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ABSTRACT 
The aim of this study is to investigate the three-dimensional 

(3-D) nonlinear dynamics of a fluid-conveying cantilevered 

pipe, additionally supported by an array of four springs 

attached at a point along its length. In the theoretical analysis, 

the 3-D equations are discretized via Galerkin’s technique, 

yielding a set of coupled nonlinear differential equations. These 

equations are solved numerically using a finite difference 

technique along with the Newton-Raphson method. The 

dynamic behaviour of the system is presented in the form of 

bifurcation diagrams, along with phase-plane plots, time-

histories, PSD plots, and Poincaré maps for two different 

spring locations and inter-spring configurations. Interesting 

dynamical phenomena, such as planar or circular flutter, 

divergence, quasiperiodic and chaotic motions, have been 

observed with increasing flow velocity. Experiments were 

conducted for the cases studied theoretically, and good 

qualitative and quantitative agreement was observed. 

 

1. INTRODUCTION 
Fluid-conveying pipes may be found in many engineering 

systems, e. g. in heat exchangers, power generating plants, fuel 

pipes in high duty engines, hydropower systems, and solution 

mining applications. The dynamical behaviour of fluid-

conveying pipes additionally supported by an intermediate 

spring has been studied extensively via linear and nonlinear 

mathematical models; refer to Païdoussis [1] for a review. 

The system of a fluid-conveying pipe can be modelled via 

linear [2-5] or nonlinear [6-10] theory. Post-critical 

bifurcations, after the system has lost stability, can only be 

reliably predicted via nonlinear theory. Also, three-dimensional 

motions are inherently nonlinear [7, 9]. Therefore, the use of a 

nonlinear theoretical model is essential. 

Early studies focused on the planar motions of the system 

[1-4, 11-18]; however, with the advent of 3-D models in the 

1970s and 80s [6-8] this assumption has become no longer 

necessary or desirable. 

The 3-D dynamics of a fluid-conveying cantilevered pipe, 

additionally supported by arrays of four springs was 

investigated by Steindl and Troger [19-21]. In these studies, the 

system with perfect and broken symmetries was considered and 

some interesting analytical work was conducted via the centre 

manifold reduction method and consequently stability 

boundaries were constructed.  

More recently, Païdoussis et al. [10] studied the 3-D 

dynamics of a fluid-conveying cantilevered pipe with 

intermediate spring-supports, both theoretically and 

experimentally. In the theoretical part of this study, the 

nonlinear equations of motion, newly derived by Wadham-

Gagnon et al. [9] were used and it was shown that the system 

displays diversity of rich dynamical behaviour, depending on 

the location of the additional support and the inter-spring 

configuration. These results were confirmed by some 

experiments.    

In this paper, the 3-D dynamics of a fluid-conveying 

cantilevered pipe additionally supported by a four-spring array 

is investigated using the 3-D nonlinear equations of motion 

derived in [9]. Attention is focused in particular on the role of 

the spring configuration and its location along the pipe length 

on the post-critical dynamics of the system. Specifically, the 

dynamics of the system is presented in the form of bifurcation 

diagrams, time-histories, phase-plane portraits, PSD plots and 

Poincaré maps for two inter-spring configurations and spring-

support locations.    
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2. PROBLEM STATEMENT, EQUATIONS OF MOTION, 
AND METHOD OF SOLUTION 

A schematic representation of the system considered is 

shown in Fig.1. This system consists of a pipe of length L, 

inner/outer diameter Di /Do, flexural rigidity EI, density ρp, 

mass per unit length m, conveying fluid of density ρf,  mass per 

unit length M, with flow velocity U. An array of four springs of 

individual stiffness k is attached at a distance Ls from the fixed 

end of the pipe. 

(a) 

 

(b) 

 
(c) 

 

Figure1. Schematic representation of a 

fluid-conveying cantilevered pipe with 

added “intermediate” support  by an 

array of  springs at x = Ls: (a) deformed 

system; (b) top view showing  the four-

spring configuration; (c) experimental 

set-up. 

The equation of motion for a cantilevered pipe with 

intermediate spring support at Ls is given in Appendix A. Some 

of the dimensionless parameters in the equations of motion, 

repeated here for convenience, are: 
1

2

3
,  ,  

M m M M
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,               (1) 

where u is the dimensionless flow velocity, γ a dimensionless 

gravity parameter, and β  a mass parameter. 

