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ABSTRACT 
A theoretical and experimental study has been conducted 

to investigate the dynamics of cantilevered flexible plates in 
axial flow. In this paper, a nonlinear equation of motion of plate 
based on the inextensibility assumption, coupled with an 
unsteady lumped vortex model for the aerodynamic part is used 
to analyze the dynamical behaviour of this fluid-structure 
system theoretically. Experiments have been conducted in a 3 ft 
× 2 ft wind tunnel, using polypropylene carbonate films, thin 
brass plates, polyester sheets, and type 304 stainless steel 
sheets, with maximum dimensions 22.4 cm × 16.8 cm. In the 
experiments, time traces, PSDs, phase-plane plots, Poincaré 
maps, PDFs, and autocorrelations are used to characterize the 
motions of the system. Periodic, period-doubling and chaotic 
oscillations have been observed. In the experiments, flutter 
arises via a subcritical bifurcation accompanied by hysteresis 
for low aspect ratio plates; the hysteresis disappears for large 
aspect ratio plates. The hysteresis phenomenon is considered to 
be due to three-dimensional bending of the plates. Furthermore, 
for flow velocities in the hysteresis loop, the stable plate 
subjected to a small external disturbance will flutter with the 
same amplitude limit cycle oscillation as self-excited oscillation 
at the same flow velocity. The experimental critical velocities 
for flutter onset are in good qualitative and quantitative 
agreement with the theoretically predicted values. 
 
1. INTRODUCTION 

All the previous extensive study on cantilevered flexible 
plates in axial flow showed that the system will lose stability 
through flutter at sufficiently high flow velocity. The 
fundamental and systematical study of cantilevered plates in 

axial flow may be found in a monograph by Dowell [1].The 
extensive literature on this topic has recently been reviewed by 
Païdoussis [2]. The first studies on cantilevered flexible plates 
in compressible and supersonic axial flow were undertaken by 
Dowell [3-6], and in essentially incompressible and subsonic 
by Taneda [7], Datta & Gottenberg [8], Kornecki et al. [9], and 
Shayo [10]. Recently, extensive investigations have been done 
on this classical topic by Huang [11], Guo & Païdoussis [12], 
Zhang [13], and Yamaguchi [14]. 

Theoretically, Kornecki et al. [9] used a linear beam model 
for the plate and Theodorsen's theory for the aerodynamics to 
study the system. Watanabe et al. [15] and Balint & Lucey [16] 
used a linear beam model of the plate and a two-dimensional 
Navier–Stokes solver to numerically simulate the system. 
Lemaitre et al. [17] used a linear beam model and slender wing 
theory to investigate the system. Yadykin et al. [18] used a 
nonlinear beam model based on the inextensibility condition 
and slender wing theory for the aerodynamics. Tang & Dowell 
[19-21] adopted a nonlinear structure model using the 
inextensibility condition and a two-dimensional vortex lattice 
model to study cantilevered plates in axial flow. Tang and 
Païdoussis [22, 23] used a nonlinear equation of the plate based 
on the inextensibility condition and unsteady lumped vortex 
model to investigate the nonlinear effects and limit cycle 
oscillations of fluttering plates in axial flow.  

Experimentally, Taneda [7] conducted the earliest flutter 
experiments on a vertically hanging flag, Datta and Gottenberg 
[8] conducted similar flutter experiments on strips in airflow. 
Zhang et al. [13] conducted experiments on hanging filaments 
in a flowing soap film and observed the evolution of the wake 
vortices and its correlation to system stability. Lemaitre et al. 
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[17] conducted experiments on strips and found the critical 
flow velocity. Tang et al. [19] conducted experiments on 
cantilevered plates in axial flow and found good agreement 
with theory for the onset of flutter. Shelley et al. [24] conducted 
experiments in water flow and got results in qualitative 
agreement with theory for the critical flow speed. 

In this paper, the main work is to complement the 
experimental research and validate the theoretical predictions in 
Tang and Païdoussis [22, 23]. The experiment was a two-
dimensional cantilevered plastic plate immersed in axial flow. 
An optoNCDT laser sensor was used to measure the oscillation 
of the plate. Time traces, PSDs, phase-plane plots, Poincaré 
maps, PDFs, and autocorrelations were used to analyze the 
response. Furthermore, the hysteresis phenomenon was 
investigated. Good agreement of critical velocities for flutter 
onset between the theoretical and experimental values was 
achieved. 
 
