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ABSTRACT

As tube banks are set in a duct in a boiler and a heat
exchanger, the resonance phenomenon or the self sustained tone
are generated due to the interference between vortex shedding
and the acoustic characteristics of the duct. It is necessary to
know the resonance frequency of the duct, namely sound speed,
for avoiding any trouble that may arise. In general, it is said
that the sound speed decreases in the duct with tube banks and
an evaluation formula is given. However, this formula is often
used for the perpendicular direction of the flow. We wanted to
know whether this formula would be able to be used for the
flow direction and for various arrays of patterns or not. In this
paper, the applicability of this expression is discussed by using
FEM analysis and experiments.

INTRODUCTION

In boilers and heat exchangers, the tube bank is set in a
duct and the heat exchange is executed between the water
inside the tube and the high temperature gases outside the tube.
On this occasion, the Karman vortex with the frequency
proportional to the velocity is generated behind the tubes and it
excites the acoustic field in the duct. On the other hand,
inside the duct forms an acoustic field and has the acoustic
natural frequency determined by the sound speed and the duct
size. Then, when the shedding frequency of the Karman
vortex coincides with the acoustic natural frequency of the
duct, the resonant phenomenon arises and the self-sustained
tone is generated especially when the duct has a small acoustic
damping. When these phenomena arise, the factory is forced
to stop due to the complaint of the neighbor or tremendous
amount of money is required. Consequently, it is necessary to
examine the possibility of the resonance and the self-sustained
tone in the design stage. It is necessary to know the exact
sound speed in the tube bank in the design stage to examine
these possibilities.

Parker [1] and Blevins [2] proposed the sound speed in a
tube bank c, as follows:

c,/cy=1/1+0

Where o is the ratio of the volume occupied by tubes to the
total duct volume and ¢ is the sound speed in the ambient fluid.
This expression shows that the sound speed c. is dependent on
only 6. We questioned whether this expression is applicable to
any array patterns of tube banks if only o is the same.

In this paper, the applicability of this expression will be
examined by experiments and by FEM analysis.

MAIN NOMENCLATURES

a : Added mass coefficient

o : Filling fraction or Volume fraction (the ratio of the volume
occupied by tubes to the total duct volume)

¢o - Sound speed when tube bank does not exist (6=0)

¢. : Sound speed when tube bank exists (c=0)

d : Outer diameter of tube

f: Force vector per unit volume

p : Fluid density

p : Pressure

O : Ratio of mass flux per unit volume

U : Flow velocity vector

u(?) : Fluctuating flow velocity vector

u : Flow velocity of x direction

V' : Volume occupied by tubes

A : Wave length of sound

¢t : Time

V : Differentiating operator

Suffix of Uy, py, poshow the mean amount

GENERAL DESCRIPTION OF THEORY
The continuity and the momentum equations in non
viscous fluid are given as follows.
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P (pU VU =—Vp+ f

The velocity, the fluid density and the pressure are assumed to
be the sum of the steady and the unsteady components.
U=U,+u(t), p=p,+p(t), p=p,+pt) - ()
Substituting Eq. (3) to Equations (1) and (2) and neglecting
higher order terms and subtracting the mean flow component,
the following equations can be obtained.
%+povu+U0vp:Q ......... (4)
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Fig.1 Model of Tube

U, in a cell is assumed to be symmetrical above and below as
shown in Fig.1 and U is assumed to vary slowly in the cell.
This means that vy is anti-symmetric over the cell and
u-VU, is small enough to be neglected. The variation of p
becomes the variation of pressure from the relation p = pc?.

As a result, Equations (4) and (5) become the following

equations:

1 op 1

L oVu+—U,-Vp=0 " (6)
Cg o Po cé 0 Vp=0
poaa—l:+p0U0-Vu+Vp=f ......... (7)

Considering only the effect of the tubes on the sound speed at
low Mach numbers; U,/¢,<<1 here, the effect of the mean
flow is neglected. Then Eq. (6) and Eq. (7) become as
follows:

lop o o .. (8)
——+pV-u=
Cé at pO Q
ou _ . .. (9)
—+Vp=
£ o p=Ff

These equations are the equations of motion describing the

sound propagation passing through the incompressible tubes
arrayed regularly with small d/A. The assumption of small d/A
means the acoustically compact which is ordinarily used in an
aero-acoustic analysis [7].