The dimensionless set of nonlinear partial differential 

equations (Appendix A) is discretized using Galerkin’s scheme 

with the plain cantilever-beam eigenfunctions as the basis 

functions (Appendix B). The resultant set of ordinary 

differential equations is then solved using Houbolt’s finite 

difference scheme, yielding the static displacements or the 

amplitudes of oscillation as functions of time. From these time-

histories, the modal and spectral characteristics of the flow-

induced motions can be obtained and bifurcation diagrams may 

be constructed, using u as the bifurcation parameter. 

Furthermore, the trigger used for the Poincaré map was that 

dζ(1,τ)/dτ=0, i.e. when the ζ-component of the velocity crosses 

zero. 

In the calculations, the following common parameters have 

been used: L=0.443 m, Di /Do=6.4/15.7 mm, EI=7.42 × 10
-3

 

N⋅m2
, ρp=1167 kg/m

3
, ρf=999 kg/m

3
, m=0.189 kg/m, 

M=0.0320 kg/m, Lo=0.0635 m, k=17.63 N/m; γ=25.3, and β= 

0.145, corresponding to the experimental system described in 

Section 4; Lo is defined in Appendix A . On the other hand, Ls, θ  

and Ro were varied. 

The bifurcation diagrams have been obtained by employing 

increments of 0.2 in the flow velocity u. 

 

3. THEORETICAL RESULTS 
In this section, the dynamics of the system for two inter-

spring configurations and spring-support locations is studied 

theoretically. 

 

3.1. Dynamics of the system with Ls=0.2L and θ=45
o
 

For this case, the four springs are located at Ls=0.2L, near the 

clamped end of the pipe, at 45
o
 to each other (see Fig. 1). The 

overall dynamical behaviour of the system is summarized in the 

bifurcation diagram of Fig.2, showing the dimensionless 

maximum/minimum free-end displacements η and ζ, 

respectively in the y and z directions, versus the dimensionless 

flow velocity u. 

    A supercritical Hopf bifurcation occurs at u=6.8, leading to a 

planar limit-cycle motion, slanted relative to the y and z axes. 

Figure 3 shows (a) the time histories, (b) the pipe-tip motion 

(i.e. motion of the free end of the pipe) in a plane perpendicular 

to the pipe, and (c) the phase-plane diagram for the η motion. 

The frequency of oscillation (in cycles per dimensionless 

seconds) is f=3.08. 

    With increasing u, the following major bifurcations occur.  

 

Ls 
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pipe collar 
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k 
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Figure 2. Bifurcation diagram for the pipe with Ls=0.2L and 

θ=45
o
, showing minimum/maximum values of the tip (free-

end) displacement in the η and ζ  directions. 

 

 

 

 
Figure 3. Planar flutter at a dimensionless flow 

velocity of u=7.0: (a) time trace of η (solid line) 

and ζ  (dashed line); (b) top view of the tip 

displacement of the pipe; (c) phase-plane portrait. 

 

 

(i) At u=9.0, quasiperiodic and three-dimensional (3-D) 

oscillations occur, as shown in Fig.4. As seen in Fig.4 

(b), the power spectral density (PSD), obtained via a 

Fast Fourier Transform of the time trace, yields the 

two fundamental frequencies f1= 3.84 and f2= 11.05, 

arbitrarily selected as the first two and largest 

frequencies in the spectrum (f3=2f2-f1 and f4=3f2-2f1 et 

seq.).  

 

 
Figure 4. Quasiperiodic motion at u=9.0: (a) top 

view of the tip displacement of the pipe; (b) PSD 

plot, showing the dimensionless fundamental 

frequencies of f1= 3.84 and f2= 11.05. 

 

(ii) The above-mentioned 3-D quasiperiodic motion 

changes to periodic motion once more at u=9.2, 

involving equal amplitudes in η and ζ  directions, but 

now a circular one. Therefore, the quasiperiodicity in 

Fig.4 at u=9.0 appears to be a bridge between the 

planar (6.8≤u≤8.8) and the 3-D circular (9.2≤u≤9.8) 

periodic motions. 

