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ABSTRACT 
A curiosity-driven study is presented here which introduces 

and tests an analytical model to be employed for describing the 
dynamics of cantilevered cylinders in axial flow. This model is 
called “hybrid” because it encompasses linear fluid dynamics 
and nonlinear structural dynamics. Also, both the linear and 
fully nonlinear models are recalled here. For all these models 
Galerkin’s method is used to discretize the nondimensional 
equation of motion. For the hybrid and nonlinear models a 
numerical method based on Houbolt’s Finite Difference 
Method (FDM) is used to solve the discretized equations, as 
well as AUTO, which is a software used to solve continuation 
and bifurcation problems for differential equations. The 
capability of the hybrid model to predict the dynamical 
behaviour of cantilevered cylinders in axial flow is assessed by 
examining three different sets of parameters. Here, the main 
focus is put on the onset of instabilities and the amplitude of the 
predicted motion. According to the results given in the form of 
bifurcation diagrams and several tabulated numerical values, 
the hybrid model is proved to be unacceptable although it can 
predict the onset of first instability, and even the onset of post-
divergence instability in some cases. 

1. INTRODUCTION 
Interest in the vibration of cylindrical structures in axial 

flow, unlike vibrations of cylindrical structures due to cross-
flow, has begun in earnest in the 1950s [1]. Understanding and 
prediction of the dynamics of cylinders in axial flow is of 

interest and importance for the design and safe operation of 
heat-exchanger tubes, nuclear power plants (nuclear fuel 
bundles, control rods and monitoring tubes), towed flexible 
cylinders for fresh water and petroleum transportation, towed 
acoustic streamer arrays for oil and gas exploration, and high-
speed trains. Therefore, a considerable number of studies 
including analytical, numerical and experimental work have 
been done to examine different aspects of their dynamics. 

Historically, the first specific study was made by 
Hawthorne [2], in which the dynamics and stability of a towed 
sausage-like flexible body, the Dracone, was investigated. The 
Dracone was designed and used to transport by sea different 
lighter-than-sea-water liquids such as petrol, diesel oils, or fresh 
water to arid lands. Hawthorne proposed the first basic model 
for the dynamics of such systems. 

Later, Païdoussis [3, 4] extended and generalized 
Hawthorne’s work for cylinders with any boundary conditions, 
e.g., cantilevered or simply-supported, and did some 
experiments to validate the theory. A more general theory to 
take gravity and pressurization effects into account, and to deal 
with cases of confined flow was also developed [5, 6]. In these 
later studies an error in the equation of motion due to 
inconsistent incorporation of the viscous forces was corrected; 
unfortunately, some work, e.g. by Ortloff and Ives [7] and Pao 
[8], was done in the mean time, based on the erroneous 
equation of motion. 

The divergence (buckling) critical flow velocity for a 
cylinder with pinned-free boundary conditions was determined 
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analytically by Triantafyllou and Chryssostomidis [9]. The 
same researchers [10] also studied the dynamics of long, very 
slender cylinders which were modelled as strings rather than 
beams. It is noted that, in all the theoretical studies reviewed so 
far, linear models were used. 

The dynamics of cantilevered flexible cylinders in axial 
flow was later re-examined via a nonlinear theory [11-13]; in 
this three-part study, (i) the physical dynamics of the system 
including the experimental observations and the mechanisms of 
energy transfer, (ii) the derivation of the nonlinear equation of 
motion, and (iii) the nonlinear dynamics of cantilevered 
cylinders in axial flow were discussed in detail. Recently, a 
nonlinear model was developed by Modarres-Sadeghi et al. 
[14] for flexible cylinders with both ends supported and 
subjected to axial flow, accounting for the extensibility of the 
centreline of the cylinder; this was pursued in Ref. [15]. 

Also, the dynamics of towed cylinders is of interest, not 
only for their early applications, e.g. the Dracone used for 
transporting the lighter-than-sea-water products, but also for 
their recent applications as “seismic arrays” or “acoustic 
streamers” used for exploring under-sea oil and gas deposits. 
Over the years theories and models for towed cylinder have 
been developed alongside the studies made on the other 
systems, such as cantilevered cylinders in axial flow. Apart the 
early work done by Hawthorne, several studies on towed 
systems were made by Païdoussis [16, 17], Pao [8], Païdoussis 
and Yu [18], Dowling [19, 20], and many others. For a more 
complete review of this topic, the interested reader is referred to 
Ref. [1]. 