First, the force acting between the tube and the fluid is
calculated. The physical tube can be replaced by the force
that the tube exerts on the fluid. The part occupied by the tube
in the unit cell shown in Fig.1 (b) is replaced by the fluid
density o and the compressible fluid with the sound speed
¢,- To simulate the real tube, the body force fand the mass
flux Q are assumed to act toward the virtual tube region as
follows:

The fluid region of the virtual tube is
(1) Not compressed
(2) Maintained steadily (Fixed at the same place and not
deformed)

(3) Given the force related to the shedding vortex and damping
The increase of pressure p compresses the volume V which is
the region occupied by the virtual tube, by OV .

__ o __ &

vooop o pe
Where iso-thermal change is assumed. If the mass flux would
be injected to the region occupied by the virtual tube, the
volume of the virtual tube is not compressed. The mass flux

became the following:

Q:_[dj(o 5mj:(o;J8(§p) ......... (10)
ai v ¢ ) ot

This is the average mass flux which must be injected to the
fluid cell to simulate the effect of an incompressible tube.
Next, when the uniform velocity U, is accelerated and

decelerated due to the enlargement and contraction of the flow
pass width based on the existence of the tube, the flow field
gives the circular cylinder the added mass.

ou
=p,(1+a)—
f=py(1+a) Y

This is the force added to the cylinder per unit volume. The
first term of the right side shows the buoyant force due to the
pressure gradient and the second term shows the virtual mass
force.

a is the added mass coefficient and becomes 1.0
theoretically in the case of an isolated cylinder. The force
corresponding to the force per unit volume in the cell becomes
of- Then the force that the cylinder gives to the fluid occupied
volume ratio 1—o¢ is as follows:

f = —[pocr(1+a)/(1—a)]%’: --------- (1)

For simplicity, we considered the case of low solidity and a
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one-direction propagation.
Substituting Eq. (10) and Eq. (11) to Eq. (8) and Eq. (9),
we can obtain the following equations.

1-odp ou . ...
P, M 0 (12)
cé ot p°ax
o ou 0
1+4-2 la+ R N S (13)
P 1—0'( @) ot Ox

Where u is the particle velocity concerning the x direction
propagation and the pressure p is the time variance Jp.

Eliminating u from Eq. (12) and Eq. (13), we can obtain
the following equation.

2 2
10p 0p_4 - (14)
2ot ox’
Where
c = Co . (15)

Consequently, the equivalent sound speed c. becomes small

due to the existence of tubes.

The sound speed is reduced by (a) the increase of effective
density due to the existence of tubes and (b) the decrease of the
effective volume elasticity.

That is to say,

(a)Increase of the pressure — Decreasing the volume of the
virtual tube — But the tube is not compressed — Q must
be injected to the tube region by not decreasing the volume
— Qincreases —Increase of apparent density o .

(b)Accelerated flow — the flow gives an added mass force to
the cylinder — But the cylinder does not move — the
cylinder must give the force to the fluid inversely — farises
— Increase of apparent compressibility — Decrease of the
effective volume elasticity K .Definition : K =dp /(—dv/v)

In the case of comparatively small o, Eq. (15) becomes the

Parker’s Equation (16) when a =~ 1.

When ¢ increases a becomes larger than 1.0. However, the
reference [2] does not show the value and it is described in the
reference that Eq. (15) and Eq. (16) are independent of the
array pattern. Then we will examine these results in the next
chapters. The effect of the mean flow U, is ignored in the
theory described here. According to the reference [6], the
effect of mean flow can be ignored when the reduced frequency
wd/Ujy is greater than 5.0. As most existing boilers satisfies
with this criterion it is considered that the effect of the mean
flow can be ignored.

ANALYSIS

Here we will examine the validity of Eq. (16) and
applicability by comparing Eq. (16) and the analytical result by
FEM in two cases of existence and non existence of the tube
array in the duct.
FE analytical model

Fig.2 and Fig.3 show the analytical models of two and
three dimensional systems respectively. The size of the two-
dimensional model is 2m in x direction (longitudinal) and 0.6m
in y direction (width). On the other hand, the size of the three-
dimensional model is 2m in x direction (longitudinal), 0.6m in
y direction (width) and the height (z direction) is varied 0.2m,
0.4m and 0.6m. The models of circular cylinders are made in
the duct and the radius R, the number of tubes N and the filling
fraction o are parameters in this analysis. The boundary
conditions are that the pressure is zero at the duct inlet and
outlet, and the particle velocity of normal direction to the duct
wall is zero.

