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ABSTRACT 
Dynamic systems with lumped parameters are considered 

which interact with fluid flow with random temporal variations 
of speed. The variations may lead to “short-term” dynamic 
instability of a system - which is nominally stable in the 
classical sense - whereby occasional random excursions beyond 
neutral stability boundary result in rare short outbreaks in 
response. As long as it may be impractical to preclude 
completely such outbreaks for a designed system, subject to 
highly uncertain dynamic loads, the corresponding system’s 
response should be analyzed to evaluate its reliability. 

Linear models of the systems are studied to this end for the 
case of slow variations in the flow speed using parabolic 
approximation for the variations during the excursions together 
with Krylov-Bogoliubov (KB) averaging for the transient 
response. This results in a solution for probability density 
function (PDF) of the response in terms of PDF of the flow 
speed; the results may be of importance for predicting fatigue 
life. First-passage problem for the random response is also 
reduced to that for the flow speed. The analysis is used also to 
derive on-line identification procedure for the system from its 
observed intermittent response with set of rare outbreaks. 
Specific examples for analytical and numerical solutions for 
systems with random temporal variations of flow speed 
include: 1D and 2D galloping of elastically suspended rigid 
bodies in cross-flow; classical two-degrees-of-freedom flutter; 
bundles of heat exchanger tubes in cross-flow with potential for 
flutter-type instability.  

 
1. INTRODUCTION AND METHOD OF ANALYSIS 

Classical definitions of stability and instability deal with 
behavior of dynamic systems as time t →∞ . They are known to 

be potentially inappropriate for systems with short service life 
where reliability should be evaluated from transient response 
analysis whereas attempts to secure complete stability may lead 
to impossible or impractical design. These classical definitions 
may also be not perfectly adequate for certain systems intended 
for long-term operation. Such systems are designed, as a rule, 
to operate within their stability domain in the classical sense as 
long as their “nominal” or expected values of parameters are 
considered. However, if the parameters experience random 
temporal variations with occasional crossings of the “classical” 
instability boundary high-amplitudes outbreaks in response 
may be observed during such “short-term instability” – see 
example in Fig. 1. Design of any system operating with such 
spontaneous outbreaks should rely upon its reliability analysis 
with respect to, say, low-cycle fatigue and/or first-passage-type 
failures. Basic procedure for such reliability analyses had been 
outlined in [1 – 3]. It relies upon the following approximation 
of a stationary zero-mean random process g(t) with unit 
standard deviation in the vicinity of its peak which exceeds a 
given level u [4, 5], that is after upcrossing level u at time 
instant t = 0 
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Here subscript “p” is used for peak values of random processes, 
ς is the random slope of g(t) at the instant of upcrossing and 
 

Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and  
8th International Conference on Nanochannels, Microchannels, and Minichannels 

FEDSM-ICNMM2010 
August 1-5, 2010, Montreal, Canada 

FEDSM-ICNMM2010-30121 



 2 Copyright © 2010 by ASME 

( ) ( )2 2 2
gg ggg d dλ σ ω ω ω ω ω

∞ ∞

−∞ −∞
= = Φ Φ∫ ∫

 
where ( )gg ωΦ is power spectral density (PSD) of g(t) so that 
λ is a mean frequency of g(t). Thus the parabolic 
approximation (1) implies that the random process g(t) is 
regarded as deterministic within the high-level excursion of 
duration 2f ft uτ λ ς λ= =

 
above level u; during this time 

interval it depends just on its initial slope ς at upcrossing which 
is regarded as a random variable for the excursion. 
Furthermore, the instant of downcrossing fτ is clearly obtained 

as a second root of equation ( )g t u= , the first one being t = 0. 
This probabilistic description may be used together with the 
solution for the transient response within the instability domain 
to find probability density function (PDF) of the response peaks 
in terms of that of g(t) as will be illustrated in the following for 
several examples of aeroelastic response. 
 