(iii) A small quasiperiodic window occurs once again in the 

vicinity of u=10 (f1= 4.39 and f2=13.31; f3=2 f2- f1 and 

f4=3 f2-2 f1 et seq.).  

(iv) The motion becomes periodic once again at u=10.2, 

but planar and with unequal η and ζ amplitudes. 

(v) The 3-D motion becomes quasiperiodic yet again at 

u=13.2, as shown in Fig.5; here f1=2.35 and f2=3.54, 

with f3=6f2-3f1 and f4=7 f2-3f1. 

(vi) As the flow velocity is increased further, the oscillation 

becomes chaotic at u=13.6, as illustrated in the tip 

motion of Fig. 6 (a), the Poincaré map of Fig. 6(b), 

and PSD of Fig. 6(c). 
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Figure 5. 3-D quasiperiodic motion at u=13.2: (a) 

top view of the tip displacement of the pipe; (b) 

phase-plane portrait of ζ motion. 

 

  3.2. Dynamics of the system with Ls=0.7L and θ=0
o
 

In this case, the array of four springs is positioned 

considerably closer to the free end and all four springs are 

in the same plane, along the z-axis. In this case stability is 

lost by a static divergence (buckling) at u=7.8 in the plane 

of highest resistance (z direction) against the springs (Fig. 

7). 

(i)       As the flow velocity is increased, the amplitude of 

buckling increases, as shown in Fig. 7.  

(ii)      This non-zero static solution becomes unstable via 

a Hopf bifurcation at u=8.6, leading to planar 

flutter in the ζ direction around the initial non-

zero fixed point. This motion lasts till u=9.0 

(Fig.8(a)). 

(iii)      At u=9.2, the 2-D periodic motion soon becomes 

quasiperiodic, as shown in Fig. 8 (b), and this lasts 

till u=9.8. The top view of the tip displacement for 

flow velocities of u=9.4, u=9.6 are shown in 

Figs.8(c) and (d), respectively.  

(iv)       As u is increased further, a 3-D periodic motion 

occurs at u=10.0. 

(v)       There is a return to a quasiperiodic motion at 

u=10.2. 

(vi)       As u is increased a little further, the pipe returns to 

a periodic oscillation at u=10.4, characterized by  
an amplitude jump. Before this jump (u≤10.2), the 

pipe undergoes mainly a combination of first and  

second beam-mode travelling-wave components, 

 whereas after the amplitude jump (u>10.2), the  

third mode becomes dominant.     
 

 

 

 

 
Figure 6. 3-D chaotic motion at u=13.6:  (a) tip 

displacement of the pipe; (b) Poincaré map; (c) 

PSD plot. 

 

4. EXPERIMENTS 
  
4.1. Apparatus, procedure and data recorded 

The experiments were conducted with a silicone rubber 

pipe with the geometrical and physical characteristics 

corresponding to the theoretical values of Section 2. The 

experimental apparatus is similar to that utilized by Païdoussis 

et al. [10], and its detailed description can be found therein. 

The flow rate is measured using an Omega DPF64 ratemeter 

and an Omega FMG710 flowmeter. The displacement of a point 

along the pipe length is recorded with a non-contacting optical 

tracking system (Optron 806-50-X) and Welch’s method is 

implemented in MATLAB for FFT analysis of this signal. These 
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FFTs serve as a good discriminant for periodic, quasiperiodic 

and chaotic motions.    
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Figure 7. Bifurcation diagram for the pipe with Ls=0.7L and θ=0

o
, 

showing minimum/maximum values of tip displacement in η and 

ζ  directions. 

 

The maximum flow velocity attainable is u≈11.8; hence 

comparison with theory cannot be made beyond this value. 

The experimental results as well as their theoretical 

counterparts are given in the form of tables of u and f for the 

various bifurcation points. The values of dimensionless flow 

velocities and frequencies are accurate to within ±0.05.  

