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ABSTRACT aero/hydrodynamic fluid loadings [2]. Plants are flexible where
Because of their flexibility, trees and other plants deform man-made structures are stiff. The great flexibility of plants
with great amplitude (reconfigure) when subjected to fluid flow. comes as the solution to an optimization problem plants face
Hence the drag they encounter does not grow with the square that of maximizing surface area and height to capture sunligh
of the flow velocity as it would on a classical bluff body, but with a finite quantity of material [3]. It is essential to understand
rather in a less pronounced way. The reconfiguration of actual the fluid loadings on plants in order to devise better models t
plants has been studied abundantly in wind tunnels and hydraulic comprehend and predict wind damages to forests and crops,
canals, and recently a theoretical understanding of reconfigura- well as to study the adaptation of aquatic and terrestrial plants t
tion has been brought by combining modelling and experimenta- their environment.
tion on simple systems such as filaments and flat plates. These  Trees and other plants deform with great amplitude wher
simple systems have a significant difference with actual plants in subjected to fluid flow like wind or water current. We term this
the fact that they are not porous: fluid only flows around them, global change of shapeeconfiguration[3]. By bending and
not through them. We present experimentation and modelling of twisting under fluid loading, plants reconfigure and the drag they
the reconfiguration of a simple poroelastic system. Proper scal- encounter does not grow with the square of the flow velocity a
ing of the drag and the fluid loading allows comparing the recon- it would on a classical bluff body, but rather in a less pronouncec
figuration regimes of porous systems to those of simple systemsway. We express in a simplified way this modification of the de-
It is found that in the large reconfiguration regime, the scaling pendence on velocity of the drag by the Vogel expor€ifit, 3],
of the drag with flow velocity is independent of the porosity for a such that
range of parameter values.

FOuz”, 1)

INTRODUCTION _ _ _

In most traditional engineering applications, structures are WhereF is the drag force and., is the flow velocity. For exam-
designed to be rigid such that the loads they bear do not de- Pl€, the leaf of the tulip tree rolls up into a cone when subjectec
form them substantially. In nature, the opposite is true [1]; es- to increasing wind speed [4] hence decreasing its cross-sectior

pecially for trees and plants whose largest abiotic stresses are@r€a and becoming more streamlined. This reconfiguration he
for effect that the drag on the leaf increases more or less linearl

- with flow speed ¢ ~ —1). The reconfigurations of many species
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of plants have been studied in wind tunnels, tow tanks and hy-
draulic canals. Collections of measures of reconfiguration and
Vogel exponents for various species can be found in Vogel [1, p.
143] as well as Harder et al. [5].

Recently a more fundamental understanding of the mecha-
nisms of reconfiguration has been brought by combining mod-
elling and experimentation on simple systems such as filaments
and flat plates [6-10]. Alben et al. [6] studied the reconfigu-
ration of a flexible filament supported at its centre in a 2D soap FIGURE 1: Schematic diagram of the support holding 50 identi-
film flow. The drag reduction and the bending deformation of the cal filaments and details of one filament.
filament measured experimentally were properly modelled with
a potential flow theory coupled with a Euler-Bernoulli beam for-
mulation. From their experimental and theoretical results, Alben EXPERIMENTS

\

et al. [6] concluded that the scaling of the drag of the fibre transi-
tioned from arigid regimex = 0) to a large deformation regime
with ¥ = —2/3 as the hydrodynamic force was increased with
respect to the rigidity of the fibre.

Gosselin et al. [10] compared drag measurements of flexi-
ble thin plates in a wind tunnel with predictions from a simpli-
fied model based on an empirical drag formulation. The sim-
plified model predicts well the reconfiguration of plates and fur-

To understand the effect of porosity on the problem of recon:
figuration, we performed experiments in a wind tunnel to mea:
sure the drag of simple filaments as well as that of poroelasti
bodies.