!
Fig.3 Three-dimensional Model (o =0.3, 48 tubes)

Analytical cases

The analysis will be executed by giving the filling fraction
o, the tube radius R and the number of tubes N in the two-
dimensional model (2D model hereafter) and three-dimensional
model (3D model hereafter). The analysis was done with the
models having the same filling fraction and the different
number of tube by varying the R. The analytical cases are
shown in table 1.
Analytical results

First, the divided number in height of the three-dimensional
model is decided. Fig.4 shows the result of natural frequencies
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Table1 Analysis Cases

o R[m] N o R[m] N
0.201 0.04 48 0.531 0.13 12
0.201 0.08 12 0.101 0.04 24
0.314 | 0.05 48 0.226 0.06 24
0.314 0.1 12 0.307 0.07 24
0.452 0.06 48 0.402 0.08 24
0.452 0.12 12 0.509 0.09 24
0.531 | 0.065 48 0.113 0.06 12

40 : : : : :
®o | —
Too it ———y—a
g = R R I
g 2w . ! ! B3-divide ||
2 : :
= 150 ! : i Ag-divide
g 100 ] ' ! ' @o—divide
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(il | | I | 10—divide
O 1 1 1 T T
1 2 3 4 5 g 7

Order of mode

Fig .4 Comparison of Resonant Frequency by Division
Number in Analysis

of each mode in cases of some divided numbers under the
analytical condition of #=0.6m, o =0.3 and N=12. As can be
seen from Fig.4, the effect of divided number on the natural
frequency does not appear. Then the analysis is executed by
three divided numbers in height.

Comparison between 2D model and 3D model

Fig.5 shows the comparison of analytical results of 2D and
3D models (symbols) and the theoretical result (solid line) of
the x direction mode in the case of 6=0.3 and N=48. On the
other hand, Fig.6 shows the comparison of analytical results of
2D and 3D models (symbols) and theoretical result (solid line)
of x-y combined mode in the same case.

As can be seen from Fig.5 and Fig.6, the resonant
frequencies obtained by the analysis (2D and 3D) are in good
agreement with the theoretical result. As can be seen from
Fig.5, the analytical results are in good agreement with the
theoretical results of especially below the 3rd order mode in the
case of x- direction mode. In addition, when o is less than 0.2,
the natural frequencies by analysis which are not shown here
are in good agreement with the theoretical results. Contrast to
this, the tendency can be seen that the analytical results become
smaller than the theoretical values with increasing o.

As can be seen from Fig.6, the analytical results are in
good agreement with the theoretical results in also the case of
x-y combined mode. The numbers m and # in the parentheses

show the mode order of x-direction m and the mode order of y-
direction 7.
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Fig .5 Comparison of Analysis Value with Theoretical Value
of Resonant Frequency of x -direction-mode (o =0.3, 48

tubes)
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Fig .6 Comparison of Analysis Value with Theoretical Value
of Resonant Frequency of x- y combined mode (o =0.3, 48
tubes)

Effect of filling fraction and number of tubes on resonance
frequency (x-direction)

Fig.7 shows the effect of tube numbers on the resonance
frequency in the case of 6=0.3 and Fig.8 shows the effect of ¢
on the resonance frequency in the case of N=24. From Fig.7
and Fig.8, it can be seen that the effect of o on the resonant
frequency is large and the effect of N is small. The tendency
can be seen that the analytical results becomes smaller than the
theoretical results with increasing o ( See Fig.9). Figures are
not shown here, it can be seen that the analytical results become
larger than the theoretical results in low modes and approaches
the theoretical results by becoming a higher mode in the case of
x-y combined mode. This is the inverse tendency of x-
direction mode, and the dispersion of the resonant frequency
becomes large in a low mode with an increasing o. As well, Eq.
(16) is used for the theory in Fig.4 to Fig.9.