 

4.2. Results for the system with Ls=0.2L and θ=45
o
 

For this case, planar flutter occurred at u=6.7 with a frequency 

of f=3.3. As the flow rate was increased further, the oscillation 

became quasiperiodic at u=9.1 with the fundamental 

frequencies f1=4.1 and f2=8.2 (f3=2f2-f1 and f4=3f2-2f1 et seq.). A 

small increase in the flow rate caused the system to switch to 3-

D circular motion at u=9.3 with f=4.3. At higher flow velocity, 

the system resumes planar oscillation at u=10.1 with f=4.6. 

As seen in Table1, the experimental results for this case are 

in good qualitative and quantitative agreement with the 

theoretical results obtained in Section 3.1, except for the 

second, very narrow, quasiperiodic window predicted to take 

place at u=10.0 by the theory, but never observed in the 

experiments.  

 

4.3. Results for the system with Ls=0.7L and θ=0
o
 

For this system, the first instability was divergence in the η 

direction at u=7.6. The amplitude of divergence grew as the 

flow velocity was increased, and at u=8.8 small oscillations 

were superimposed on the buckled state in the ζ direction, i.e. 

in the plane perpendicular to the initial plane of buckling, with a 

frequency of f=8.0. As the flow velocity was increased further, 

the onset of quasiperiodic motion occurred at u=9.1 with 

fundamental frequencies f1=8.1 and f2=16.7 (f3=f1+f2). This 

motion lasted till u=10.0, with f1=7.4 and f2=16.0, still with 

f3=f1+f2; it then became a 2-D planar periodic pure η motion at 

u=10.3 (f=6.9), as seen in Table 2.  

 

 

 

 
Figure 8. (a)-(d) Top view of the tip displacement of 

the pipe at (a) u=9.0, (b) u=9.2, (c) u=9.4, and (d) 

u=9.6, respectively. 

 

It is seen in Table 2 that the experimental observations are 

in quantitative agreement with the theoretical results. They are 

also in agreement qualitatively, except for the interval of 

divergence for 7.6<u<8.8, where the buckling occurred in the 

plane of least resistance (η direction), as opposed to the 

theoretical results. 

5 Copyright © 2010 by ASME
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5. CONCLUSIONS 
The 3-D dynamical behaviour of a fluid-conveying cantilevered 

pipe with intermediate four-spring support has been studied in 

this paper. Changing spring locations and inter-spring  

Table 1 

Flow velocities and frequencies of bifurcation points 

for the system with Ls=0.2L and θ=45
o
:  

Theory versus experiment 

 Values of u  Values of f1 

 Theory Experiment  Theory Experiment 
Planar 

flutter 

(Hopf 

bifurcation) 

 

6.80 6.7  3.13 3.3 

First 

quasiperiodic 

motion 

 

9.00 9.1  
3.84 

and 

11.05 

4.1 

and  

8.2 

First 

circular 

motion 

 

9.20 9.3  3.91 4.3 

Second 

quasiperiodic 

motion 

 

10.0 
not 

observed 
 

4.39 

and 

13.31 

not 

observed 

First 

planar 

oscillation 

after the 

second 

quasiperiodic 

motion 

10.2 10.1  4.69 4.6 

 

configurations, two cases displaying the most interesting 

dynamical behaviour have been presented. The theoretical 

results were confirmed by conducting some experiments. 

The system displays very rich 3-D dynamics by varying the 

dimensionless flow velocity, spring-support location and inter-

spring configuration. This includes planar or orbital motions, 

quasiperiodic motions followed by either periodic oscillations 

or chaotic motions (either 2-D or 3-D).      

Generally, there is very good agreement between theoretical 

and experimental results. There are two points of disagreement: 

(i) for the system with Ls=0.2L and θ=45
o
, a quasiperiodic 

motion occurs according to theory in a small interval of u 

around u=10.0, but has never been observed in the experiment; 

(ii) for the system with Ls=0.7L and θ=0
o
, a divergence is 

predicted by theory to occur in the plane of highest resistance, 

i.e. in the ζ direction, while in the experiments the buckling 

develops in the η direction (in the plane of least resistance). No 

definite reason has been determined for this discrepancy, but the 

influence of imperfections is suspected. 

                                                           
1 f is dimensionless frequency (cycles per dimensionless second). 