2. AEROELASTIC MODEL 

A schematic of a cantilevered plate in axial flow is shown 
in Figure 1. The physical parameters of the two-dimensional 
plate are the length L , upstream clamped rigid segment of 
length 0L , thickness h , material density Pρ and bending 
stiffness 3 2/ [12(1 )]D Eh v= − , where E is Young’s modulus 
and v  is the Poisson ratio; a is the coefficient of Kelvin-Voigt 
damping. 

Based on the inextensibility assumption and following 
Semler et al. [25], the transverse displacement of the plate W  
is 
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where S is measured along the centreline of the plate. The 
longitudinal displacement of the plate V is 
 

2

0

1
2

S
V W dS′= − ∫ .               (2) 

 
In equations (1) and (2), LF and DF are, respectively, the 
transverse and longitudinal fluid loads acting on the plate, a is 
the Kelvin-Voigt-type material damping coefficient [26]. The 
overdot and the prime represent, respectively, temporal and 
spatial derivatives, i.e., ( ) / t∂ ∂ and ( ) / S∂ ∂ . 

Using plate length L as the length scale, 4 /PhL Dρ  as 
the time scale, 2

FUρ as the fluid load scale to normalize    
the spatial and temporal variables, Fρ being the fluid density, 

 
 
   

    
   
   
   
 
 
 

 
Figure 1. Schematic of the cantilevered plate in axial flow. 

  
 
defining the mass ratio /F PL hμ ρ ρ= , and the reduced velocity 

/R PU UL h Dρ= , the non-dimensional plate equations of 
motion (1) and (2) are obtained as 
 

2 3(1 )[ (1 ) 4 ]w w w w w w wα
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where /w W L= , /v V L= , /s S L= , 4/ /Pt hL Dτ ρ= , 

4/ /Pa hL Dα ρ= , 2/L L Ff F Uρ= , 2/D D Ff F Uρ= . 

The flexible section of the plate is divided into N panels 
(“mesh segments”), each of length 1/s NΔ = . Individual 
panels are put on the deformed contour of the plate centerline. 

In equations (3) and (4), on the ith panel, the lift load on 
ith mesh segment cosLi i if p α= Δ , and drag load on ith mesh 
segment sinDi i i Df p Cα= Δ + , where ipΔ is the pressure 
difference on ith mesh segment [27], iα  is angle between the 
ith segment and the abscissa. DC is the non-dimensional drag 
coefficient used for the viscous drag acting on the plate. 

The corresponding boundary conditions are 
 

( 0, ) 0w s τ= = , ( 0, ) 0w s τ′ = = , 
( 1, ) 0w s τ′′ = = , ( 1, ) 0w s τ′′′ = = .          (5) 

 
The non-dimensional nonlinear partial equation of motion 

is discretized by the Galerkin method with the eigenfunctions 
of cantilevered beam as the fundamental functions. The 
resulting set of ordinary differential equations is then solved by 
Houbolt’s finite difference method [28]. 
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3. EXPERIMENTAL SET-UP 
The schematic of the experimental set-up is shown in 

Figure 2. The cross-section of the wind tunnel is 3 ft × 2 ft. The 
maximum flow velocity is 39.8 m/s measured with a Pitot tube. 
The clamped support is a NACA0012 airfoil, the middle 
segment is made of aluminum and the ends of Delrin. The 
chord is 96.95 mm, the span is 619.8 mm. The cantilevered 
plates are made of four different materials: polypropylene 
carbonate films, thin brass plates, polyester sheets, and type 
304 stainless steel sheets. The plates are sandwiched-in and 
clamped securely at the middle trailing edge of the airfoil. The 
length of the plates L varies from 60 mm to 224 mm. The 
width of the plates B varies from 60 mm to 200 mm. The length 
of clamped rigid segment is 50 mm. The flexural rigidity EI is 
measured by the method proposed by Païdoussis & Des Trois 
Maisons [29]. As the polypropylene carbonate films are 
transparent, they are sprayed with paint so that they can be used 
with the optoNCDT laser sensor. The characteristics of 
different materials are listed in Table 1. 

The optoNCDT laser beam is pointed at a central spot at 
X=0.75L of the flexible section to measure the oscillation 
amplitude of plate. The output signals from the transducer are 
filtered and recorded by the data acquisition system, and the 
time traces, PSDs, phase-plane plots, Poincaré maps, PDFs, and 
autocorrelations are used to investigate the response of the 
system. A digital camera and a stroboscope are used to record 
the flutter mode shapes. 