Amendment of relation between sound speed and filling
fraction

When analytical results of the resonant frequency are
compared with the theoretical value obtained by Parker’s
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Equation (16), it is clarified that the analytical value of higher
mode becomes smaller than the theoretical value with
increasing o (greater than 0.2). Then when o is large we
proposed the modified expression of Eq. (16) by giving an
appropriate value to the correction coefficient a. As a result,
we obtained the following expressions.
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Fig .7 Resonant Frequency of the Effect on Tube Number

(6=023)
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Fig .8 Resonant Frequency of the Effect on Occupied Area
Ratio (24Tubes, 3D- height 0.4 m)
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Fig .9 Comparison of Analysis Value with Theoretical Value of
Resonant Frequency (6=0.2, ¢=0.3, ¢=0.5)

S 1 ¢
fno mco ...... (17)

a=10/3)c+1/3 o (18)

Where f,, fio are the resonant frequencies of the duct with and

without a tube bank respectively.

Fig.10 shows the comparison between the experimental
result and two predicted results such as a=1.0 and a=1.35 of
correction factor. The modified result (a=1.35) is good
agreement with the experimental result. Fig.11 shows the
relation between the correction factor @ and the filling fraction
o. The correction factor a described here is the same as the
added mass coefficient «a described in “GENERAL
DESCRIPTION OF THEORY™.
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Fig .10 Compensation of theoretical formula (o =0.3)
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EXPERIMENT
Experimental setup

Fig.12 shows the experimental setup. The duct is made
of acrylic plastic and its length is 1000mm and the size of cross
section is 200mm X250mm. Many tubes are inserted in the
duct and various array patterns are composed.
Experimental cases

The experimental cases are shown in Table2. Where
O, @, @ are square arrays, @Wand &, ® and @ ,
and © are the cases of the same filling fraction and different
array patterns, respectively. In addition, the four staggered array
patterns as shown in Fig.13 are also used in this experiment.
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These patterns have the same filling fraction o =0.229 and are
constructed by the same L/d.

Sound source
Duct

Sound-level meter

»

L/
____.______7)_&75_/_/1”__]__._
L 150
Speaker 250 250 250 250
25 1000
Unit: [mm]

Fig.12 Experimental Apparatus

Table2 Occupied Area Ratio of Various Cases

Lid 1.5 2.0 25
T/d
1.5 10.306 | ®0.255 | D0.204
2.0 @®0.255 | @0.212 | ©0.170
2.5 ©®0.204 | ®0.170 | ®0.136

()-a (i)-b

Speaker

(ii)-a : (ii)-b

Fig.13 Tube Array and Size  (T/d=1.5, ©=0.229)

L

<
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O

fa Var
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fa\ Yo
\N” S

Speaker d=26mm
Fig.14 Tube Array and Size

Measuring method

The tubes are inserted in the duct as shown in Fig.14 and
the pure tone is given from the speaker set upstream to the duct.
The loudness the sound from speaker is determined as when the
peak value becomes 100dB after confirming the frequency

characteristic of the sound from the speaker being flat. The
frequency is varied by every 1 Hz and the sound pressure level
is measured at the position 100mm away from the duct at the
right end. From this result, we find some peak frequencies
and defined them the resonant frequency of each mode. The
resonant frequencies of the first and the second modes obtained
by the experiment are compared with those obtained by the
theory. The theoretical value is called the predicted value here
and is described by f; pre

The filling fraction o is obtained by changing the pitch in
the flow direction L and the pitch perpendicular to flow
direction T (See Fig.13). How to obtain the predicted value of
resonant frequency f, ... in each array is as follows.

The effective sound speed of each array c, is first obtained.
Next, the resonant frequency 7, when o =0 is obtained by the
experiment and the resonant frequency at any o is calculated by
the following equation:

fume=Fox(ele) e (19)
Where ¢, at 0=0 is given by 331.5,/(273+¢)/273 . Where ¢ is
the temperature (°C).

Experimental results and consideration
(1) Resonant frequency of duct without tube bank

Non tube:o =0
2.50 144 §147 294 308
Experiment
8200 | —eea. Analysis
Ay
(]
£ 1.50
w0
w0
I
£1.00 .
=] 1N
5 /I \
175} P
0.50
N \
_r’ \\~_
0.00 ! ! !
100 150 200 250 300 350

Frequency Hz

Fig.15 Comparison of Experimental Value with Analysis Value

of Resonant Frequency without Tubes

Fig.15 shows the frequency response of the sound pressure
level in the duct without a tube bank (6=0). The solid line
shows the experimental result and the dotted line shows the
calculation result obtained by BEM. This calculation was
executed by the commercial software (WAON) which can
calculate the acoustic field including the end correction. The
peak of the first mode appears clearly by the experiment and its
resonance frequency is in good agreement with the analytical
result. In the second mode, the experimental result was a little
different with the analytical result. As a result, 144Hz and
308Hz are determined to be the experimental values of the first
and the second resonant frequencies where 6=0. These values
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are described by f; and are used in obtaining the predicted

resonant frequency by use of Eq. (19).