In conclusion, it can be said that adding an intermediate 

spring support to a fluid-conveying pipe enriches the dynamics 

of the system substantially, specifically by revealing the 

existence of quasiperiodic and chaotic oscillations, which have 

never been observed for a plain pipe (i.e., a pipe without 

additional masses or springs attached to it). All the results 

presented in this paper are for constant values of γ, β and k.  It 

would be interesting to expand this study by varying these 

parameters also. 

 

Table 2 

 Flow velocities and frequencies of bifurcation points 

 for the system with Ls=0.7L and θ=0
o
:  

Theory versus experiment 

 Values of u  Values of f 

 Theory Experiment  Theory Experiment 
Divergence 

 
7.82 

 

7.63  - - 

Planar 

flutter in 

ζ  direction 

around the 

non-zero 

fixed point 

 

8.6 8.8  9.37 8.0 

Onset of 

quasiperiodic 

Motion 

 

9.2 9.1  
8.10 

 and 

16.99 

8.1  

and  

16.7 

End of 

quasiperiodic 

motion 

 

10.2 10.0  
8.40 

 and 

17.28 

7.4  

and  

16.0 

First planar 

oscillations 

inη  direction 

after the last 

quasiperiodic 

motion 

10.4 10.3  8.10 6.9 
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APPENDIX A 

THE EQUATIONS OF MOTION  

 

 

 

The set of 3-D nonlinear equations of motion [9] for the fluid-

conveying cantilevered pipe with intermediate springs, are 

given below. 
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The z-equation 
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''' '' ' ''' '' ''η ζ η η ζ η+ +

 

        

 

( )

( )

( )(

( ) ) ( )

( ) ( )

2 2

0

1
2 2

0

3 2

2 2

0

2 2

0

' ' ' ' ' ' '

'' ' ' ' ' ' '

' ' '

'' 0 ' ' 0.
s

zl znl yz

x s

x s

d

d d

d

d

ξ

ξ

ξ

ξ

ξ

ζ ζ ζ ζ η η η ξ

ζ ζ ζ ζ η η η ξ ξ

κ ζ κ ζ κ ζη

κ ζ ζ η ξ δ ξ ξ

κ ζ µ ξ ζ η ξ

+ + + +

− + + +

+ + +

+ + −

− → + =

∫

∫ ∫

∫

∫

� �� � ��

� �� � ��

                           

(A.2) 

 

In Eqs. (A.1) and (A.2), the following dimensionless quantities 

have been used: 

 

s

L
ξ = ,  

s

s

L

L
ξ = ,   

v

L
η = ,   

w

L
ζ = ,    

 

1

2

2

EI t

m M L
τ =

+

 
 
 

,  

1

2M
u UL

EI
=
 
 
 

,    

3m M
L g

EI
γ

+
= ,   

M

m M
β =

+
, 

3

x

x

K L

EI
κ = , 

3

yl

yl

K L

EI
κ = , 

3

zl

zl

K L

EI
κ = ,  

5

ynl

ynl

K L

EI
κ = , 

5

znl

znl

K L

EI
κ = , 

5

yz

yz

K L

EI
κ = ,                         (A.3) 

in which 

2 1
o

x

o

L
K k

R
= −

 
 
 

, 
2

4 1 cos
o

yl

o

L
K k

R
θ= −

 
 
 

, 

 ( )2 2 2

3
2 cos cos 4 sin

o

ynl

o

L
K k

R
θ θ θ= − ,  

( )2 2

3
2 15 cos sin 2

o

yz

o

L
K k

R
θ θ= − , 

2
4 1 sin

o

zl

o

L
K k

R
θ= −

 
 
 

,  
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( )2 2 2

3
2 sin sin 4 cos

o

znl

o

L
K k

R
θ θ θ= − , 

( )2 2

3
2 15 cos sin 2

o

yz

o

L
K k

R
θ θ= − .                                    (A.4) 

 

In the above equations, ξ is the dimensionless distance along 

the pipe, ξs  the dimensionless location of the attachment point 

of the springs, η the dimensionless transverse displacement in 

the v direction, and ζ in the w direction, and τ  is dimensionless 

time; s is the distance along the pipe, L the pipe length, v the 

displacement in the y direction,  w the displacement in z 

direction, t is time, k the linear stiffness of each spring, and L0 

and R0  the unstretched and stretched lengths of the spring; u is 

the dimensionless flow velocity, γ a dimensionless gravity 

parameter, β  a mass parameter; the “K”s are constant stiffness 

coefficients related to the spring array, the subscripts identifying 

the direction in which they have influence (x, y or z) as well as 

whether they are associated with linear (l) or nonlinear (nl) 

terms; ( )0
s

Lµ →  is the Heaviside function, having value of 1 

in the interval [0, Ls]and zero elsewhere. Equations (A.1) and 

(A.2) are correct to O(ε3
), where η and ζ are of O(ε).  