2. GALLOPING OF A RIGID BODY UNDER RANDOMLY 
VARYING WIND SPEED 

1D galloping. According to the basic model due to Den-
Hartog [6], transverse motion of a SDOF system exposed to the 
fluid flow may be excited because of instability due to 
aerodynamic damping which can be negative; this damping is 
proportional to square of windspeed and to slope of the curve of 
lift force vs. angle of attack. It will be assumed that the squared 
windspeed is a stationary random process so that the equation 
of motion may be written as  
 

( )( ) 22 0X q t X Xα+ − +Ω =  (2)

 
where q(t) is a zero-mean stationary random process whereas 
mean coefficient of aerodynamic damping is just deducted from 
the coefficient of structural damping. The total mean damping 
coefficient  α is assumed to be positive so that the system is 
dynamically stable (asymptotically) in the mean and its 
response should be zero as long as the total damping coefficient

( )q tα −  remains positive. However, if this randomly varying 
damping coefficient may occasionally cross zero level, the 
outbreaks in response would be observed within finite time 
intervals – see one such outbreak (“puff”) in Fig. 1. Now we 
denote 
 

( ) ( )   andqq t g tσ= ⋅  qu α σ=  (3)

 
where qσ  is standard deviation of q(t) and substitute the 
parabolic approximation (1) into the stochastic equation of 
motion (2) thereby reducing it to an ordinary differential 
equation (ODE) with a single random parameter ς . This ODE 

for any crossing should be integrated starting from the instant 
of upcrossing ut to the final instant of the peak of the response 
X(t) for a given outbreak. 
 

 
 
Fig. 1   Response sample with “outbreak” (solid line) 
of a SDOF system with apparent viscous damping 
factor 0.16 – q(t); sample of q(t) is shown by dash-dot 
line. 

  
 

The problem of transient response can be solved 
analytically for the present case using KB averaging over the 
response period for the case ( )q tα − << Ω , λ << Ω  [1] upon 

introducing slowly varying amplitude and phase ( ) ( ),A t tϕ as 

( ) ( )sin , cos ,X t A X t A tψ ψ ψ ϕ= = Ω = Ω + . This results in a 
first-order ODE for A(t) which has a solution 
 

( ) ( ) ( )( ){ }2 3
0 exp 2 6  qA A uτ σ λ ς λ τ τ⎡ ⎤= −⎢ ⎥⎣ ⎦

 (4)

where ( )ut tτ λ= − and 0A is response amplitude at the instant 
of upcrossing. Thus, predicting response amplitude requires 
that this value be estimated somehow from a subcritical 
response analysis. On the other hand, whenever the inverse 
problem of interpreting measured response is considered, a 
simple formula as presented later may be used for estimating

0A  from a signal like the one shown in Fig. 1. 
The peak value of the response amplitude is seen to be 

attained precisely at the final instant of the excursion into the 
instability domain 2f uτ ς λ= ; from the eq. (4) it is 
 

( ) ( ) ( )( )32
0 exp 2  where 3 .p f qA A A uτ δ δ σ λ ς λ= = =  (5)

 
Thus, the eqs. (1) and (5) define implicitly relation between 

0 and p p pA A A g=  - that is between peak values of the 
amplitude ratio and of g(t). The explicit relation can be simply 

( )X t

t (periods)

q(t)
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derived by excludingς λ . Let ( ) for p p pA h g g u= ≥ . Then 
the function inverse to h (denoted by superscript “-1”) can be 
obtained as 
 

( ) ( ) ( )
( ) ( )
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 (6)

 
These relations open way to predicting reliability for the system 
(2) from relevant statistics of g(t). Thus, the first-passage 
problem for A(t) with barrier *A  is reduced to that for g(t) with 

barrier ( )1
* *g h A−=  as evaluated by using the relation (6). 

Furthermore, the PDF of g(t) can be used to obtain the PDF of 
pA ; this may be of importance for evaluating low-cycle fatigue 

life for a system subject to the short-term dynamic instability. 
The derivation includes two steps. First the pdf ( )g pp g of 

peaks of g(t) is obtained from that of the g(t) itself as described 
in [4, 5]; then the basic relation for the PDF of a nonlinear 
function of a random variable is applied:  
 

( ) ( )( )1 1 .p g p pp A p h A dh dA− −= ⋅  (7)
 
