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ABSTRACT 
Tube bundles in steam boilers of nuclear power plants and nuclear on-board 
stokehold are known to be exposed to high levels of vibrations. This coupled 
fluid-structure problem is very complex to numerically set up, because of its 
three-dimensional characteristics and because of the large number of degrees 
of freedom involved. A complete numerical resolution of such a problem is 
currently not viable, all the more so as a precise understanding of this system 
behaviour needs a large amount of data, obtained by very expensive 
calculations. We propose here to apply the now classical reduced order 
method called Proper Orthogonal Decomposition to a case of 2D flow around 
a tube bundle. Such a case is simpler than a complete steam generator tube 
bundle; however, it allows observing the POD projection behaviour in order 
to project its application on a more realistic case. 
The choice of POD leads to reduced calculation times and could eventually 
allow parametrical investigations thanks to a low data quantity. But, it implies 
several challenges inherent to the fluid-structure characteristic of the problem. 
Previous works on the dynamic analysis of steam generator tube bundles 
already provided interesting results in the case of quiescent fluid [J.F. Sigrist, 
D. Broc; Dynamic Analysis of a Steam Generator Tube Bundle with Fluid-
Structure Interaction; Pressure Vessel and Piping, July 27-31, 2008, Chicago]. 
Within the framework of the present study, the implementation of POD in 
academic cases (one-dimensional equations, 2D-single tube configuration) is 
presented. Then, firsts POD modes for a 2D tube bundle configuration is 
considered; the corresponding reduced model obtained thanks to a Galerkin 
projection on POD modes is finally presented. The fixed case is first studied; 
future work will concern the fluid-structure interaction problem. Present study 
recalls the efficiency of the reduced model to reproduce similar problems 
from a unique data set for various configurations as well as the efficiency of 
the reduction for simple cases. Results on the velocity flow-field obtained 
thanks to the reduced-order model computation are encouraging for future 
works of fluid-structure interaction and 3D cases. 
 

INTRODUCTION 

Nuclear power plants or on-board stokehold steam boilers 
functioning intrinsically induces several vibratory levels, 
especially concerning the tube bundle part of the boiler [5], 
[11], [31], [37]. It is shown that fluid-elastic instabilities can 
occur in such a configuration [9], [12], [13], leading to a 
certain destruction of tubes: this is why the study and a precise 
comprehension of this vibration mechanism are crucial. But, a 
good comprehension remains difficult because of the high 
number of parameters that play a role in the vibrations 
generation [32], [33]. Thus, only laboratory and/or on-site 
experiments are not sufficient (although very precise from the 
physical point of view) and it becomes necessary to develop 
accurate and robust CFD numerical codes [22], [40] in order 
to set up parametric studies that could help the understanding 
of violent phenomena like fluid-elastic instabilities. 
Another constraint is the high resource level that is necessary 
to set up this fluid/structure interaction problem: to be as close 
as possible to real conditions, a fully 3D turbulent flow has to 
be computed by the CFD code [18], added to the cost of the 
coupling with a CSD code. In an industrial configuration, such 
a computation remains inconceivable, first because of the 
resource cost, second because of the CPU time involved. 
We propose an alternative that could offer perspectives in the 
study of tube bundle vibrations, using reduced-order models. 
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Theses models are well-known and widely used in the field of 
fluid mechanics [10], [16] as well as structure field [2], but 
they still represent a challenge within the frame of fluid-
structure interactions [14], [26], [42]. They however could 
give a better comprehension of the physics of this 
fluid/structure interaction problem, giving information on 
parameters which could no be easily obtained from 
experiments. The reduced-order model that we propose to set 
up in this paper is the Proper Orthogonal Decomposition 
(POD) [21], [24] which is now used in many fields [1], [21], 
[27]. 
The paper is organized as follows: a first part is dedicated to 
the main vibrations problems that can encounter a tube bundle 
in real conditions. Then, current numerical models that are 
used to solve and study such a problem are briefly presented 
in the second part. Proper Orthogonal Decomposition will be 
described as well as its potential contribution specifically for 
this crucial question of tube bundle vibrations. Finally, in the 
third part, first numerical results in the use of POD are 
proposed and perspectives for a future work are exposed. 