(2) Resonant frequency in each tube array

1) Comparison between experimental and predicted
values

Table3 shows the experimental value and the predicted
value of the first and the second mode resonant frequencies at
each case. And the value in parentheses is the ratio of the
experimental result to the predicted value. The solid line and
the dotted line in Fig.16 to Fig.19 show the position at
experimental and predicted resonant frequencies, respectively.
The values shown above in each figure are resonant
frequencies.

As can be seen from Fig.16, 17 and @O, @), @ in Table3
which are results of the square arrays, the difference between
the experimental and the predicted values is large (1% 6%, 2™
3%) for a large filling fraction (6=0.306) and small for small
filling fraction (6=0.212, 0.136) in the cases of first and second
mode. Furthermore, as shown in Table 4, when the staggered
array with the same filling fraction and the different array are
compared with each other, these have about the same resonant
frequency. From this result, it can be said that the effect of the
array pattern on the resonant frequency is a little in the
staggered array.

Table 3 Comparison of Experimental Value with Predictive
Value of Resonant Frequency

=0 144/147 308/294
(0.98) (0.95)
D0=0.306 118/126 262/270
Ld=Td=1.5 (0.94) 0.97)
©@0=0.306 130/131 277/280
Ld=Td1.5 (0.99) 0.97)
®0=0.212 132/135 279/289
Ld=Td=2.0 (0.98) 0.97)
@0=0.136 129/129 275/275
Ld=Td=2.5 (1.00) (1.00)
®0=0.255 125/129 270/275
Ld=1.5, T1d=2.0 0.97) (0.94)
®0=0.255 128/131 281/281
Ld=2.0, Td=1.5 (0.98) (1.00)
D0=0.204 127/131 273/281
Ld=1.5, Td=2.5 0.97) 0.97)
®0=0.204 131/137 280/293
Ld=2.5, TId=1.5 (0.96) (0.976)
©0=0.107 128/137 278/293
Ld=2.0, Td=2.5 (0.93) (0.95)

Table 4 Comparison of Experimental Value with Predictive
Value of Resonant Frequency at Staggered Tube Array
(T/d=1.5, 0=0.229)

Experimental value (Hz) 1st 2nd
/predictive value (Hz)
(i)-a 6=0.229 126/130(0.97) | 275/278(0.99)

®-b =0.229
(ii)-a 0=0.229
(ii)-b 0=0.229

125/130(0.96)
125/130(0.96)
124/130(0.95)

269/278(0.99)
269/278(0.99)
269/278(0.99)

118 126 262 270

b
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2 80 | <:_§ : | %'_b 3% |------
. | ‘ : : : | Prediction
70 I — @ 0=0.306 ! ! I
i I e e A I

65
100 125 150 175 200 225 250 275 300

frequency Hz

Fig.16 Experimental Result at L/d=T/d=1.5
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Fig.17 Experimental Result at L/d=T/d=2.0

In Eq. (16) which shows the relation between the sound
speed and the filling fraction, we applied the present
experimental condition of ¢=0.306 to the equations (17) and
(18). Then, in the case of no corrections (a=1), the 6%
difference between the experimental and the predicted values
can be seen for the first mode and 3% for the second mode.
On the other hand, in the case of taking into account the
correction, the difference becomes small as 2.5% and 1% for
the first and the second mode, respectively. From this result,
equations (17) and (18) mentioned in Chapter 3 are validated.
2) Relation between resonant frequency and filling fraction