The flow velocity is gradually increased from naught to a 
high enough value. At the beginning, the cantilevered plate is 
stable; at a critical flow velocity, the plate begins to flutter. If 
we keep on increasing the flow velocity to a certain point, and 
then slowly decrease it, the behaviour is subcritical, i.e., 
stabilization occurs at a lower flow velocity than that for onset 
of flutter. During the whole process, the system shows periodic, 
period-doubling and chaotic oscillations. 

The plate is gradually shortened to investigate the 
relationship of length L and critical velocity UC. 
 

 

 Airfoil
NACA0012

Air flow

Wind tunnel

Plate

 

Figure 2. Schematic of the experimental set-up. 

Table1. Characteristics of different materials 

                 h (mm)  Pρ (kg/m3)  EI (N·m2) 
Polypropylene films      0.12       1345     1.8×10-5 
Brass plates             0.1       8550     3.2×10-4 
Polyester sheets   0.127      1480     9.8×10-6 
Stainless steel sheets     0.127        7900     5.4×10-4 
 
 
4. RESULTS AND DISCUSSION 

4.1 Typical Dynamics of a Cantilevered Plate 
    Typical results of cantilevered polypropylene films with L 
= 16 cm in axial flow at reduced velocity UR = 8.05, UR = 27.67 
are presented separately in Figures 3 and 4: time traces, PSDs, 
phase-plane plots, Poincaré maps, PDFs, and autocorrelations. 
In Figure 3(a), the time trace shows that the limit cycle 
oscillation is almost periodic and harmonic. In Figure 3(b), the 
main oscillation frequency is f = 5.62 Hz. Figure 3(c) shows 
that the oscillation is periodic, as confirmed by the single point 
shown in the Poincaré map of Figure 3(d). In Figure 3(e), the 
PDF of the oscillation displays two symmetric prominent peaks 
at the extremes of the displacement, also characteristic of 
periodic motion. The autocorrelation in Figure 3(f) confirms 
this. Thus all the measures employed in Figure 3 indicate a 
periodic motion. In Figure 4(a, c), the time trace and the phase-
plane plot show that the limit cycle oscillation is quite chaotic. 
In Figure 4(b), there is a main oscillation frequency at f = 42.82 
Hz, but the low-frequency content is wide-banded and erratic. 
In Figure 4(d), the cluster of points in ( , )w w& - plot clearly 
shows that the oscillation is quite chaotic. In Figure 4(e), the 
prominent peaks disappear, and the PDF has become less 
concave. In Figure 4(f), the autocorrelation decays rapidly with 
time. The fuzzy multiple-loop phase-plane plot, the fuzzy 
points of Poincaré map, the convex shape of the PDF and the 
essentially rapidly decayed autocorrelation all indicate the 
chaotic motion of the system. 

4.2 The Hysteresis in Flutter Onset and Cessation 
The cantilevered plates may lose stability by flutter with 

increase of flow velocity via a subcritical Hopf bifurcation. 
When the flow velocity reaches a critical value, the 
cantilevered plates flutter suddenly with a large amplitude. 
While the cantilevered plates are already in oscillation, 
gradually reducing the velocity, the plates may return to 
stability at another critical velocity, which is lower than the 
former one; thus a hysteresis loop is formed. This type of 
hysteresis phenomenon has been mentioned in previous 
experimental research [13, 19, 22, 24, 30]. In Figure 5(a), the 
hysteresis with respect to flutter onset/cessation is observed for 
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Figure 3. Experimental time trace of w(s=0.75), power spectral density (PDF), phase-plane plot, Poincaré map, probability 
density function (PDF), and autocorrelation for cantilevered polypropylene carbonate film with L = 16 cm, B = 12 cm, μ = 1.215, 

UR = 6.54. 
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Figure 4. Experimental time trace of w(s=0.75), power spectral density (PDF), phase-plane plot, Poincaré map, probability 
density function (PDF), and autocorrelation for cantilevered polypropylene carbonate film with L = 16 cm, B = 12 cm, μ = 1.215, 

UR = 27.67.
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a low aspect ratio plate, L/B=1. Furthermore, for flow velocities 
in the hysteresis loop, the stable plate subjected to a small 
external disturbance will flutter with the same amplitude limit 
cycle oscillation as self-excited oscillation at the same flow 
velocity, as illustrated by the dash-dot lines. The plate loses 
stability at a flow velocity UPRC = 6.54, and returns to stability 
at a flow velocity USRC = 5.13. Thus, the bifurcation leading to 
flutter is subcritical in this case. In Figure 5(b), the hysteresis 
disappears for a large aspect ratio plate, L/B=1.33. The plate 
loses stability at critical velocity URC = 4.39, which is smaller 
than the critical velocity for the low aspect ratio plate. There 
are no existing theories capable of predicting the subcritical 
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Figure 5. The bifurcation diagram of the system with L = 16 

cm, μ = 1.215, (a) B = 16, (b) B = 12; —o—，velocity is 
increased, — · —, velocity is decreased. 