1. HEAT EXCHANGER TUBE BUNDLE VIBRATIONS 
PROBLEMS 

Figure 1 shows the general functioning of an on-board 
stokehold steam boiler of a water pressurized reactor (WPR). 
The functioning of a civil nuclear steam boiler is quite the 
same ; both are WPR. Water of the primary circuit feeds the 
tubes (in red) driven by a pump. Liquid water of the secondary 
circuit comes from the top of the tube bundle and vaporizes by 
ascension along the tubes. 

 
Fig. 1. Steam boiler system 

Main variables used in this paper are presented in table 1: 

Variable Definition 
ρ  Fluid density (kg.m3− ) 
µ  Fluid dynamic viscosity (kg.m1− .s 1− ) 
D  Diameter of one tube (m) 
P  Step between two tube diameters (m) 

][ M  Total mass matrix  

][C  Damping matrix  

][ K  Stiffness matrix 

Tab. 1. Main variables of the system 

 Classically, the equation of motion of one tube is the 
following: 

{ } { } { } { }extFtQKtQCtQM =++ )(][)(][)(][ &&&  (1) 

where { })(tQ represents the motion generalized coordinates 

vector,{ }extF  is the fluid forces vector to which the tube is 

subjected. 
Definition of these parameters is of high importance and is far 
from easy. Various models have been proposed in order to 
take into account each coupling mechanism (for example, the 
contribution of several damping parameters have to be 
considered). Experimental data compiled by Pettigrew and 
Taylor [33], [34] have been used to define semi-empirical 
formulations for several damping components, according to 
the thickness of the grid supporting the tubes, natural 
frequency of the considered vibration mode of a tube, total 
mass, and considerations on tube supports. Moreover, these 
formulations are different when considering a single liquid 
phase, a single gas phase or a two-phase flow. 
Before presenting different tubes excitation phenomena, it is 
necessary to redefine dimensionless numbers that govern the 
fluid flow, Reynolds number and Strouhal number. Table 2 
gathers these dimensionless numbers.  

Variable Description 

eR  
µ

ρ DU p  

tS  
p

s

U

Df
 

Tab. 2. Dimensionless numbers for a fluid-structure 
interaction problem in a tube bundle configuration 

 The step fluid velocity pU  takes into account the tube 

confinement. It is defined as 
DP

P
UU p −

= ∞  where ∞U is the 

equivalent mean flow velocity which would have been 
imposed in an infinite domain. 
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Four vibratory excitation mechanisms are likely to exist under 
cross-flow: turbulent excitation, vortex-induced vibrations, 
acoustic resonance and fluid-elastic instability. Figure 2 
reminds the evolution of a tube response to a cross-flow 
against mean fluid flow velocity. 

 
Fig. 2. Scheme of vibratory response of a cylinder in tube 

bundle  

The apparition of each phenomenon depends on parameters 
that are not always known and/or easily observable. But 
researchers have collected information in order to predict and 
to prevent destructive mechanisms. 
Turbulent excitation is unavoidable: Reynolds number of the 

flow regime is ]10;10[ 74∈eR . Moreover, turbulence is 

recommended in order to produce a mixing as perfect as 
possible, to obtain good heat transfers. However, turbulence 
induces generally low structural motion amplitude [4] so this 
mechanism has to be taken into account in fretting-wear 
damage considerations [34].  
Vortex-Induced Vibrations (VIV) are well known in the case 
of a single tube in infinite domain (see [11], [43] for example). 
In the present case of tube bundles, this phenomenon is more 
complex. The presence of a “lock-in” [20], [23] has been 
detected by Pettigrew and Gorman [31] in air, but Axisa [4] 
never encountered the set up of such a mechanism. Pettigrew 
and Taylor [33] explain that the presence of turbulence tends 
to reduce the possibility of vortices to set up, that reduces 
vortex-induced vibrations. Furthermore, Païdoussis [30] 
insists on the fact that the distinction between both 
mechanisms (turbulence and vortex shedding) is far from 
easy. 
Acoustic resonance is susceptible to appear in the context of a 
single-phase gas exchanger. It strongly depends on the tubes 
arrangement. This phenomenon is not taken into account 
within the framework of this study since exchangers are fluid-
fluid exchangers. Works on this mechanism have been led in 
several configurations [9], [44]. 