 

APPENDIX B 

THE DISCRETIZED EQUATIONS OF MOTION 

 

 

Galerkin’s discretization method is applied to the equations 

of motion, such that 

 

( ) ( ) ( )
1

,η ξ τ φ ξ τ
=

=∑
N

r r

r

q                                                   (B.1) 

( ) ( ) ( )
1

,ζ ξ τ ψ ξ τ
=

=∑
N

r r

r

p                                                 (B.2) 

in which ( )φ ξ
r

  and ( )ψ ξ
r

  are the dimensionless cantilever 

beam eigenfunctions, which satisfy the boundary conditions.  

Once Eqs. (B.1) and (B.2) are substituted into Eqs. (A.1) and 

(A.2), the resulting equations are multiplied by the 

corresponding beam eigenfunction and integrated over ξ  from 

0 to 1, yielding  

 

( ) ( )

( )
0,

κ κ

κ

+ + + + +

+ +

+ + +

+ + + =

�� �

� � �

��

� � � ��

ij ij ij ijkl

ijkl ijkl

ijkl ijkl

ijkl ijkl ijkl

ly nly

j j ij j ijkl j k l

j k l j k l

yzz

j k l ijkl j k l

j k l j k l j k l

m q c q k q B q q q

D q q q E q q q

F q q q H q p p

L q p p M q p p N q p p

                (B.3) 

 

 

( ) ( )

( )
0.

κ κ

κ

+ + + + +

+ +

+ + +

+ + + =

�� �

� � �

��

� � � ��

ij ij ij ijkl

ijkl ijkl

ijkl ijkl

ijkl ijkl ijkl

lz nlz

j j ij j ijkl j k l

j k l j k l

zyy

j k l ijkl j k l

j k l j k l j k l

m p c p k p B p p p

D p p p E p p p

F p p p H p q q

L p q q M p q q N p q q

        (B.4) 

   

where 

[ ]
1

10 ξ
φ φ ξ φ φ

=
= + Γ∫ij

i j i j
m d ,                                                (B.5) 

 

1

0
2 ' ,β φ φ ξ= ∫

ij
i j

c u d
                                                       

(B.6)
 

 

( )

[ ]

( )

1 1
2

0 0

1

10

1 1

0 0

"" "

' '

" " ,

ξ

φ φ ξ γ φ φ ξ

γ φ φ ξ γ φ φ

γ φ φ ξ φ ξφ ξ

=

= + − Γ

+ + Γ

− −

∫ ∫

∫

∫ ∫

ij
i j i j

i j i j

i j i j

k d u d

d

d d

                            
(B.7)

 

 

( )
( )( )

( ) [ ]( )
( )

1 1
2

0

1
31

2 20

1
3 1

2 2 10

1

0

' ' '' '' ' ''

' ' ' 1 ' ' ''

' ' '' ' ' '

' ' '''' 4 ' " '" " " " ,

ξ

ξ

φ φ φ φ φ φ φ ξ ξ

γ φ φ φ φ ξ φ φ φ ξ

γ φ φ φ φ ξ φ φ φ φ

φ φ φ φ φ φ φ φ φ φ ξ

=

= −

+ − −

− Γ −

+ + +

∫ ∫

∫

∫

∫

ijkl
i j k l j k l

i j k l j k l

i j k l i j k l

i j k l j k l j k l

B u d d

d

d

d

              
(B.8)

 

 

( )1 1

0
2 ' ' ' '' ' ' ,

ξ
β φ φ φ φ φ φ φ ξ ξ= −∫ ∫

ijkl
i j k l j k l

D u d d
            

(B.9)
 

( )
[ ]

1 1

0 0 0

1 1 1

1 0 0 0

     