More recently, Wang and Ni [21] have reviewed 
selectively the studies and researches undertaken on vibration 
of slender structures subjected to axial flow or towed axially in 
quiescent fluid. 

In all experiments to-date, the observed dynamical 
behaviour of cantilevered cylinders in axial flow is not confined 
to a plane but it is three-dimensional (3-D); yet no 3-D theory 
exists to account for that. Therefore, it was considered desirable 
to extend the existing 2-D analytical model (planar motions) to 
a 3-D one. However, some aspects of this task proved to be 
surprisingly difficult, and it was thought worth exploring the 
capabilities of a simpler model in which linear fluid dynamics 
would be used while retaining a nonlinear formulation for the 
structural dynamics. This approach proved very successful for 
treating the nonlinear dynamics of cylindrical shells conveying 
fluid [22]. The feasibility of this idea can at present be tested 
for planar, 2-D motions only.  

The rest of present paper is organized as follows: first, 
some general assumptions and definitions are given, and then 
the formulation for a fully linear model is recalled. In section 
2.3, the nondimensional form of fully nonlinear equation of 
motion is given according to the formulation in Ref. [12]. The 
final governing equation for the hybrid model is presented in 
section 2.4. Then, methods for analysis and solution are 
discussed briefly. Section 3 is devoted to numerical results and 
discussion.  

2. ANALYTICAL MODELS AND THE SOLUTION 
METHOD 

2.1 General definitions and preliminaries 
A flexible cylindrical beam of length L and circular cross-

section is considered to be immersed in an incompressible fluid 
of density ρ , flowing with uniform velocity U  parallel to the 

x -axis, which coincides with the position of rest of the 
cylinder axis. Except for a short tapering piece of length ℓ  
fitted to the free end, the cylinder has the uniform cross-
sectional area A , mass per unit length m and flexural rigidity 
EI . As shown in Figure 1, the cylinder is considered to be 
fixed at the upstream end and free at the other. The motions are 
supposed to be confined in either a horizontal or a vertical 
plane, the ( , )x y -plane.  

 
 

 

Figure 1. A cantilevered cylinder in axial flow 

 
Only small lateral motions of the cylinder about its 

position of rest are considered, during which the incidence 

angle i and i x∂ ∂ remain reasonably small so that (i) no 

separation occurs in cross-flow and (ii) the fluid forces on each 
element of the cylinder may be assumed to be identical to those 
acting on the corresponding element of a long straight cylinder 
with the same cross-sectional area and inclination. 
2.2 Linear model 

The linear equations of motion for flexible cylinders in 
axial flow were derived by Païdoussis [3], and later again in a 
more general and corrected form [5, 6]. Small lateral motions 
of the cylinder in unconfined flow may be described by the 
following equation: 
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where y  is the lateral deflection, NC  and TC are normal and 

tangential friction coefficients, respectively, bC  is the base drag 

coefficient, 
DC  is the friction drag coefficient, E ∗ is the 

viscoelastic constant, T  is the externally imposed uniform 
tension, ν  is Poisson’s ratio, p  is the pressure, and p  is the 
mean value of p . Also, 0δ =  signifies that the downstream 
end is free to slide axially, whereas 1δ =  if the supports do 
not allow net axial tension.  

The above equation can be cast in nondimensional form 
by using following dimensionless terms: 

 

{ }1 2 2,  ,  ( ) .x L y L EI m A t Lξ η τ ρ= = = +  (2) 

 
Substitution of these terms into equation (1) yields the 

dimensionless equation of motion, 
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The boundary conditions for a cantilevered cylinder 

terminated by a short tapering end piece can be obtained by 
simplifying the equations given in Ref. [1], yielding 

 

(0, ) (0, ) 0η τ η τ′= =  at 0,ξ =  (5) 

 
and 
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where the parameter f , which is normally less than unity, has 
been introduced because the theoretical lateral force at the 
tapered free end may not be fully realized. Also the parameter 

eχ  is defined as 

 

,e ex Lχ =   (7) 
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2.3 Nonlinear model 