Finally, fluid-elastic instability is the most spectacular 
vibratory excitation phenomenon [8], [36]: it leads to a very 
quick destruction of the tubes that have been excited. For 
theses grounds, researchers particularly focused on this 
mechanism in order to avoid it at all costs. When flow velocity 

reaches a certain critical threshold CV , structural motion 

produces a fluid force with the same orientation as structure 
motion direction: this leads to vibratory amplitudes much 
larger than those usually observed. Only the tube breaking, 
caused by repeated impacts between the tube and its support, 
will stop the excitation. This is precisely an interaction 
between fluid and elastic efforts, the first feeds the second and 
conversely: on that point, this mechanism differs from VIV, 
whose amplitude is auto-limited. A very large number of 
models, empirical or semi-empirical, have been proposed in 
the hope of avoiding such a situation. A very widespread 
model is the Connors model [15], who proposed to express the 

critical mean fluid velocity CV  as: 

RC AKV =     (2) 

CV  is a function of the Scruton number 
2

2

D

m
AR ρ

πζ=  where 

ζ is the global damping for the considered tube mode and  

m  is the total mass per unit length. This dimensionless 
number measures the energy proportion that the system can 
dissipate thanks to its proper damping, compared to the energy 
proportion that the fluid provides to the structure through the 
fluid-elastic coupling force. A constant K  weights this 

number; it is defined as 
21kk

K
π= where 1k and 2k are 

stiffness constants of two neighbouring tubes. When the 
global damping becomes negative, the system becomes 
instable. This model has been enriched by many authors [19], 
[30], [32]. The notion of a delay between structure 
solicitations and the flow reaction is also introduced. This 
delay has a big influence on the velocity stability threshold. 
Price [36] shows mathematically that a fluid-elastic instability 
phenomenon is set up by a negative work of fluid efforts. 
Price highlights three mechanisms that can explain this energy 
extraction to the fluid by the structure: first, the discrepancy 
between structure displacement and fluid forces, which 
presupposes that the damping is governing the phenomenon, 
the physics being related to structure displacement. When this 
damping becomes negative, instabilities appear. The second 
mechanism takes place when at least two degrees of freedom 
are involved and when there is a phase discrepancy between 
them. Structure displacement is impacted, that is why the 
mechanism is described as leaded by stiffness. The third 
mechanism is the apparition of hysteresis in fluid forces 
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evolution because of non-linearities. Here, efforts amplitude 
depends on the structure motion direction. 
But, flow passing a tube bundle is a system containing a very 
high number of degrees of freedom, so a precise analytical 
description of exciting efforts is not possible; moreover, 
several modes can be excited, considering relatives cylinders 
motions.  
For each vibration mechanism, experimental data have been 
collected and exploited by various authors in order to define 
criteria to respect [12], [25], [34]. Sometimes, semi-analytical 
models have been developed, particularly in the case of the 
fluid-elastic instability phenomenon; see [36] for example.  
CFD models have been set up in order to avoid experimental 
costs and to observe a large number of parameters. Vortex-
Induced Vibrations have been numerically studied with high 
precision and most of their mechanisms are now well 
understood. However, when turbulence is present in the flow, 
fluid-structure interactions are more difficult to represent, 
notably because of the three dimensional nature of the 
turbulent flow. Fluid-elastic instability is also very hard to 
model for the same reason and because of the number of 
parameters that are involved.  
A constant challenge in numerical modelling is based on 
interactions between fluid and structure motions. In order to 
solve these interactions, two classes of approaches exist [28]:  
the first is called monolithic approach, and consist in the use 
of a unique formulation for fluid and structure modelling. This 
approach is theoretically optimal, but very costly and only 
adapted to simple geometries. The second is a partitioned 
approach: fluid and structure equations are resolved 
separately, with information communication between both of 
them. A good description of these approaches can be found in 
[39]. 
However, in both cases, a complete numerical resolution of 
the fluid-structure interaction in a tube bundle in running rate 
cannot be carried out. In this context, the use of Reduced 
Order Models (ROM) can be a solution to achieve the 
realization of such a study. A ROM allows solving a problem 
which formulation contains the bulk of the system information 
with a reduced number of degrees of freedom. 
 In the framework of fluid dynamics studies, the criterion that 
ensures the fact that “the bulk of the system information” is 
kept can be an energetic criterion. Using this criterion, the 
optimal approach is the well known Proper Orthogonal 
Decomposition (POD). This method is the subject of next 
section; its potential application for the study of fluid-structure 
interactions in tube bundles is also developed. 