It can be seen from Fig.18 that the resonant frequencies of
both the first and the second mode become small with
increasing o in the square array as arrows show. This can be
said to be reasonable by the theoretical equation (16). Fig.19
and Fig.20 show the comparison of resonant frequencies in
different arrays with the filling fraction 0.255 and 0.107,
respectively. For high filling fractions (¢=0.255), the difference
between the predicted and the experimental speed of sound is
large when high filling fraction (6=0.255). That is to say, the
rate of decreasing is large (0 =0.255 : 15-3.2%, 2"-1.9%, o
=0.107 : 1-2.3%, 2"-0.7%). Table 5 shows the comparison
of resonant frequency between the experiment and the
prediction on the tube bank with the different filling fraction
and the same array. On the other hand, Table 6 shows the
comparisons of resonant frequency between the experiment and
the prediction on the tube bank with the different array and the
same filling fraction (6=0.204). Table 7, as Table 6, also shows
the case of ¢=0.107. From these results, it was found that the
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values obtained by the FEM analysis are different from the
experimental ones in these cases, but ratios of the experimental
values and the predicted values of resonant frequencies are
almost the same as shown in the bottom row of each table.

105
100

m 90
=}
3 85
[
w80 —(@0=0.306|
75 —®0=0.212
70 @0=0.136|
65
100 150 200 250 300

Frequency Hz

Fig.18 Comparison of R. Frequency at Square Array
125129 270275
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~
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80 + 1:3.2% 2md.1 9og
75 :
100 150 200 250 300
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Fig.19 Comparison of Resonant Frequency at L/d=1.5,T/d=2.0
with L/d=2.0,T/d=1.5in o0 =0.255

128 131 278 280

\

105

—@®L/d=2.0,T/d=2.5

100 -
& —@L/d=2.5,T/d=2.0

95

90

SPL dB

85

80 1%:2.3% 2":0.7%

100 150 2(;0 250 300
Frequency Hz

Fig.20 Comparison of Resonant Frequency at L/d=2.0,T/d=2.5

with  L/d=2.5,T/d=2.0 in o0=0.107

Table 5 Comparison of Resonant Frequency between Analysis
and Measurement ( 0 =0.136 and 0.212)
Analysis value(Hz)/Exp. value(Hz)
Ist 2nd
QL/d=T/d=2.5(c=0.136) 152 132 304 279
@L/d=T/d=2.0(c=0.212) 150 130 300 277
@/ 0.99 | 098 | 099 | 099

Table 6 Comparison of Resonant Frequency between Analysis
and Measurement (L/d=1.5, T/d=2.5 and L/d=2.5, L/d=1.5 at

0 =0.204)
Analysis value(Hz)/Exp. value(Hz)
Ist 2nd

®L/d=1.5,T/d=2.5(6=0.204) 151 128 303 281
@DLId=2.5,T/d=1.5(6=0.204) | 148 127 297 273
@® 0.98 0.99 0.98 0.99

Table 7 Comparison of Resonant Frequency between Analysis
and Measurement (L/d=2.0, T/d=2.5 and L/d=2.5, L/d=2.0 at

0 =0.107)
Analysis value(Hz)/Exp. value(Hz)
Ist 2nd

®L/d=2.0,T/d=2.5(6=0.107) 152 131 303 280
OL/d=2.5,T/d=2.0(6=0.107) 150 128 301 278
@® 0.99 0.98 0.99 0.98

CONCLUSIONS
In order to evaluate the sound speed in the duct with the

tube bank, the analysis by FEM and the experiment were

carried out and examined the wvalidity of the theoretical
expression. As a result, the following findings could be
obtained.

(1) In examination due to this experiment and the analysis, the
theoretical expression which shows the relation between
the sound speed cand the filling fraction o proposed by
Parker and Blevins

S o1 ¢
foo Al+o ¢

has a large error in high filling fraction and the error can
be deduced by introducing the correcting factor. And in
square array, when the same filling fraction, it was
confirmed that this expression is comparatively in
agreement with the experimental result with enlarging the
pitch of flow direction

(2) It is required to correct the expression for o>0.2. The
correcting expression becomes as follows.

So o1 ¢
foo ANl+ao c

Where
a=10 for 0<02 ;a=(0/3)c+1/3 for oc>02

(3) In square arrays with the same filling fraction, it could be
obtained by the experiment that the sound speed becomes
relatively small with a small 7/d. Where T is the pitch of
perpendicular to the flow direction and d is the diameter of
tube.

(4) In the staggered arrays with the same filling fraction, the
effect of array patterns on the value of resonant frequency
is relatively small.
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