It should be just kept in mind that this PDF is non-zero for 

1pA ≥  rather than for 0pA ≥  as long as the “fixed” subcritical 

response amplitude has been introduced. Furthermore, ( )pp A

has a singularity at 1pA = and it goes without saying that this 
unconditional PDF   is normalized not to unity but to 
Prob(g(t)>u), that is to the total probability for dynamic 
instability. Its use for predicting reliability in engineering 
applications is possible as long as some information on most 
probable actual subcritical response amplitude 0A  is available. 
Moreover, if the latter is a random variable its PDF may be 
used together with eq. (7) to find PDF of the actual (nonscaled) 
response amplitude and/or its peaks [3]. The solution (6), (7) is 
illustrated in Fig. 2 for Gaussian q(t) and compared with results 
of direct numerical simulation of the eq. (2) (zero-mean part of 
squared Gaussian wind speed would be approximately 
Gaussian if it is small compared with the mean value)  

The eq. (5) is convenient for evaluating the system’s 
properties from its measured (on-line!) intermittent response 
with outbreaks as one shown in Fig. 1. To this end one can use 
peak amplitudes pA , which are attained at instants 2f uτ ς λ=  

in the local time frames and corresponding amplitudes iA  at 
inflexion points of the curve ( )ln A τ .  From the eq. (5) 

( ) 0 exp ,   so thati iA A Aτ δ= = exp ;  alsop iA A δ=

2
0 i pA A A= . Thus, for each one of the observed response 

outbreaks one can identify in a global time frame the instants
f u ft t τ λ= +  and i u it t τ λ= + which correspond to peak 

amplitude pA  and inflexion-point amplitude iA  respectively; 
the instants of upcrossings can also be identified as

( )2 2u f f i i ft t t t t t= − − = − . The frequencyλ  may now be 

obtained by averaging time difference f it t− over all observed 
outbreaks of response. This averaging which is equivalent to 
probabilistic averaging for ergodic g(t) will be denoted by 
angular brackets.  

 
 
Fig. 2  Probability density function ( )pp A  of the 

peaks of relative amplitude p p 0A A A= : theory (solid 
curve)  vs. numerical simulation of the eq. (2) for the 
case 0.16, 2.0α = Ω = , 0.1λ = and u = 2.  
 

 
Let the process g(t) be Gaussian, so that ς  has the Raleigh 

PDF [4, 5]  
 

( ) ( ) ( )2 2 2exp 2p ς ς λ ς λ= −  and 

( ) ( )22 exp 2un uλ π= −  
(8)

 
where un  is mean number of upcrossings of the level u per unit 
time by g(t) with its reciprocal being mean time interval 
between two consecutive upcrossings. Then   
 

( ) ( )2

0
1 2f i it t u p d uτ λ λ ς ς ς π λ

∞
− = = ⋅ =∫  (9)

 
therefore scaled total mean damping factor u can be identified 
from observed response sample together with the frequencyλ  
using eqs. (8) and (9). Finally, formula  
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∞
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can be used to calculate qσ as long as the quantity in its LHS is 
estimated by averaging over all observed outbreaks in the 
intermittent response. Thus, the above procedure provides on-
line estimates both for the mean apparent damping coefficient – 
which may be regarded as a nominal stability margin – and for 
standard deviation and mean frequency of its random temporal 
variations. 

2D galloping. Consider an infinite rigid horizontal cylinder 
with blunt cross-section mounted on elastic suspension springs 
and subject to a fluid cross flow. Recent studies indicate 
however that horizontal vibrations (along flow) very often may 
also be present which are coupled with the vertical ones [7]. 
Thus, the same TDOF model as in [7] will be considered with 
full two-by-two aerodynamic damping matrix B but for special 
case of identical stiffnesses of suspension springs in directions 
x (horizontal) and y (vertical); two differential equations for 
displacements in these directions may be written as  
 

( )( )
( )( )

2

2

2 0,

2 0

xx xy

yx yy

x x x t x y

y y y t x y

α μ β β

α μ β β

+ +Ω + + =

+ +Ω + + =
 (11)

 
Here four coefficients β  which are elements of the 

aerodynamic damping matrix B depend on lift and drag factors 
and their derivatives over angle of attack according to the 
relations that are presented in [7] together with expression for 
scaled flow speed μ . The latter is assumed here to experience 
slow temporal variations. The system (11) has only one natural 
frequency due to the assumption of equal stiffnesses in x- and 
y-directions whereas α is an equivalent viscous damping of the 
cylinder assumed to be identical in two directions. 