2. PROPER ORTHOGONAL DECOMPOSITION (POD) 

In classic Computational Fluid Dynamics studies, 
approximated Navier-Stokes equations are computed on a 

three-dimensional domain Ω for a time interval[ ]T;0 . In the 

case of a large three-dimensional domain, and if the flow is 

turbulent, calculation times can be very long. Moreover, if a 
parametric study has to be set up, it is necessary to lead as 
many calculations as there are values of the parameter. Proper 
Orthogonal Decomposition allows saving calculation time on 
computations, and provides a projection basis that can be 
reused in parametric studies: this technique allows avoiding 
rerun calculations. In an industrial context, theses advantages 
have to be taken into account. 
Proper Orthogonal Decomposition has notably been 
introduced by Lumley [29] within the framework of coherent 
structures extraction of turbulent flows. A rigorous description 
of POD can be found in [21] for example; a large amount of 
domains is now using POD techniques, what leads to variant 
methods, see [14] or [38]. Here we briefly present the POD 
formulation. 
Let us consider a domain Ω  of the set of all real numbers and 

a time interval [ ]T;0 . Spatial and time variables are 

respectively Ω∈x and [ ]Tt ;0∈ .  

Let ),( txu be the unknown field, for example the velocity 

field (which is the unknown of Navier-Stokes equations), 
with ),(),( THtxu Ω∈ , H denoting a Hilbert space. Proper 

Orthogonal Decomposition consists in determining a 

determinist basis { } Nnn ,...,1=Φ of functions which give the 

optimum representation of the field ),( txu . N is the size of 

the POD basis. 
A practical approach of POD has been proposed by Sirovich 
[41], it is called Snapshot POD: this method is based on 
making the most of samples of experimental or numerical 
data. Let consider M snapshots of the velocity field ),( txu  

(these snapshots can be equally taken from an experimental or 
numerical set), these snapshot have been sampled during a 
time period T . Snapshot POD consists in solving the 
following eigenvalue problem: 

( ) ik
L

M

k
ki AAtutu

M
λ=

Ω=
∑

)(1 2

)(),(
1

  (3) 

 
for each Mi ,...,1= , where λ  represents eigenvalues. Each 

element of the POD basis is a linear combination of snapshots, 

coefficients are k
nA , Nn ,...,1= : 

NntxuAx
M

n
n

k
nn ,...,1),()(

1

==Φ ∑
=

  (4) 

The POD basis { } Nnn ,...,1=Φ  has the following property: it is 

orthonormal and for an incompressible flow, each element of 
the basis (i.e. each POD mode) satisfies the incompressibility 
condition as well as boundary conditions of the problem. For a 

given [ ]Nn ,..,2,1∈ , the energetic contribution of the POD 
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mode nΦ  is captured by the corresponding eigenvalue nλ  

and eigenvalues are ranked in descending order 

( Nλλλ >>> ...21 ). Thus, Proper Orthogonal 

Decomposition is optimal in an energetic sense: using the first 
POD modes means keeping the most part of the system 
energy. Thus, as for a spectral method, the POD basis is 