Methodology

We measured the drag of flexible cylindrical filaments of di-
ameterd, length? and flextural rigidityB (figure 1). Three spec-
imens of filaments supported at their centre were tested, the

ther comparisons showed that the reconfiguration of a rectangu-properties are given in table 1. Because the filaments were sm:
lar flexible plate supported at it centre in a wind tunnel is iden-  and had little drag, 50 identical filaments were mounted on a spe
tical to that of a filament in a soap film as studied by Alben et cjaly designed support to test them in the wind tunnel (figure 2)
al. [6]. Moreover, Gosselin et al. showed that in the regime of A significant measure of drag could thus be obtained. The spa
large deformation, th_e scall_ng of the drgg with the flow velomty ing between the filaments on the support was of 10 diameters |
can be deduced by dimensional analysis through the assumptionhe transverse direction and 40 diameters in the streamwise
that as theT deformation is large, the original characteristic length ection. The interaction between filaments is thus neglected. T
becomes irrelevant. avoid a bidimensional deformation, the filaments were mounte:
vertically in the wind tunnel. Hence, the lower half of a filament
The study of the reconfiguration of idealised systems [6-10] is rigidified by gravity and the upper half is effectively more flex-
allowed understanding the basic mechanisms of drag reductionible. At first order, on the whole filament, the effects of gravity
affecting trees and vegetation. However, a major difference sep- is compensated and at high flow velocity, aerodynamic loadin
arates beams and plates from actual trees: fluid museftound becomes much larger than weight. In addition, rigid cylinders of
simples obstacles while wind pasgesugh a porous structure  the same dimensions as the three flexible filaments were testec
such as a tree. The elements composing the plants like the leaves = The poroelastic system studied is a ball of diamBtenade
and the branches perceive an effective flow velocity modified of N round filaments of diameter tied together at the center of
from that of the free stream velocity. Because the plant is a the ball (figure 3). The core of the ball where all the filaments are
poroelastic system, when reconfiguring, it modifies this effective tied is relatively rigid and has a diamef@y. The ball is screwed
flow velocity. It is the goal of the present paper to characterise onto a downstream support which transmits the drag force to th
the effect on reconfiguration of poroelasticity. Extensive wind force sensor. The specimens were manufactured by Hasbro al
tunnel testing was realised on poroelastic bodies as well as flex- sold as toys under the name of “Koosh balls”. The flexural rigid-
ible filaments. These experimental results allow us to define a ity B of the filaments forming the ball was found by measur-
proper Cauchy number which governs the problem of reconfigu- ing the natural frequency of a single cantilever filament using ¢
ration and accounts for geometry, Reynolds and porosity effects. high-speed camera. Two poroelastic specimens were tested
Moreover, with a simple theoretical model for the reconfigura- the wind tunnel, their characteristics are given in table 2. More:
tion of the systems studied, we investigate the mechanisms of over, a rigid porous specimen built with finishing nails planted in
drag reduction and study the effect of porosity on reconfigura- a styrofoam ball was tested (figure 4).
tion. These laboratory experiments were conducted in a small Eif
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FIGURE 2: Photograph of the support holding 50 filaments of
length? = 7.4 cm subjected to an air flow of 20 m/s.

l d B
(cm) (cm) (10°Nm)
fi 4.0 0.094 127
f2 7.4 0.094 127
f3 11.6 0.094 127
cl 40 0.094 -
c2 7.4 0.094 -
c3 11.6 0.094 -

TABLE 1: Parameter values of the tested flexible filaments and
rigid cylinders.
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FIGURE 3: Schematic of the poroelastic system.
D Di d B N
(cm) (cm) (cm) (10%Nm)

FP1 89 3.1 0.094 127 900

FP2 54 1.6 0.068 38.1 1150

RP 89 3.0 0.09 - 530

TABLE 2: Parameter values of the tested flexible and rigid porous
specimens.