The assumption of small damping ratios is adopted for 
analysis by KB-averaging using transformation

( )cos sin , sin cosc s c sx x t x t x x t x t= Ω + Ω = Ω − Ω + Ω  
together with similar change of variables for ,y y . Resolving 
these relations for new “slow” state variables and 
differentiating yields four first-order ODEs with small 
parameter in their RHSs. Thus averaging over the response 
period 2π Ω  in “rapid” time can be applied, once again with 
fixed bifurcation parameter μ  in “rapid” time. This results in 
two identical uncoupled equations for 2D-vectors 

[ ] [ ],  and ,T T
c c s sx y x y= =c sz z where superscript “T” 

denotes transposed vector. As a result 
 

( ) ( )1 1 and 
2 2

t tα μ α μ⎧ ⎫ ⎧ ⎫= − − = − −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

c c s sz I B z z I B z  (12)

 
where I is identity matrix.   

Condition for neutral stability of zero solution to any one of 
the ODE’s (12) is that of zero determinant of the matrix in 
braces. It leads to quadratic equation for critical value of the 
bifurcation parameter which will be denoted by a star subscript. 
For the example to be presented 0,  xx yyTr β β≡ + >B

0xx yy xy yxDet β β β β≡ − <B . Then 
 

( )2* 4Tr Tr Det
Det
αμ ⎡ ⎤= − + −⎢ ⎥⎣ ⎦

B B B
B

 (13)

 
The parabolic approximation for g(t) may be applied once 

again thereby reducing the problem to solution of any one of 
the vector ODEs (12) with ( ) ( )qt g tμ μ σ≡ + =  

( )( ) [ ( )( )2* * 2   whereq qu g t t u tμ σ μ σ ς λ ⎤= − − = + − ⎥⎦

( )* / qu μ μ σ= −  and *μ as defined by the eq. (14). 
Numerical integration has been performed for a case 

1 1 11 , 0.007 , 0.01s s sα λ− − −Ω = = = and same aerodynamic 
damping matrix as in one of the examples in [7]: 

2.14,   0.46,  xx xyβ β= = 1.2,   0.32  so thatyx yyβ β= = −  

* 0.0266μ = . 

Figure 3 shows PDF ( )pp A  of 0p pA A A= . Here pA  is 

peak value of ( )cy τ  whereas ratio of the initial values

( ) ( )0 0  and 0c cA y x= for the first eq. (12) has been assigned 
the same as the eigenvector of the matrix in the RHS of the 
ODEs (12).  

Fig. 3   Theoretical PDF of scaled peak vertical 
response of a rigid body in a 2D galloping. 
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3. TDOF FLUTTER DUE TO FLOW WITH RANDOMLY 
VARYING SPEED  

Damped tuned system: tube row in a cross-flow of fluid. 
A flutter-type mechanism of dynamic instability due to 
nonconservative fluid forces has been proposed by Connors [8, 
9]. It is related to proximity effect and corresponding cross-
stiffnesses of two neighbouring circular cylinders (tubes). Each 
tube is assumed to have two DOFs corresponding to motions 
along and across the flow with displacements and j jx y  
respectively where j is number of tube (single spanwise mode 
may be considered for each direction in case of elastic tubes). 
General equations of motion of the row of identical tubes 
accounting for linearized fluid forces are presented in [9] and 
their stability analysis is presented for two neighbouring tubes 
under assumption that only two certain cross-stiffness 
coefficients are involved in dynamic instability. Thus, it is the 
case of a TDOF flutter indeed and the equations of coupled 
motion of tube j along the flow and tube j + 1 perpendicular to 
flow are 
 

( )

( )

2
1

2
1 1 1

2  and 

2 .

j j j x j

j j j x j

x x x C m y

y y y K m x

α γ

α γ

+

+ + +

+ +Ω =

+ +Ω = −
 (14)

 

Here 2 2 and U k mγ ρ= Ω = where U is flow speed, m is 
mass of tube and k is its stiffness; the latter is assumed here to 
be the same for both directions  x and y as well as the structural 
damping factor α ; ,x yC K are fluidelastic coefficients which 
are involved in the TDOF flutter that leads to whirling motion 
that is observed in tests [9], whereas two other fluidelastic 
coefficients ,y xC K are neglected.  