truncated to *N modes, where *N  is less or equal to the POD 

basis size. To determine *N , an energetic criterion is used. 
As the Proper Orthogonal Basis is fully spatial and based on 
time snapshots, its use within a fluid-structure interaction 
resolution is not immediate. Indeed, if the numerical sample 
from which the snapshots are extracted has been obtained 
thanks to a moving mesh technique, the construction of a POD 
basis has no sense, since the POD modes are not time-
dependants. Thus, in the case of fluid-structure interaction 
problems, an extension of the Snapshot POD is necessary. It 
has been presented precisely by Liberge [26] who proposes to 
work on a static spatial domain using a projection of snapshots 
taken from a moving domain study. Here, we first present 
some POD properties working on very simple cases; then, first 
applications on the case we are interested in will be proposed. 

When POD modes { } Nnn ,...,1=Φ are determined, a low order 

dynamical system can be solved. For that, a partial differential 
equations system is projected on the POD basis constructed 
for the field ),( txu . Then, a system of ordinary differential 

equations, which size is *N , is obtained. 
For example, in the very simple case of the one-dimensional 
heat transfer equation, written as: 














+
+

Ω∈∈=
∂

∂−
∂

∂

IC

BC

xTt
x

txu

t

txu
],,0[0

),(),(
2

2

          (5)  

where BCand IC respectively stand for boundary conditions 
and initial conditions; the dynamical system after projection 
on POD modes reads: 

0,
),(

,
),( =









∂
Φ∂

∂
∂+







 Φ
∂

∂
xx

txu

t

txu i
i   (6) 

with iΦ the ith POD mode, assuming homogeneous boundary 

conditions. It is shown that the field ),( txu can be 

decomposed along variables x  and t  as: 

∑
=

Φ=
*

1

)()(),(
N

n
nn xtatxu    (7) 

 

Where { } *,...,1 Nnn =Φ  are elements of the POD basis and 

)(tan are time coefficients.  

Thus the low order dynamical system becomes: 

∑
=








 ΦΦ
−=

*

1

,
N

n

in
n

i

dx

d

dx

d
a

dt

da
       (8) 

 
with orthonormal property of POD modes. 
A very interesting characteristic of the POD basis is its ability 
to represent a solution different from the solution of the 
problem from which the basis is computed. Of course, the new 
problem has to be similar to the first one, which is precisely 
the case in the framework of a parametric study. An example 
on the one-dimensional heat transfer equation with two 
different boundary conditions is proposed, based on the work 
of Chinesta [14]: we define a first field with a heat flux step 
function for boundary condition, and a second field with a 
heat flux ramp function for boundary condition.  
A POD basis is computed from the first problem and both 
reduced dynamical systems are computed by projection on this 
unique basis. The reconstruction gives good results, see figure 
2. 
In order to check POD characteristics for a flow past an 
obstacle, a POD basis is computed for the problem of a single 

circular cylinder in cross-flow at 100=eR  (the problem of 

lock-in for such a configuration have been previously studied, 
see [35]; here the cylinder is fixed, calculations have been run 
using the CFD code Code_Saturne [3]). Figure 3 shows first 
and second velocity components of the flow at a date t  in the 

sampling period[ ]T;0 . Then, figure 4 shows the streamwise 

component of the two firsts POD modes obtained from this 

sample. The sampling period [ ]T;0  corresponds to one lift 

force fluctuations period (i.e. around 6 s) with a time step of 
025.0=∆t s. 150 snapshots have been taken into account to 

constitute the sample. In the case of a low Reynolds number 
flow around a circular cylinder, just one or two fluctuations 
periods are necessary to make a good sample. In the case of a 
turbulent flow, more pseudo-cycles are needed to take into 
account most of the energy of the flow. 
If we remember that the first mode energetic contribution is 
preponderant, it is easy to understand that the first POD mode 

is linked to the mean flow, while next modes (from 2Φ to 

*N
Φ ) contain the energy of flow fluctuations. As the vortex 

shedding phenomenon comes from these fluctuations, they are 
visible only from the second mode. 
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Fig. 2. POD reconstruction of two similar problems by 

projection on a unique POD basis 

 
 
 

 
Fig. 3. Streamwise and cross-stream velocity components 
at time t for a fixed cylinder in cross-flow at 100Re=  