FIGURE 4: Photograph of the rigid porous specimen. It has the
same dimensions as the first poroelastic specimen, but is made
less cylindersN = 530).

fel wind tunnel with a test section of 180m by 0180m. The
wind stream is produced by a centrifugal fan mounted down
stream and exhausting air vertically. The mean velocity in the
test section can be varied from 5 to 3@snwith a turbulence
level of 15% at 10m)'s.

Different specimens tested were mounted on a support cor
nected to a five-axis force sensor located under the wind tunne
The force sensor measured the drag of the specimen and a pit
static system measured the flow velocity. For every specime
at each flow velocity tested, the 24 bit data acquisition systen
collected the measurements of the drag and the flow velocity fo
one minute and time-averaged the values. The drag on the su
port alone was measured and subtracted from the drag of ea
specimen.

Reconf guration and drag measurements

The deformation of the first poroelastic specimen (FP1) is
shown in figure 5 for four flow velocities. At 5fs (figure 5
a), the deformation is small. As the flow velocity is increased
further, the deformation becomes important and the filament
bend with the flow. Note that on figure 5 (c), a dynamic co-
herent movement of the filaments makes the picture blurred. W
presume that these coherent movements are due to a passive
sponse of the filaments to vortex shedding on the ball. At igim
the standard deviation of the fluctuations of the drag measure
ments is less than 8% of the time-averaged value. For this reaso
in this study of static reconfiguration, we neglect any dynamic ef:
fect due to vortex shedding, turbulence or other coupling mech
anisms.

The drag measurements of the filaments and the rigid cylin
ders are shown on figure 6 (a) while those for the three porou
specimens are shown on figure 6 (b). For both the cylinders an
the porous systems, the increase of drag with flow velocity or
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FIGURE 5: Photographs of the deformation of the first poroelas-
tic specimen in the wind tunnel at flow velocities of 5 (a); 8 (b);

14 (c); and 29 m/s (d).
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FIGURE 6: Drag of flexible filaments and rigid cylinders (a), as
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well as porous specimens (b): fllY; c1 (a); f2 (O); c2 (A); f3
(M); c3 (A); FP1 6); FP2 ©); RP ().

the rigid specimens is almost quadratic. However, the drag of all
flexible specimens has a smaller dependence on the flow velocity.
To analyse the effect of flexibility on drag, we must first

use the same definition of Reynolds number based on the dian
eter of a cylinder of the porous ball. Due to the lack of space
the variations of drag coefficients with Reynolds number for the
rigid cylinders and the rigid porous balls are not shown. Overall
it found that in the range of Reynolds number studied here vary
ing between 200 and 2000, the drag coefficient of the porous ba
follows a similar trend to that of the isolated rigid cylinders.

Using the data of the rigid benchmark specimens in figure 6
we can thus isolate the effect of flexibility on the drag variation
of the flexible specimens as the flow velocity is varied. To extrac
from the drag measurements the variations due to flexibility an
thus fully appreciate the effect of reconfiguration, we develor
appropriate dimensionless numbers.

Dimensionless numbers

We consider the dra of a flexible slender cylindrical fila-
ment of lengthY, diameterd and flexural rigidityB bending due
to a fluid flow of densityp and velocityU,,. We express this
problem using the Cauchy number and the reconfiguration nurr
ber:

— pRU2d F
Cy = R —
=% 768 IpCordu2

(@)

The Cauchy number characterises the reconfiguration of an ela
tic medium subjected to flow [10-13]. It is equal to the ratio
of the aerodynamic force produced by the fluid on the original
shape of the structure over the rigidity of the structure. We us
the definition introduced by Gosselin et al. [10] which includes
the drag coefficient. This allows to take into account effects of
geometry and Reynolds number. The reconfiguration number
emphasises the effect of flexibility on the drag by comparing the
drag of the flexible filament to that of an equivalent rigid cylinder
at the same Reynolds number.

