [10] which predicts a Vogel exponent ofV = −2/3.
Gosselin et al. obtain this value by dimensional analysis follow-
ing the assumption that the characteristic length of the original
undeformed system becomes irrelevant.

The reconfiguration curves for the first (•) and the second
(◦) flexible specimens are shown on figure 8. The two curves are
superimposed indicating that the Cauchy number is appropriate
to describe the problem.

Differently from the reconfiguration of slender bodies in fig-
ure 7, the reconfiguration number of the poroelastic balls in fig-
ure 8 increases slightly before decreasing. AtC̃Y ≈ 10, the drag
of the poroelastic balls is 18% larger than that of identical rigid
porous balls. This can be explained by the fact that the filaments
which point upstream in the flow before the ball is deformed must
pass through a position where they are perpendicular to the flow
to bend downstream with the flow (see figure 5 b-c), thus sig-
nificantly increasing their drag. Some tree branches have been
observed to exhibit the same phenomenon [3].

Another noticeable difference between figures 7 and 8, is
that the drag reduction begins about̃CY ≈ 3 for the plates, fibres
and filaments whileR only starts to decrease beyond̃CY ≈ 20
for the porous systems. The reconfiguration curve for the porous
systems is shifted to higher values of̃CY. This difference is high-
lighted in figure 9 (a) whereR is plotted for the slender spec-
imens (•) along with the poroelastic specimens (•) versus the
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FIGURE 9: Collapse of the reconfiguration curves of porous (•)
specimens as well as the slender specimens (filaments, rectan-
gular plates, fibres,•) when plotted in function of: the Cauchy
number alonẽCY, (a); the Cauchy number divided by the surface
densityC̃Y/η , (b).

Cauchy number. In figure 9 (b), the reconfiguration of both types
of systems is plotted in function of the quotient of the Cauchy
number by the surface densitỹCY/η . For the slender specimens,
η = 1 while for the first and second poroelastic specimens it can
be calculated from equation 3 with the data from table 2 to be
respectivelyη = 6.1 andη = 9.2. Dividing the Cauchy num-
ber by the surface density amounts to dividing the aerodynamic
load evenly on all the structural elements composing the porous
bodies. By doing so, we obtain a reasonable collapse of recon-
figuration points for both porous and non-porous bodies with a
drag reduction which begins at̃CY/η valued between 1 and 3. It
is shown with the following theoretical model that this collapse
can be extended on a much greater scale of surface density val-
ues.

THEORETICAL MODEL
We consider the deformation of a ball made up of a col-

lection of N identical cylindrical beams uniformly spread and
clamped at the centre of the ball (figure 10 a). The beams have
rigidity per unit widthB, diameterd lengthD/2 and form a ball
of diameterD. This system is subjected to a flow of uniform
velocityU∞ of an inviscid fluid of densityρ .

The schematic diagram of a beam j part of the system along
with the flow it perceives are shown in figure 10 (b). The un-
deformed beam j makes an angleΘj with the flow and has an
azimutal angleϕj about the axis of the flow (figure 10 a). The
lagrangian coordinateSj is defined along the central axis of this
beam from its clamped end to its free end. The deformed shape
of beam j is given by the local angleθj(Sj) the beam makes with
the flow.

We use an empirical formulation of the fluid forces based on
the model of Gosselin et al. [10]. As in Gosselin et al. [10] and

θj(Sj)

Θj

Sj

Sj

U∞

j

Uj(Sj)

(a)

(b)

D

d

ϕ

FIGURE 10: Schematic diagram of the poroelastic system mod-
elled (a). Detail of the deformation of beam j part of the system
along with the flow the beam perceives (b).

similarly to Taylor’s [14] modelling of the drag force on yawed
cylinders, we approximate the pressure drag on a beam in a po-
tential flow with a conservation of momentum argument. We as-
sume that the flow produces a force proportional to the momen-
tum it carries in the direction perpendicular to the beam. Upon
setting this drag force on a beam element equal to the shear force
in a Euler-Bernoulli beam, we obtain:

B
∂ 3θj

∂S3
j

= −
1
2

ρC′
D

[
Uj

(
Sj

)
sinθj

]2
, (4)

whereC′
D is the drag coefficient of one beam inside the porous

ball and where the velocityUj(Sj) perceived by beam j varies
along the beam (figure 10 b). We neglect the contacts between
the beams so the only coupling in deformation happening be-
tween beams comes from the flow.