The nonlinear model for the dynamics of cantilevered 
cylinders in axial flow is presented in Refs. [11-13]. The 
equation of motion in nondimensional form is given below 
[12]: 
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where the prime and overdot stand for ξ∂∂ ) (  and τ∂∂ ) ( , 

respectively.  
The following dimensionless equation represents the 

transverse shear boundary condition at the free end (1ξ = ) 

[12]: 
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where the parameterχ  is the virtual mass coefficient and h  is 

the ratio of  the diameter of cylinder to the hydraulic diameter. 
For unconfined flow, 1=χ  and 0=h . Also, the parameters eχ  

and eχ  are defined by the following equation: 
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The other boundary conditions including the geometrical 

conditions at the clamped end ( 0ξ = ) and the bending moment 

at the free end ( 1ξ = ) are the same as in the linear model, as in 

equations (5) and (6). 
2.4 Hybrid model  

The hybrid model has been developed by considering 
linear fluid dynamic terms while retaining a nonlinear 
formulation for the structural dynamics. The equation of motion 
in this case is given in the following equation in the 
dimensionless form: 
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The transverse shear boundary condition for this model is 

the same as for the nonlinear model (equation (10)) except for 
one extra term due to the linearized form of pressure drag 
within the normal frictional force; thus, 
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2.5 Method of analysis 

A similar approach as in Ref. [12] is used to include the 
complementary end-shear boundary condition due to the 
tapering end in the final equation of motion, via a Dirac delta 
function. Then, the cantilevered beam eigenfunctions ( )jφ ξ  

satisfying the classical boundary conditions for a cantilevered 
beam are used directly as comparison functions to discretize the 
final equation of motion by means of Galerkin’s method. 
2.6 Method of solution 

The discretized set of equations is solved by using a 
numerical scheme based on Houbolt’s Finite Difference 
Method (FDM). It is an initial-value problem solver in which 
the system of equations is integrated numerically for one initial 
condition at a time, and the state of the system can be 
reproduced for any time thereafter. This scheme has been 
discussed in detail by Semler [23]. This method is able to 
predict only the stable solution branches. To obtain the unstable 
branches, AUTO [24], which is based on a collocation method 
and adapted to solving continuation and bifurcation problems 
for differential equations, is used. FDM together with AUTO 
can provide a good picture of the dynamics. 

3. NUMERICAL RESULTS AND DISCUSSION 
Three different sets of system parameters are used. These 

nondimensional parameters come from the physical parameters 
used in experiments reported in [1], [5] and [11] and also the 
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nondimensional parameters used in order to validate the 
theoretical models proposed there. For each test case the data 
obtained or known from all three models (linear, nonlinear and 
hybrid models) are presented. In the present study,6N =  
modes have been used in the Galerkin approximation for all the 
cases. Also, 8=N  modes have been used in AUTO. The 
bifurcation diagrams obtained from nonlinear and hybrid 
models along with numerical comparisons are given in the 
subsequent parts. 
3.1 Test case I 

The first system is a linear system considered in Ref. [1]; 
the system parameters are given in Table 1. 

 
 
 

Table 1. Nondimensional parameters of the cylinder for case I 

Parameter Value Parameter Value 

β  0.47 eχ  0.00667 

f  0.80 eχ  0.00785 

bc  0.20 γ  0.0 

fcε  2.50 χ  1.0 

 
 
 
Figures 2 and 3 show the bifurcation diagrams obtained by 

FDM for the nonlinear and hybrid models, respectively. In 
addition, the bifurcation diagram obtained from the hybrid 
model using AUTO is given in Figure 4. In these figures the 
dimensionless amplitude of motion of the free end of the 
cylinder ( 1ξ = ) has been plotted against the dimensionless 

flow velocity (u ). It is seen in both Figure 2 and Figure 3 that 
the system loses stability by static divergence through a 
pitchfork bifurcation at 2.5cdu u= ≃ . The amplitude of the 

static deformation at 1ξ =  increases with u  and then decreases 

in Figure 2, indicating that the mode shape is no longer similar 
to that of the first beam mode. In Figure 3, on the other hand, 
the amplitude at 1ξ =  keeps increasing. The full nonlinear 

model of Figure 2 predicts a Hopf bifurcation at 7.6u ≃ , 
indicating the onset of flutter. This bifurcation emerges from a 
non-trivial solution, and it is not captured by the hybrid model, 
as seen in Figures 3 and 4. However, as seen in Figure 4, 
AUTO detects a second pitchfork bifurcation at 7.7u ≃ for the 
hybrid model, leading to an unstable solution branch.  