For the poroelastic system, similar Cauchy and reconfigura
tion numbers can be defined based on the cross-sectional area
the ball, and a new quantity, the surface density, is introduced

& _c p(D—Dj)°ud R
P 16B T prD2CpUZ’ 3)
~ Nd}  2Nd
= Inp2 mD’

characterise the drag of the rigid benchmark specimens. We de-We define the surface density as the ratio of the cross-section
fine a drag coefficient and a Reynolds number for the rigid cylin- area of all the components of the porous body {thilaments

dersCp = 2F /pd/UZ andRe= pdU./u whereF is the mea-
sured drag force)., is the flow velocity angb andp are the fluid
density and dynamic viscosity. Similarly for the rigid porous
specimen, we define a drag coeffici€@ = 8F /mpD?U2 and

composing the ball) over the cross-sectional area of the unde
formed poroelastic body.

The variation of% in function off:; is shown in figure 7
for the three specimens of filamer{fs). The new experimental
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FIGURE 7: Superposition of the experimental measurements of
drag on flexible slender systems: 3 flexible filaments tested in
a wind tunnel(0); 5 rectangular plates tested in a wind tunnel
by [10] (x); and 2 fibres tested in a soap film flow by [&)]); the
theoretical model of [10] +—).

points are shown along with the results of Gosselin et al. [10]
on flexible rectangular plates)(and those of Alben et al. [6]

on flexible fibres in a soap film floW#). Despite the different

geometries, dimensions, rigidity and type of flow, all the data
points collapse on a single curve. This confirms that the prob-
lems of reconfiguration of a filament and a rectangular plate in a
wind tunnel, as well as a fibre in a soap film flow are essentially

10° 100 10°

Gy

FIGURE 8: Variation of the drag reduction of the poroelastic sys-
tems for increasing Cauchy number: first flexible specimeh, (
second flexible specimemy)( The curves predicted by the the-
oretical model of equations 13-15 with= 6.1 and 92 corre-
sponding respectively to the first— ) and second (— - —)
specimens are also shown.

slope. Upon fitting a least square power law on the data point

of figure 7 whereCy > 100, one finds tha O (’:;_0'29 which
corresponds t& 0 UL42 or # = —0.58. This value of Vogel
exponent is in agreement with the dimensional analysis of Gos
selin et al. [10] which predicts a Vogel exponentif= —2/3.
Gosselin et al. obtain this value by dimensional analysis follow-

the same problem, i.e., the same dimensionless numbers charing the assumption that the characteristic length of the origina
acterise them and their reconfiguration is the same. Note that undeformed system becomes irrelevant.

superposition is only possible with the use of the Cauchy num-
ber definition of equation 2 which includes the drag coefficient
Cp. Values ofCp for the different specimens plotted in figure 7
vary from 0.7 for the shortest filaments at the highest Reynolds
number to 7 for the fibres in the soap film flow. The inclusion

The reconfiguration curves for the first)(and the second
(o) flexible specimens are shown on figure 8. The two curves ar
superimposed indicating that the Cauchy number is appropria
to describe the problem.

Differently from the reconfiguration of slender bodies in fig-

of the drag coefficient in the Cauchy number allows to fully iso- ure 7, the reconfiguration number of the poroelastic balls in fig:
late effects of flexibility on the drag from Reynolds number and ure 8 increases slightly before decreasingf:,vp\tz 10, the drag
geometry effects. For the sake of comparison, the reconfigura- of the poroelastic balls is 18% larger than that of identical rigid
tion curve predicted by the model of Gosselin et al. [10] which porous balls. This can be explained by the fact that the filament
couples an empirical drag formulation to the large deformation which point upstream in the flow before the ball is deformed mus
of a Euler-Bernoulli beam is shown in solid line in figure 7. The pass through a position where they are perpendicular to the flor
agreement between the experiments and the model is very goodio bend downstream with the flow (see figure 5 b-c), thus sig
and for this reason, the model is extended to poroelastic systemsnificantly increasing their drag. Some tree branches have bee
in the following section. observed to exhibit the same phenomenon [3].