From Newton’s third law, the force produced by the beams
on the flow can be written similarly. Every beam elementδSj of
beam j creates a force perpendicular to itself on the fluid

fj(Sj) =
1
2

ρdC′
DU2

j sin2 θjδSj . (5)

The system has a high number of degrees of freedom, since
the number of beamN is of the order of 1000 and each beam has
a continuous deformation along its length. Moreover, the flow
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FIGURE 11: Schematic diagram of the deformation of the sys-
tem (a) and detail of the section of a volume elementδΩ of the
poroelastic continuum (b).

through the multiple beams is complex. Rather than modelling
all these degrees of freedom and this complexity of the flow, we
use an homogenisation approach similar to Py et al. [15] and
Favier et al. [16]. We consider the ball of beams as a poroelastic
continuous media. Deformation of beam j,θj(Sj), becomes a
continuous function inΘ, i.e., θ (S,Θ). By neglecting gravity,
deformation of the system can be considered axisymmetric inϕ .
We can thus rewritte equation 4 as

B
∂ 3θ
∂S3 = −

1
2

ρC′
D [U sinθ ]2 , (6)

whereU andθ are functions ofΘ andS.
Homogenisation in space allows to model the forces that

beams exert on the flow as a body force. In a volumeδΩ of
an elementδSδΘδϕ as drawn in figure 11, are locatedNΩ =
Nsin(Θ)δΘδϕ/4π beams and the body force they exert on the
fluid is NΩ times the force of one beam element from equation 5,
i.e.,

f (S,Θ) =

(
N
4π

sinΘδΘδϕ
)(

1
2

ρdC′
DU2sin2 θδS

)
. (7)

In the spirit of keeping the model simple, we make the approx-
imation that the flow is always parallel to the axis of axisym-
metry of the system and neglect the transverse component, i.e.
~U j = U j~ex. It follows from this simplification that the flow can
be solved with the Bernoulli equation.

For purely axial flow, the fluid in the volumeδΩ (figure
11) flows trough the surfaceRδRδϕ , whereR is the eulerian
coordinate measured perpendicular to the axis of axisymmetry.

From the transformationδR= δSsinθ , we can write the loss of
pressure due to drag across the volumeδΩ as

∆P =
f sinθ

RδRδϕ
. (8)

To find the loss of velocity on a variationδΘ, we apply
Bernoulli’s law, 1

2ρU2(R,Θ) = 1
2ρU2(R,Θ + δΘ)−∆P :

U2(R,Θ)−U2(R,Θ + δΘ) =

−U2(R,Θ + δΘ)
NsinΘδΘC′

Ddsin2 θ
4πR

. (9)

If the angleδΘ is small, equation 9 takes the form of a derivative

∂U
∂Θ

= U
NsinΘC′

Ddsin2 θ
8πR

. (10)

The beam located atΘ = π encounters an unperturbed flowU∞.
For Θ < π , since the deformation of the beam varies withR, the
local flow velocity is a function ofR.

The drag force of the entire poroelastic system is the inte-
gral over its volume of the axial component of the body force of
equation 7:

F =

π∫

0

N
2

sinΘ
D/2∫

0

1
2

ρdC′
DU2(R,Θ)sin3 θ dSdΘ. (11)

To write the problem in a dimensionless way, we define the
dimensionless lagrangian and eulerian coordinates, the velocity,
the surface density, as well as the reconfiguration and Cauchy
number

s=
2S
D

, r =
R
D

, Ū =
U
U∞

, η =
2Nd
πD

,

R =
F

1
8ρπD2CDU2

∞
, C̃Y = CD

ρD3U2
∞

16B
, c =

C′
D

CD
,

(12)

where the reference drag of a rigid porous system is defined
based on themacroscopicdrag coefficient of the entire system
CD which is different from themicroscopicdrag coefficient of
only one beam inside the ballC′

D, and wherec is the ratio of both
coefficients.