Assuming now that flow speed U is subject to relatively 
slow temporal random variations we may apply the basic 
procedure for stochastic analysis. Introducing complex 
coordinate 1+ i , 1j jz x y i+= = −

 
, we may replace two real 

equations (14) by a single complex equation 
 

( )2 2

2 2

2 0 

where 2 , 2 .y x y x

z z z i z z

K C K C

α γ σ

σ

+ +Ω + Λ + =

+ = Λ − = Λ
 (15)

 
where bar denotes complex conjugate quantity. To apply KB-
averaging for the case of lightly damped system introduce 
change of variables 
 

( ) ( )
( ) ( )

exp exp ,

[ exp exp ]

z z i t z i t

z i z i t z i t
+ −

+ −

= Ω + − Ω

= Ω Ω − − Ω
 (16)

 

resolve relations (16) for ( ) ( ) and z t z t+ −  and differentiate the 
resulting expressions Subsequent application of the KB-
averaging yields then 
 

( ) ( )
( )

2 2

2 2

2 2 ,

2 2

z z z

z z z

α γ γ σ

γ σ α γ

+ + −

− + −

= − + Λ Ω − Λ Ω

⎡ ⎤= Λ Ω + − + Λ Ω⎢ ⎥⎣ ⎦

 (17)

 
Condition for neutral stability of this system is that of vanishing 
determinant of the RHS of this ODE set; it yields the 
corresponding critical value *γ  of γ as  
 

2 2
* 2 1 2 y xK Cγ α σ α⎛ ⎞= Ω Λ − = Ω⎜ ⎟

⎝ ⎠
 (18)

 
and it clearly coincides with the exact value as obtained in [9] 
by direct application of the Routh-Hurwitz criterion to the 
original equations (14).  

Direct numerical integration of the ODEs (17) may now be 
applied for the case where parabolic approximation (1) is used 
for zero-mean part of ( )tγ . It may happen however, that data 
on fluidelastic coefficients ,x yC K are available only from 
stability tests. As can be seen from formula (18) critical flow 
speed depends only on product of these coefficients. As long as 
individual values of and x yC K aren’t known it would be 
reasonable to consider “the worst case” – one with smallest 
critical speed. As can be seen from eq. (18), it is the case where

or 0x yC K σ= = . And in this special case two ODEs (17) are 
uncoupled so that we may consider only the second of these, 
which is prone to short-term instability and apply complex 
version of the above analytical solution for the SDOF case [2]. 

Undamped mistuned system. For significantly mistuned 
systems classical TDOF flutter is controlled mainly by 
condition for coalescing of natural frequencies whereas 
influence of damping may be of secondary importance. Thus, 
consider the undamped model as governed by equations of 
motion 
 

2 2
1 1 2 2 2 11 20,   0 .X X X X X Xγ γ+Ω + = +Ω − =  (19)

 
It will be assumed that the mean value of the bifurcation 
parameter γ  belongs to stability domain whereas its random 
temporal variations are sufficiently slow.  Denoting 
 

( )
2 2

2 2 2 2 1
1 2 2 1 2 2

2 1

1, ,
2

X X X σ±
Ω −Ω

= ± Λ = Ω +Ω =
Ω +Ω

 (20)

 
(it will be assumed for definiteness that 2 1Ω > Ω ) the eqs. (20) 
may be transformed to 
 

( )
( )

2 2

2 2

,

.