The Cauchy number governs the problem of the reconfigu- Another noticeable difference between figures 7 and 8, i
ration of slender systems (figure 7). For small value€yafthe that the drag reduction begins ab@yt~ 3 for the plates, fibres
points are aligned on a horizontal line which indicates that the and filaments whileZ only starts to decrease beyoGd ~ 20
drag on the flexible objects varies as it would on a rigid object. for the porous systems. The reconfiguration curve for the porou
At values ofCy between 1 and 10, the reconfiguration number systems is shifted to higher valuesGy. This difference is high-
starts to decline as the specimens deform.Cfsncreases fur- lighted in figure 9 (a) where? is plotted for the slender spec-
ther, the decline ofZ seems to follow a constant logarithmic  imens ¢) along with the poroelastic specimensg {ersus the

5 Copyright (©) 2010 by ASME
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FIGURE 9: Collapse of the reconfiguration curves of poroejs (
specimens as well as the slender specimens (flaments, rectan-
gular plates, fibress) when plotted in function of: the Cauchy
number alon&Sy, (a); the Cauchy number divided by the surface

densityCy /n, (b).

(b)
Cauchy number. Infigure 9 (b), the reconfiguration of both types gygyRE 10: Schematic diagram of the poroelastic system mod-

of systems is plotted in function of the quotient of the Cauchy o104 (a). Detail of the deformation of beam j part of the systerr
number by the surface densiy /1. For the slender specimens,  gjong with the flow the beam perceives (b).
n = 1 while for the first and second poroelastic specimens it can

be calculated from equation 3 with the data from table 2 to be
respectivelyn = 6.1 andn = 9.2. Dividing the Cauchy num-  similarly to Taylor's [14] modelling of the drag force on yawed
ber by the surface density amounts to dividing the aerodynamic cylinders, we approximate the pressure drag on a beam in a p
load evenly on all the structural elements composing the porous tential flow with a conservation of momentum argument. We as
bodies. By doing so, we obtain a reasonable collapse of recon- sume that the flow produces a force proportional to the momer
figuration points for both porous and non-porous bodies with a tum it carries in the direction perpendicular to the beam. Upor
drag reduction which begins @ /n valued between 1 and 3. It  setting this drag force on a beam element equal to the shear for
is shown with the following theoretical model that this collapse in a Euler-Bernoulli beam, we obtain:
can be extended on a much greater scale of surface density val-
ues. 2%

35 ~ —2nCh [y () sing)?. @)
THEORETICAL MODEL

We consider the deformation of a ball made up of a col- \herect s the drag coefficient of one beam inside the porous

lection of N identical cylindrical bgams uniformly spread and 41 and where the velocity;(S) perceived by beam | varies
clamped at the centre of the ball (figure 10 a). The beams have along the beam (figure 10 b). We neglect the contacts betwee

rigidity per unit widthB, diameterd lengthD /2 and form a ball the beams so the only coupling in deformation happening be
of diameterD. This system is subjected to a flow of uniform tween beams comes from the flow.

velocity U, of an inviscid fluid of density. From Newton’s third law, the force produced by the beams
The schematic diagram of a beam j part of the system along o, he fiow can be written similarly. Every beam elemé§t of

with the flow it perceives are shown in figure 10 (b). The un- ooy creates a force perpendicular to itself on the fluid
deformed beam j makes an an@e with the flow and has an

azimutal anglep; about the axis of the flow (figure 10 a). The 1

lagrangian coordinat§ is defined along the central axis of this fi(§) = —pdCDszsinZGJ(SS. (5)

beam from its clamped end to its free end. The deformed shape 2

of beam j is given by the local ang&(S) the beam makes with

the flow. The system has a high number of degrees of freedom, sinc
We use an empirical formulation of the fluid forces based on the number of bearN is of the order of 1000 and each beam has

the model of Gosselin et al. [10]. As in Gosselin et al. [10] and a continuous deformation along its length. Moreover, the flow

6 Copyright (©) 2010 by ASME
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FIGURE 11: Schematic diagram of the deformation of the sys-
tem (a) and detail of the section of a volume elem&Qtof the
poroelastic continuum (b).