 
4a: 1st mode, streamwise component 

 
4b: 2nd mode, streamwise component 

Fig. 4. First component of the two firsts POD modes 
computed from the instantaneous velocity field for a fixed 

cylinder in cross-flow at 100Re=  

 
Fig. 5. Residual error (in L2 norm) between instantaneous 

velocity field and its POD reconstruction for a fixed 
cylinder in cross-flow at 100Re=  

The real interest of extracting a POD basis from a set of 
snapshots of a fluid velocity field is the construction of a 
reduced-order model, by projection of Navier-Stokes 
equations on POD modes. It has been led for the single fixed 
circular cylinder, but what we are really interested in here is 
the tube bundle configuration: the reduced-order model 
construction is detailed in the following part. 

3. TUBE BUNDLE CONFIGURATION 

A tube bundle configuration is then proposed in order to be 
closer to the problem we are interested in. However, the 
chosen configuration remains simple: a 2D domain and only 
one tube and its neighbors are considered, with periodic 
boundary conditions. Thus, the domain is representing an 
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infinite regular tube bundle. First, the central tube remains 
fixed. The mesh used is presented on figure 5. 

 
Fig. 5. Mesh of the pattern used for the POD study of a 

tube bundle configuration 

The periodicity on all boundaries of this domain is a problem 
to generate a flow and to observe a non stationary flow. As 
explained in Longatte et al. [28], it is thus necessary to add a 
source term (here it is a mass flow rate) to Navier-Stokes 
equations and to generate numerical fluctuations with, for 
example, a velocity step function on a given time interval. 
When the source term is time-converged, a calculation with 
this term can be set up. With this method, a non-stationary 
flow is observed for a Reynolds number 2600Re≈ .  
The goal here is to be able to observe non stationary flow for 
the lower Reynolds number, because the 2-dimensional 
configuration at high Reynolds number would imply bad 
hydrodynamic efforts estimations. A comparison of these first 
results with a three-dimensional calculation at the same 
Reynolds number would be done in order to compare 
hydrodynamic efforts estimations and Strouhal number. 
The POD method has been implemented on such a 
configuration; thus firsts POD modes can be observed on 
figure 6. This basis is composed of 4 modes obtained from the 
fluctuating velocity field: it means that the first of these modes 
does not represent the mean flow but fluctuations of the flow. 
When POD modes are obtained, the following step is to 
project Navier-Stokes equations on these POD modes for the 
present tube bundle configuration and compare the fluid flow 
field obtained after projection to the original set of snapshots. 
From now on, the fluid flow configuration obtained thanks to 
the complete calculation is considered as a reference, even if it 
is not representing a real configuration. The important part of 
the present work is to check the POD reduced order model 
efficiency to reproduce a velocity field. A future work will 
consist in working on cases that can be compared to literature, 
in order to check if the complete calculation of the flow is 
correct. To the authors’ knowledge, present configuration has 
not been numerically studied (inline 2D square array of fixed 
tubes at Reynolds number 2000Re≈ ). However, the CFD 

code used in this study, Code_Saturne [3], has been validated 
for fluid-structure interactions in various tube bundle 
configurations; see [6], [22], [28]. 
 
Time coefficients obtained thanks to a direct POD 
computation are constructed knowing POD modes and 
velocity field from the complete calculation: 

)(2))(),,(()(
Ω

Φ=
Lnn xtxuta  ; ∀ *,...,1 Nn =  (9) 

Using incompressible Navier-Stokes equations: 









=⋅∇

∆+∇−=∇⋅+
∂
∂

0

1
)(

u

upuuu
t

ν
ρ           (10) 

where p is the pressure field and νρ,  respectively flow 

density and cinematic viscosity. Low-order dynamical system 
obtained from the projection on the POD basis is: 

)()()()()(
** *

11 1

xDxCxBtata
dt

da
i

N

n
ni

N

n

N

m
nmimn

i −−−= ∑∑∑
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for each *,...,1 Ni = , with spatial coefficients 