The numerical results are given in Table 2. In the table, cdu  

represents the critical velocity for divergence, while cfu  is the 

critical velocity for flutter. The reason for the hybrid model not 
predicting the coupled-mode flutter at 7.68cfu =  found by the 

linear model, predicting a second divergence instead at 7.7u ≃  
is not clear. 

However, the main drawback of the hybrid model whether 
by means of FDM or AUTO is that it gives non-physical 
amplitudes, i.e. amplitudes larger than the cylinder length. The 
full nonlinear model, on the other hand, predicts physically 
more reasonable maximum amplitudes, of the order of 20% of 
the length. 
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Figure 2. Bifurcation diagram obtained with nonlinear model 

using FDM for case I: × shows the onset of divergence; ∗  shows 
the onset of flutter 
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Figure 3. Bifurcation diagram obtained with hybrid model using 

FDM for case I: × shows the onset of divergence 
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Figure 4. Bifurcation diagram obtained with hybrid model using 
AUTO for case I: continuous line, stable solutions; dashed line, 

unstable solutions; × shows the onset of divergence 
 
 
 
Table 2. The onset of different instabilities predicted by 

different models for case I 

Analytical model used cdu  cfu  

Linear [1] 2.49 7.68§ 

Nonlinear  2.47 [2.49] 7.64 [7.64] 

Hybrid  2.47 [2.49] --- [---] 
§ : this value has been obtained from a more accurate analysis (with a high 
number of Galerkin modes) with respect to Ref. [1] 
[ ] : gives the numerical values obtained by means of AUTO 
--- : signifies that the phenomenon could not be captured 

 
 
The numerical values presented in Table 2 show very good 

agreement between the different models (from linear to 
nonlinear and hybrid models) in predicting the onset of first 
instability, as it should be. Also, the numerical values found by 
FDM are confirmed by the numerical values given by AUTO. 
3.2 Test case II 

The system parameters for this case study are tabulated in 
Table 3. Again, a linear analysis of the system has been 
performed by Païdoussis [5]. 

 
 

Table 3. Nondimensional parameters of the cylinder for case II 

Parameter Value Parameter Value 

β  0.20 eχ  0.02 

f  0.80 eχ  0.00 

bc  0.10 γ  0.0 

fcε  0.20 χ  1.0 

Figures 5 and 6 show the bifurcation diagram obtained 
from the nonlinear and hybrid models, respectively, and Figure 
7 presents the bifurcation diagram obtained with the hybrid 
model using AUTO. Again, in these figures the nondimensional 
amplitude at the free end of the cantilevered cylinder was 
plotted versus the nondimensional flow velocity. The onsets of 
divergence and flutter based on the linear model could be 
obtained by using the graphs provided in Ref. [5, Fig. 8]. But, 
in the course of this work, it has been found that they are 
insufficiently accurate; therefore, a more accurate linear 
analysis (with a high number of Galerkin modes) has been done 
to find the onset of divergence and flutter. All the numerical 
values for the critical flow velocities obtained by the different 
models are summarized in Table 4. 

As seen from Figure 5, the nonlinear model using FDM 
cannot predict a post-divergence flutter. This can only be 
concluded when a high number of Galerkin modes, e.g. 10N =  
is used in FDM. On the other hand, the hybrid model shows a 
different behaviour: as seen in Figure 6, FDM could not find 
any post-divergence instability, but AUTO is successful, 
predicting an unstable Hopf bifurcation at 88.3=u . The reason 
why FDM cannot find the Hopf bifurcation for both fully 
nonlinear and hybrid models, is due to the inherent inability of 
FDM to find unstable solutions. 
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Figure 5. Bifurcation diagram obtained with nonlinear model 

using FDM for case II: × shows the onset of divergence 
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Figure 6. Bifurcation diagram obtained with hybrid model using 

FDM for case II: × shows the onset of divergence 

 
Figure 7. Bifurcation diagram obtained with hybrid model using 
AUTO for case II: continuous line, stable solutions; dashed line, 

unstable solutions; × shows the onset of divergence, and ∗  shows 
the onset of flutter 

 
 
 
Table 4. The onset of different instabilities predicted by 

different models for case II 

Analytical model used cdu  cfu  

Linear § 1.84 3.88 

Nonlinear  1.84 [1.84] --- [3.88] 

Hybrid  1.84 [1.84] --- [3.88] 
§ : these values have been obtained from a more accurate analysis (with a 
high number of Galerkin modes) with respect to Ref. [5] 
[ ] : gives the numerical values obtained by means of AUTO 
--- : signifies that the phenomenon could not be captured 

 
 
 

 
3.3 Test case III 

The parameter set for this test case is similar to the first set 
except for the dimensionless parameter of gravity, which is not 
zero, and a lower friction coefficient. The numerical values of 
the parameters are given in Table 5. 