' ' ' '' ' '

' ' ' '' ' ' ,     (B.10)

ξ ξ

ξ

ξ

φ φ φ φ ξ φ φ φ ξ ξ ξ

φ φ φ φ ξ φ φ ξ φ φ ξ
=

= = −

+Γ − Γ

∫ ∫ ∫ ∫

∫ ∫ ∫

ijkl ijkl
i j k l j k l

i j k l i j k l

E F d d d d

d d d
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( ) ( )[ ]

( ) [ ]( )
( )

1
1 1

2 20

1
1 1

2 2 10

1 1
2

0

' ' ' 1 '' ' ' ' ' ''

'' ' ' ' ' '' ' ' '

' ' '' '' ' '' (B.11)

' ' '''' 3 ' '' ''' ''

                     

ξ

ξ

γ φ φ ψ ψ ξ φ ψ ψ φ ψ ψ ξ

γ φ φ ψ ψ φ ψ ψ ξ φφ ψ ψ

φ φ ψ ψ φ ψ ψ ξ ξ

φ φ ψ ψ φ ψ ψ φ

=

= − − +

− Γ + −

+ −

+ + +

∫

∫

∫ ∫

ijkl
i j k l j k l j k l

i j k l j k l i j k l

i j k l j k l

i j k l j k l j

H d

d

u d d

( )
1

0
' ''' '' '' '' ,ψ ψ φ ψ ψ ξ+∫ k l j k l

d

 

( )1 1

0
2 ' ' ' '' ' ' ,

ξ
β φ φ ψ ψ φ ψ ψ ξ ξ= −∫ ∫

ijkl
i j k l j k l

L u d d         (B.12) 

 

( )
[ ]

1 1

0 0 0

1 1 1

1 0 0 0

' ' ' '' ' '

' ' ' '' ' ' ;      (B.13)

ξ ξ

ξ

ξ

φ φ ψ ψ ξ φ ψ ψ ξ ξ ξ

φ φ ψ ψ ξ φ φ ξ ψ ψ ξ
=

= = −

+Γ − Γ

∫ ∫ ∫ ∫

∫ ∫ ∫

ijkl ijkl
i j k l j k l

i j k l i j k l

M N d d d d

d d d

 

( )
1

0
κ κ φ φ δ ξ ξ ξ= −∫

ly

ij yl i j S
d ,                                     (B.14) 

( )
1

0
κ κ ψ ψ δ ξ ξ ξ= −∫

lz

ij zl i j S
d ,                                    (B.15) 

( )( )
1

0
κ κ φ φ φ φ δ ξ ξ κ ξ= − + Κ∫

nly

ijkl ynl i j k l s x ijkl
d ,              (B.16) 

( )( )
1

0
κ κ φ φ ψ ψ δ ξ ξ κ ξ= − + Κ∫

yzz

ijkl yz i j k l s x ijkl
d ,                  (B.17) 

( )( )
1

0
κ κ ψ ψ ψ ψ δ ξ ξ κ ξ= − + Κ∫

nlz

ijkl znl i j k l s x ijkl
d                  (B.18) 

( )( )
1

0
κ κ ψ ψ φ φ δ ξ ξ κ ξ= − + Κ∫

zyy

ijkl yz i j k l s x ijkl
d ,               (B.19) 

( )

( )

0

0

' ' '

0 '' ' ' ,

ξ

ξ

φ φ δ ξ ξ φ φ ξ

µ ξ φ φ φ φ ξ

Κ = −

− →

∫

∫
s

ijkl i j s k l

s i j j j

d

d

                                   (B.20) 

( ) ( )

[ ]

1

0

1

0 0 0

0 0 0

' ' ' 0 '' ' '

' ' ' '' ' ' (B.21).         

ξ ξ

ξ ξ ξ

ξ ξ

ξ

φ φ δ ξ ξ φ φ ξ µ ξ φ φ φ φ ξ ξ

φ φ φ φ ξ φ φ φ φ ξ ξ
=

Κ

= − − →

= −

 
 

∫

∫ ∫ ∫

∫ ∫ ∫

s

s s s

s

ijkl

i j s k l s i j j j

i j k l i j j j

d

d d d

d d d
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