DCB ,, defined in table 3. 
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Tab. 3. Spatial coefficients of the POD reduced model for 
incompressible Navier-Stokes equations 

Coefficient D cannot be calculated through the reduced-order 
model, since information is only given for the velocity field. 
Thus, it is necessary to model this coefficient. Various 
solutions exist to obtain the new pressure field. In this paper, 
coefficient D  has not been modelled yet; it is a short-term 
perspective for our future work. 
Figure 7 represents the comparison between the fluid velocity 
field from the complete calculation on an interval of 5 seconds 
(which correspond to 3 pseudo-periods of lift coefficient) and 
the fluid velocity field obtained after the projection of Navier-
Stokes equations on the POD basis on the same time period. 
100 snapshots have been taken to constitute the data sample. 
The POD basis is constituted of 4* =N  modes. 

On figure 7, time coefficients { } *,...,1 Nnna =  (see formula (7)) 

are plotted. Time coefficients directly constructed with the 
complete calculation velocity field are called “direct 
coefficients” on figure 7. Time coefficients obtained thanks to 
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the dynamical system resolution are called “reduced model 
coefficients”.  

 
6a: 1st mode, 1st component 

 
6b: 1st mode, 2nd component 

 
6c: 2nd mode, 1st component 

 
6d: 2nd mode, 2nd component 

 
6e: 3rd mode, 1st component 

 
6f: 3rd mode, 2nd component 

 
6e: 4th mode, 1st component 

 
6f: 4th mode, 2nd component 

Fig. 6: Components of the first four POD modes of a 
periodic 2D fluid flow around a 9-tube bundle at 2600Re≈ . 

1st component: streamwise component, 2nd component: 
cross-flow component. 

 
The complete calculation has been led for a time interval of 5 
seconds with a time step 001.0=∆t  s.; a snapshot has been 
saved every 50t∆ . Results of the complete calculation versus 
the resolution of the reduced-order model for a date 

],0[ Tt ∈  are presented on figure 8. 

 
7a: 1st time coefficient 

 
7b: 2nd time coefficient 

 
7c: 3rd time coefficient 

 
7d: 4th time coefficient 

Fig. 7: Comparison between time coefficients for the case 
of a periodic 2D flow around a 9-tube bundle at 2600Re≈ .  
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The CPU time for a serial calculation have been estimated to 6 
hours, for a mesh of around 60 000 cells. The resolution of the 
reduced-order model for the same time interval, computed 
with one processor, last 65 s of CPU time: the reduced-order 
model saves a considerable amount of time for this simple 
configuration. Working with the 3D configuration would 
certainly not give such a time saving because of the 
calculation of spatial coefficients of the dynamical system 
which can become very expensive. 
 

 
8a: Complete calculation 

 
8b: Reduced-order model 

resolution 
Fig. 8: Comparison between the complete calculation and 
the reduced-order model resolution for a periodic 2D fluid 

flow around a 9-tube bundle at 2600Re≈ . 
 
To represent a tube vibration in the bundle, a computation 
with moving mesh technique will be run. As mentioned 
earlier, the POD study of a fluid-structure interaction is a 
challenge because of the total spatial characteristic of the POD 
modes. A classic ALE method [17] to compute the field from 
which POD modes are computed would not be correct. That is 
why techniques with non-moving mesh have to be 
implemented, see [26]. Such methods will be set up in a future 
work and applied to this tube bundle configuration. 
 
 
 

CONCLUSION 

In this paper, the crucial problematic of vibratory excitation of 
a heat exchanger tube bundle is presented. Fluid-elastic 
instability is one of the most violent vibration mechanisms and 
a lot of studies have been led in order to define the critical 
fluid velocity and avoid such a phenomenon. This problematic 
is well known but not well understood. A way to improve our 
comprehension of tube bundle vibrations is to work with 
reduced order models (ROM). The most widespread ROM 
method, called Proper Orthogonal Decomposition (POD) and 
its properties are briefly presented. First applications to the 
tube bundle are proposed; future work will consist of taking 
into account the fluid-structure interaction thanks to Liberge 
works [26] and modelling the pressure term. 
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