 
 
 

Table 5. Nondimensional parameters of the cylinder for case III 

Parameter Value Parameter Value 

β  0.47 eχ  0.00667 

f  0.70 eχ  0.00785 

bc  0.30 γ  1.9 

fcε  0.50 χ  1.0 

 
 
 
The bifurcation diagram for this system obtained with the 

nonlinear model is given in Figure 8. From that diagram the 
onset of two instabilities can be identified. The corresponding 
instabilities have also been obtained with the linear and hybrid 
models. Figure 9 shows the bifurcation diagram obtained via 
the hybrid model by means of FDM, and Figure 10 presents the 
bifurcation diagram obtained with the hybrid model using 
AUTO. 

Table 6 makes a numerical comparison between the onsets 
of different possible instabilities predicted by the three models.  
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Figure 8. Bifurcation diagram obtained with nonlinear model 

using FDM for case III: × shows the onset of divergence; ∗  shows 
the onset of flutter 
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Figure 9. Bifurcation diagram obtained with hybrid model using 
FDM for case III: × shows the onset of divergence; ∗  shows the 

onset of flutter 
 

 
Figure 10. Bifurcation diagram obtained with hybrid model using 
AUTO for case III: continuous line, stable solutions; dashed line, 
unstable solutions; × shows the onset of divergence, and ∗  shows 

the onset of flutter 
 
 
 
Table 6. The onset of different instabilities predicted by 

different models for case III 

Analytical model used cdu  cfu  

Linear  2.29 5.61 

Nonlinear  2.28 [2.29] 5.60 [5.60] 

Hybrid  2.28 [2.29] 5.60 [5.60] 

[ ] : gives the numerical values obtained by means of AUTO 

 
 
 

As seen from Figures 8 to 10 and according to the 
numerical comparison given in Table 6, the hybrid model can 
predict the onset of the first and second instabilities with both 
FDM and AUTO, with a very good agreement with respect to 
the nonlinear model. Here, the post-divergence instability 
emerges from the trivial equilibrium state of the system, and it 
leads to a stable solution branch and that is why it could be 
captured even by FDM. However, the main disadvantage to the 
hybrid model, namely that it predicts unreasonably large 
amplitudes, still exists and seems to be inherent in this model. 
3.4 Discussion 

According to the bifurcation diagrams depicted in the 
Figures 2-10 and according to the numerical comparisons 
provided in Tables 2, 4 and 6, it is shown that the hybrid model 
gives non-physical amplitudes. Moreover, it is not even able to 
predict the whole qualitative picture of the dynamics in all 
cases; although in case III it does. Nevertheless, the hybrid 
model is capable of predicting the onset of instabilities which 
emerge from the trivial equilibrium state, but it cannot give 
numerical values with a better correlation to the nonlinear 
results relative to the linear model.  

Also, it is found that FDM solutions for the hybrid model 
are even less successful than those obtained by AUTO, because 
only stable trivial solutions can be captured and, therefore, they 
cannot predict the post-divergence instability in many cases.  

4. CONCLUSION 
In this paper a hybrid model, using linear fluid dynamics 

while retaining nonlinear structural dynamics in the equations 
of motion, has been presented. The capabilities of this model in 
predicting the dynamical behaviour of cantilevered cylinders in 
axial flow, such as the onset of instabilities, have been tested. In 
addition, the linear and fully nonlinear models have also been 
utilized in the paper, to compare with the hybrid model. Some 
numerical results alongside some graphical results have also 
been presented for comparison. The expectation that the hybrid 
model could offer significant improvements relative to the 
linear model while having a simpler form relative to the 
nonlinear model have turned out to be wrong. Therefore, it is 
clear that the 3-D model which needs to be developed must be a 
fully nonlinear one.  
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