With the parameters of equations 12, equations 6, 10 and 11
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are made dimensionless:

∂ 3θ
∂s3 = −C̃YcŪ2sin2 θ , (13)

∂Ū
∂Θ

= Ū
ηC′

D sinΘsin2 θ
16r

, (14)

R =
ηc
2

π∫

0

sinΘ
1∫

0

Ū2sin3 θ dsdΘ. (15)

Note that we define the Cauchy number,C̃Y, based on the macro-
scopic drag coefficient of a rigid equivalent porous ball,CD, al-
though it is the drag coefficient of a single filament composing
the ball,C′

D, that appears in equations 6 and 10. We do so be-
causeC′

D can difficulty be measured experimentally.
The dimensionless boundary conditions can be written as

follows:

Ū |Θ=π = 1, θ |s=0 = Θ,
∂θ
∂s

∣∣∣
s=1

= 0,
∂ 2θ
∂s2

∣∣∣
s=1

= 0. (16)

To solve the system of equations 13 and 14, the deforma-
tion of the poroelastic mediaθ (s,Θ) and the velocity of the fluid
Ū(r,Θ) are discretised inΘ overNΘ referencebeams similarly
to [16]. The deformation of the upstream-most beam atΘ = π is
solved first since it perceives an unperturbed flow velocity. Equa-
tion 13 is integrated numerically using the shooting method and
the Runge Kutta algorithm. Once the deformation of this beam
is known, equation 14 is solved atNr points onr between 0 and
1 to yield the flow perceived by the second reference beam. The
equation of deformation 13 is subsequently integrated numeri-
cally with Runge Kutta using an iterative scheme since the flow
velocity profile is defined in eulerian coordinates and the defor-
mation of the beam is defined in lagrangian coordinates. Once
the shape of the beam is found, the loss of momentum in the
flow is computed using equation 14 and the process is repeated
for every reference beam and finish by solving equation 15 to
find the reconfiguration number.

Note that when the poroelastic system is dense enough, i.e.,
whenη is large, the term(ηC′

D sinΘδΘsin2 θ )/(8r) of equation
10 can become larger than 1 over part ofr especially close to
the centre of the system (r = 0). In this case,u(r,Θ) is set to
0 and the “additional” loss of momentum at this position inr is
subtracted from the next positionr + δ r.

Also, when many equilibrium positions exist for a beam, we
select the one for which the free end is the farthest downstream.
No stability analysis is performed on the different positions, but
we judge that this position has most chances of minimising the
potential energy.

The geometry we model is slightly different from that of our
experiments because we neglect to model the rigid core of the

(a) (b)

(c) (d)

FIGURE 12: Visualisation of the modelled deformation of a
poroelastic system equivalent to the first specimen subjected to a
flow with C̃Y = 2.8 (a); 6.9 (b); 20.6 (c); 87.2 (d). Note that the
Cauchy numbers correspond to the conditions of figure 5.

poroelastic system. Considering that all the coupling between
the deformation of the beams comes from the flow and consid-
ering the simplicity of the flow model, the effect of the core is
neglected. Moreover, by defining the Cauchy number based on
the flexible length of the filaments (D/2−Di/2 in equation 3 and
D/2 in equation 12), the model can be appropriately compared
with the experiments.

Theoretical Results
To realise the simulations, it was necessary to provide a

value for the microscopic drag coefficientC′
D which we could

not measure experimentally. The model was thus used to sim-
ulate the drag of the rigid specimen tested experimentally and
the value ofC′

D was calibrated to make the resulting simulated
macroscopic drag coefficientCD match that measured experi-
mentally on the rigid specimen. A value ofC′

D = 0.53 was thus
used for the remainder of the simulations.

The first and the second poroelastic specimens tested in the
wind tunnel which have respectively surface densities ofη = 6.0
andη = 9.2 where modelled usingNΘ = 120 reference beams.
The deformation of the first specimen is shown in figure 12. The
deformation is qualitatively very similar to that observed in the
wind tunnel in figure 5.

The reconfiguration curves predicted by the theoretical
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FIGURE 13: Effect of the surface density on the reconfiguration
curve for poroelastic systems in function of:̃CY, (a);C̃Y/η , (b).
The curves have surface densities ofη = 0.1, 1, 10 and 100 from
left to right in (a) and from right to left in (b).

model of equations 13-15 withη = 6.1 and 9.2 corresponding
respectively to the first (solid line) and second (dash line) speci-
mens are shown in figure 8 for comparison with the first (•) and
second (◦) experimental specimens. The general trend of the the-
oretical curves is the same as for the experimental points.