through the multiple beams is complex. Rather than modelling
all these degrees of freedom and this complexity of the flow, we

use an homogenisation approach similar to Py et al. [15] and

From the transformatiodR = dSsin8, we can write the loss of
pressure due to drag across the voluiteas

fsin@

AP = RORGQ

(8)

To find the loss of velocity on a variatiod®, we apply
Bernoulli's law, 3pU%(R,©) = 3pU%(R, ©+ 50) — AP:

U?(R,0)-U?(RO+60) =
Nsin@50ChLdsir? 6
4mR '

—U?(R©+350) 9)

If the angled© is small, equation 9 takes the form of a derivative

U  Nsin®Chdsir? 6

00 8mR (10)

Favier et al. [16]. We consider the ball of beams as a poroelastic The beam located & = 1 encounters an unperturbed fld.

continuous media. Deformation of beamf(S), becomes a
continuous function ir®, i.e., 6(S,©). By neglecting gravity,

deformation of the system can be considered axisymmetric in
We can thus rewritte equation 4 as

2%

771- / . 2
8053 = 2pCD [Usin@]“,

(6)

whereU and@ are functions of® andS.

Homogenisation in space allows to model the forces that
beams exert on the flow as a body force. In a voludSk of
an elemen®S60©d¢ as drawn in figure 11, are locatéth =
Nsin(©)50d¢ /4 beams and the body force they exert on the
fluid is Ng times the force of one beam element from equation 5,
ie.,

f(S0)= (%T sin®5®6¢) (%pdcbuzsinz 955). (7)

In the spirit of keeping the model simple, we make the approx-
imation that the flow is always parallel to the axis of axisym-

For© < m, since the deformation of the beam varies viitthe
local flow velocity is a function oR.

The drag force of the entire poroelastic system is the inte
gral over its volume of the axial component of the body force of
equation 7:

T D/2
F:/%sme/ %pd(‘/DUZ(R,O)sinsedeO. (11)
0 0

To write the problem in a dimensionless way, we define the
dimensionless lagrangian and eulerian coordinates, the velocit
the surface density, as well as the reconfiguration and Cauct
number

=2 (_R g U _2\d

D’ D’ Us’ D’
. F 5 ooz g W
~lpmc,uz’ Y PT1eB T T G

metry of the system and neglect the transverse component, i.e.where the reference drag of a rigid porous system is define

Uj = Uj&. It follows from this simplification that the flow can
be solved with the Bernoulli equation.

For purely axial flow, the fluid in the volumé&Q (figure
11) flows trough the surfacRORd¢, whereR is the eulerian

coordinate measured perpendicular to the axis of axisymmetry.

7

based on thenacroscopiarag coefficient of the entire system

Cp which is different from themicroscopicdrag coefficient of

only one beam inside the b&l},, and where is the ratio of both
coefficients.
With the parameters of equations 12, equations 6, 10 and 1

Copyright (© 2010 by ASME



are made dimensionless:

20~
75 = —CycU?sin? 6, (13)
U
oy _ nCDsmG)sm297 (14)
90 16r
C f ;
% = 7/sin@/u_zsin3eo|so|@. (15)
0 0

(b)

Note that we define the Cauchy numi@y, based on the macro-
scopic drag coefficient of a rigid equivalent porous b@l, al-
though it is the drag coefficient of a single filament composing
the ball,Cj, that appears in equations 6 and 10. We do so be-
causeCy, can difficulty be measured experimentally.