X X X

X X X

σ γ

σ γ

+ + −

− − +

+ Λ = Λ +

+ Λ = Λ −
 (21)
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Assuming that 21,  and σ γ λ<< << Λ << Λ we may denote 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

cos , sin ,

sin , cos
c c

s s

X t X t t X t X t t

X t X t t X t X t t
+ + + +

− − − −

= Λ = −Λ Λ

= Λ = Λ Λ
 

 
and apply KB-averaging for new, slowly varying variables. 
This results in two ODEs 
 

( )
( )

/ 2 / 2   and 

/ 2 / 2
c s

s c

X X

X X

σ γ

σ γ
+ −

− +

= − Λ + Λ

= Λ − Λ
 (22 a,b)

 
which may be transformed to an equivalent single second-order 
ODE for any one of the two amplitudes. Thus 
 

( ) ( )2 22 2 0  .c cX Xσ γ+ +
⎡ ⎤+ Λ − Λ =⎢ ⎥⎣ ⎦

 (23)
 
It is clearly seen that the equilibrium solution 0cX+ ≡ to the 

Eq. (23) is unstable statically if 2
* .γ γ σ> = Λ  This critical 

value of the bifurcation parameter as obtained by asymptotic 
analysis clearly coincides with the exact condition for dynamic 
instability of the original system (19) which corresponds to 
coalescing of the system’s natural frequencies as obtained from 
the corresponding characteristic equation [10]. 

Now for time-variant γ  we separate mean value and zero-
mean part of its square denoted by angular brackets and 
subscript “zero” respectively. This results in 
 

( )

( ) ( ) ( ) ( ) ( )

2

2 2 22 2
0

0 

where  2 2 , 2

c cX q t X

q t tσ γ γ

+ +
⎡ ⎤+ Δ − =⎢ ⎥⎣ ⎦

Δ = Λ − Λ = Λ
 (24)

 

where 2 0Δ >  as long as the mean system is stable. The zero-
mean process q(t) may once again be scaled to its standard 
deviation qσ  by introducing process ( ) ( ) qg t q t σ=  . The 
parabolic approximation (1) may be used for this process, with 
scaled instability threshold 2

qu σ= Δ . Upon introducing 

transformed local time ( )ut tτ λ= − with origin at the instant of 
upcrossing ut the eq. (24) is transformed to  
 

2 2'' ( / ) / 2 0,c cX X
u

ςτλ τ
λ+ +

⎡ ⎤+ Δ − + =⎢ ⎥⎣ ⎦
 (25)

 
where primes denote differentiation over τ . Fig. 4a illustrates 
relation between peak values ,c pX+ and pg of    ( )cX t+ and 

g(t) respectively, where  ( )cX t+ is the ratio between  ( )cX t+
obtained by numerical integration of the eq. (25) and  the 
assigned initial value, 0cX+ . The integration was performed 

for various values of  and  1,  0.1,  0.1,ς λ σΛ = = =
so that 0.3λΔ = .  

Fig. 4a   Relation between peak values ,c pX+  and pg

of  ( )cX t+  and g(t) respectively as obtained by 
numerical integration of the eq. (25). 
 
Fig. 4b shows the PDF of ,c pX+ as calculated according to the 
eq. (7) for the case of Gaussian variations of flow speed using 
the above numerically generated relation between  ,c pX+ and 

pg . 

Fig. 4b Probability density function ,( ( ))c pp X t+  of the 
peaks of relative amplitude  as calculated using eq. 
(7) . 
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4. CONCLUSIONS  
Dynamic systems with lumped parameters which interact with 
fluid flow with random temporal variations of speed have been 
considered in this paper.  These variations may occasionally 
bring the system -  which is nominally stable in the classical 
sense -  into the domain of dynamic  instability for brief 
periods.  To evaluate the system reliability,  linear models of the 
systems have been studied for the case of slow variations in the 
flow speed using parabolic approximation of the variation 
process during the excursions together with Krylov-Bogoliubov  
averaging for the transient response.  This analysis results in a 
solution for probability density function of the response in 
terms of probability density function of the flow speed. 
Analytical and numerical solutions have been obtained for 
systems with random temporal variations of flow speed, 
including 1D and 2D galloping of elastically suspended rigid 
bodies in cross-flow and two-degrees-of-freedom flutter of 
bundle of   tubes in cross-flow with potential for flutter-type 
instability. 
The results may be used for predicting fatigue life in marginally 
unstable structures, i.e. those with relatively rare and brief 
potential excursions into domain of dynamic instability, and in 
on-line identification of a system from its observed intermittent 
response with set of rare outbreaks.   
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