As the model succeeds in reproducing the experimental re-
sults in figure 8, we use it to investigate the effect of surface den-
sity on the reconfiguration. In figure 13, are plotted for a wide
range of surface densities, the curves ofR versusC̃Y in (a) and
versus the ratiõCY/η in (b). In (a), the curves from left to right
represent systems with surface densities ofη = 0.1, 1, 10 and
100; in (b) they go from right to left. In (a) the curves are evenly
spread on the logarithmic plot, while in (b), they are made to co-
alesce at one point about̃CY/η ≈ 3. This shows that the drag
reduction of the poroelastic system studied becomes significant
when the Cauchy number spread over every element composing
the system is effectively of order 1, i.e.,̃CY/η ∼ O(1). The re-
configuration curve of a poroelastic system can thus be compared
with that of a simple system by dividing the Cauchy number by
the surface density as is done for the experimental measurements
on slender filaments and plates in figure 9 (b).

The curves of figure 13 (b) coalesce at small values ofC̃Y/η ,
but at high values when the deformation is large, they have dif-
ferent slopes. Recall that this slope is equal to half the value of
the Vogel exponentV . In figure 14, the value of Vogel expo-
nent computed at̃CYc = 104 is plotted in function of the surface
density. On this graph, an infinitely small value ofηC′

D corre-
sponds to the case where the beams composing the poroelastic
system are thin and few. Therefore, they do not perceive the
presence of their neighbors through the flow. However, when
ηC′

D is large, the system has a lot of surface generating drag.
At η = 2× 10−4 in figure 14, the poroelastic system has a Vo-
gel exponent ofV = −2/3 which corresponds to the asymptotic

10
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10
0

10
2

−1

−2/3

−1/3

0

V

ηC′
D

FIGURE 14: Variation of the Vogel exponent of the drag of a
poroelastic system with surface density. The exponentV is com-
puted at̃CYc = 104.

regime of large deformation of plates, filaments and fibres. In
a range of values ofηC′

D between 2 and 34, which includes the
two experimental specimens tested, the Vogel exponent is almost
constant atV = −1.04. In fact, by varyingηC′

D over two orders
of magnitude between 0.3 and 30, the value of the Vogel expo-
nent varies by less than 15%. What the model predicts is that if
one of the experimental specimens had had 10 times more or 10
times less filaments, its Vogel exponent at largeC̃Yc would have
been approximately the same aroundV ≈ −1. The scaling law
of V = −1 is robust for this poroelastic system.

CONCLUSION
By performing the first experiments on the reconfiguration

of synthetic poroelastic systems, it was shown that the drag on
these systems is characterised by the Cauchy number, the recon-
figuration number and the surface density.

The drag of the synthetic poroelastic system studied shows
particularities similar to those of real trees. As measured on
branches of Loblolly Pine and American Holly by Vogel [3], the
drag on the poroelastic system was measured to increase in a
more pronounced way than aU2 law because the upstream fila-
ments realign themselves in the flow.

A model based on a conservation of momentum in the di-
rection of the flow coupled with the large deformation Euler-
Bernoulli equation of many beams allows to predict the reconfig-
uration of the specimens tested experimentally. The same model
shows that for large enough values of surface density, the scal-
ing law in V = −1 at large Cauchy values is robust over a wide
range of values of surface density.

On this last point, it is worth mentioning that in the litera-
ture, almost all the Vogel exponent values we found for conif-
erous trees are about−1 [3, 17, 18]. Moreover, these trees have
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a structure that somewhat resemble that of the poroelastic sys-
tem studied here. Like the balls made of filaments, coniferous
trees are poroelastic structures made of lots of beams which cre-
ate drag: long thin needle-like foliage. It might not be a coin-
cidence that 4 out of 5 of the Vogel exponents we found in the
literature for coniferous trees are about−1. It would be inter-
esting to evaluate the surface density of these species and to test
specimens using the same experimental protocol used here for
synthetic specimens. This would allow to understand better why
there seems to be an homogeneity in the values of Vogel expo-
nents in the literature.
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[9] Gosselin, F., 2009. “Mécanismes d’interactions fluide-
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