The dimensionless boundary conditions can be written as
follows:

26 926 (c) (d)

sl =0 Gl —0 (8

U_|G):n:17 9|t0:ea
FIGURE 12: Visualisation of the modelled deformation of a

To solve the system of equations 13 and 14, the deforma- poroelastic system equivalent to the first specimen subjected to
tion of the poroelastic medi@(s, ©) and the velocity of the fluid ~ flow with Cy = 2.8 (a); 6.9 (b); 20.6 (c); 87.2 (d). Note that the
U (r,0) are discretised i® over No referencebeams similarly ~ Cauchy numbers correspond to the conditions of figure 5.
to [16]. The deformation of the upstream-most beai® at 1Tis
solved first since it perceives an unperturbed flow velocity. Equa-
tion 13 is integrated numerically using the shooting method and poroelastic system. Considering that all the coupling betweel
the Runge Kutta algorithm. Once the deformation of this beam the deformation of the beams comes from the flow and consid
is known, equation 14 is solved Bt points onr between 0 and ering the simplicity of the flow model, the effect of the core is
1 to yield the flow perceived by the second reference beam. The neglected. Moreover, by defining the Cauchy number based ¢
equation of deformation 13 is subsequently integrated numeri- the flexible length of the filament®('2 — D;/2 in equation 3 and
cally with Runge Kutta using an iterative scheme since the flow D/2 in equation 12), the model can be appropriately compare!
velocity profile is defined in eulerian coordinates and the defor- with the experiments.
mation of the beam is defined in lagrangian coordinates. Once
the shape of the beam is found, the loss of momentum in the
flow is computed using equation 14 and the process is repeated T heoretical Results

for every reference beam and finish by solving equation 15 to To realise the simulations, it was necessary to provide
find the reconfiguration number. value for the microscopic drag coefficie@f, which we could

Note that when the poroelastic system is dense enough, i.e.,Not measure experimentally. The model was thus used to sin
whenn is large, the ternnCj, sin@3@sir? 6)/(8r) of equation ulate the drag of the rigid specimen tested experimentally an
10 can become larger than 1 over partraspecially close to the value ofCj, was calibrated to make the resulting simulated
the centre of the systenn & 0). In this caseu(r,©) is set to macroscopic drag coefficiedp match that measured experi-
0 and the “additional” loss of momentum at this positior iis mentally on the rigid specimen. A value Gf = 0.53 was thus
subtracted from the next position- or. used for the remainder of the simulations.

Also, when many equilibrium positions exist for a beam, we The first and the second poroelastic specimens tested in tt

select the one for which the free end is the farthest downstream. wind tunnel which have respectively surface densitieg ef6.0

No stability analysis is performed on the different positions, but andn = 9.2 where modelled usinble = 120 reference beams.

we judge that this position has most chances of minimising the The deformation of the first specimen is shown in figure 12. The

potential energy. deformation is qualitatively very similar to that observed in the
The geometry we model is slightly different from that of our  wind tunnel in figure 5.

experiments because we neglect to model the rigid core of the The reconfiguration curves predicted by the theoretica

8 Copyright © 2010 by ASME
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FIGURE 13: Effect of the surface density on the reconfiguration nc,

curve for poroelastic systems in function @&, (a);f:;/r], (b).

The curves have surface densitiesjof 0.1, 1, 10 and 100 from  FIGURE 14: Variation of the Vogel exponent of the drag of a

left to right in (a) and from right to left in (b). poroelastic system with surface density. The expoteistcom-
puted aCyc = 10%.

model of equations 13-15 with = 6.1 and 92 corresponding _ _ ) )
respectively to the first (solid line) and second (dash line) speci- "€9ime of large deformation of plates, filaments and fibres. Ir

mens are shown in figure 8 for comparison with the fis3tand a range of values afCp, between 2 and 34, which includes the

second ¢) experimental specimens. The general trend of the the- WO experimental specimens tested, the Vogel exponentis almo
H /

oretical curves is the same as for the experimental points. constant at’” = —1.04. In fact, by varying)Cp, over two orders

of magnitude between 0.3 and 30, the value of the Vogel expa
nent varies by less than 15%. What the model predicts is that |
one of the experimental specimens had had 10 times more or
times less filaments, its Vogel exponent at Ia@e would have
been approximately the same arouficde —1. The scaling law

of ¥ = —1 is robust for this poroelastic system.

As the model succeeds in reproducing the experimental re-
sults in figure 8, we use it to investigate the effect of surface den-
sity on the reconfiguration. In figure 13, are plotted for a wide
range of surface densities, the curvesfrersuCy in (a) and
versus the rati@;/n in (b). In (a), the curves from left to right
represent systems with surface densitiegjof 0.1, 1, 10 and
100; in (b) they go from right to left. In (a) the curves are evenly
spread on the logarithmic plot, while in (b), they are made to co-

alesce at one point aboGY /n ~ 3. This shows that the drag By performing the first experiments on the reconfiguration
reduction of the poroelastic system studied becomes S|gn|f|ce_1nt of synthetic poroelastic systems, it was shown that the drag o
when the Cauchy number spread over every element COMpOSINGyyaqe systems is characterised by the Cauchy number, the rec
the system is effectively of order 1, i.€y/n ~ €(1). The re- figuration number and the surface density.
configuration curve of a poroelastic system can thus be compared ~ The drag of the synthetic poroelastic system studied show
with that of a simple system by dividing the Cauchy number by articularities similar to those of real trees. As measured ol
the surface (_jensity asis done fo_r th_e experimental measurements, anches of Loblolly Pine and American Holly by Vogel [3], the
on slender filaments and plates in figure 9 (b). s drag on the poroelastic system was measured to increase in
The curves of figure 13 (b) coalesce at small values/gfy, more pronounced way thanl# law because the upstream fila-
but at high values when the deformation is large, they have dif- ments realign themselves in the flow.
ferent slopes. Recall that this slope is equal to half the value of A model based on a conservation of momentum in the di-
the Vogel exponent’. In figure 14, the value of Vogel expo-  rection of the flow coupled with the large deformation Euler-
nent computed ayc = 10% is plotted in function of the surface  Bernoulli equation of many beams allows to predict the reconfig
density. On this graph, an infinitely small value @€, corre- uration of the specimens tested experimentally. The same mod
sponds to the case where the beams composing the poroelastishows that for large enough values of surface density, the sca
system are thin and few. Therefore, they do not perceive the ing law in 7 = —1 at large Cauchy values is robust over a wide
presence of their neighbors through the flow. However, when range of values of surface density.
nC; is large, the system has a lot of surface generating drag. On this last point, it is worth mentioning that in the litera-
At n = 2x 10~ in figure 14, the poroelastic system has a Vo- ture, almost all the Vogel exponent values we found for conif-
gel exponent off = —2/3 which corresponds to the asymptotic  erous trees are abowutl [3,17,18]. Moreover, these trees have

CONCLUSION
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a structure that somewhat resemble that of the poroelastic sys-

tem studied here. Like the balls made of filaments, coniferous
trees are poroelastic structures made of lots of beams which cre-[11] Cermak, J., and Isyumov, N., 1998/ind Tunnel Studies of
ate drag: long thin needle-like foliage. It might not be a coin-
cidence that 4 out of 5 of the Vogel exponents we found in the
literature for coniferous trees are about. It would be inter-

2010. “Drag reduction of flexible plates by reconfigura-
tion”. Journal of Fluid Mechanicsg50, pp. 319-342.

Buildings and StructuresAmerican Society of Civil Engi-
neers.

[12] Chakrabarti, S., 2002The Theory and Practice of Hydro-
esting to evaluate the surface density of these species and to test dynamics and VibrationSingapore, World Scientific.
specimens using the same experimental protocol used here for[13] de Langre, E., 2008. “Effects of wind on plantsAnnual
synthetic specimens. This would allow to understand better why Review of Fluid Mechanics40, pp. 141-168.
there seems to be an homogeneity in the values of Vogel expo-[14] Taylor, G., 1952. *“Analysis of the swimming of long
nents in the literature. and narrow animals”. Proceedings of the Royal Society
of London. Series A, Mathematical and Physical Sciences
214(1117), pp. 158-183.
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