flutter behaviour of cantilevered plates. Most of theories assume 
that the plates are two-dimensional, ignore the tension owing to 
the bending of plates, which will stiffen the plates. In the 
experiments, the three-dimensional bending of the low aspect 
ratio plates is clearly visible, while such 3-D bending for large 
aspect ratio plates is not obvious. It is therefore likely that the 
hysteresis phenomenon is due to the three-dimensional bending 
of the plates. 

4.3 The Flutter Boundary 
Figure 6 shows the flutter boundary of the system 

obtained both theoretically and experimentally. Other 
theoretically predicted flutter boundaries [11, 12, 14, 30] are 
also shown in the figure. In Figure 6(a), the mass 
ratio ( )[ / ]F Ph Lμ ρ ρ= , the ordinate is written as 

3/ 2 1/2/ [( ) / ( )]RC P F CU h D Uμ ρ ρ= ; as for a given situation, the 
parameters Pρ , h , D , Fρ are constants, we can investigate the 
effect of the plate length L on the critical velocity UC. In Figure 
6(b), 1 / μ is adopted to clearly show the critical velocities 
corresponding to small μ . 

The theoretical and experimental flutter boundaries are in 
good qualitative and quantitative agreement with other 
predicted values. For short plates, i.e., μ < 1.2, the dependence 
of the critical velocity UC on the plate length L is strong; for 
long plates, i.e., μ > 1.5, the dependence of the critical velocity 
on UC on the plate length L is weak. When the plate length L is 
long enough, the critical velocity UC converges to a nearly 
constant value; in the range 1.2 < μ < 1.5, the critical velocity 
UC jumps up and down as L increases, which is caused by the 
transition of flutter mode in this range [30]. 

It is very noticeable that the experimental data is closest to 
Huang’s theoretical predictions [11]. The main differences in 
Huang’s model relative to present model are: (i) in Huang’s 
theoretical method, an analytical model using Theodorsen’s 
theory combined with a linear beam model is developed to 
predict the critical flow velocity, while in the present theoretical 
method a nonlinear equation of motion of the plate coupled 
with an unsteady lumped vortex model for the aerodynamics is 
used to predict the critical flow velocity; (ii) in Huang’s theory, 
the effect of viscosity is embedded in the Kutta-Zhukovskii 
condition, while in the present theoretical study the effect of 
viscosity is incorporated in the drag FD as a surface viscous 
force; (iii) in Huang’s theory, the effect of the rigid upstream 
segment is not considered, while in the present theory the rigid 
upstream segment is included in the model. For a short rigid 
upstream segment l0, the influence of l0 on the critical flow 
velocity is significant [22]; (iv) in Huang’s theory, the 
structural damping is neglected for the sake of producing a safe 
flutter boundary, while in the present theory the material 
damping is considered. When taking into account the material 
damping, the system becomes more stable. 
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Figure 6. The flutter boundary of cantilevered flexible plates 

in axial flow, (a) μ vs. URC / μ, (b) 1/μ vs. URC / μ. 
 
 
5. CONCLUDING REMARKS 

In this paper, the dynamics of cantilevered flexible plates 
in axial flow is investigated theoretically and experimentally.  

In the experiment, as the flow velocity increases from 
naught, the cantilevered plates lose stability by a Hopf 
bifurcation. When the flow velocity exceeds the critical 
velocity, symmetric limit cycle oscillations occur, succeeded by 
a not so obvious period-doubling and then chaotic oscillations. 

The hysteresis phenomenon is obvious for low aspect ratio 
plates; however, it is totally absent for large aspect ratio plates. 
Furthermore, in the hysteresis loop, the stable plate subjected to 

a small external disturbance will flutter with the same 
amplitude limit cycle oscillation as self-excited oscillation at 
the same flow velocity. The hysteresis phenomenon is 
considered to be due to the three-dimensional bending of the 
plates. 

The dependence of the critical velocity on the plate length 
is strong for short plates, while the dependence is weak for 
long plates. The critical velocity converges to nearly a constant 
value when the plate length is sufficiently long. The critical 
velocity has a transition in a specific range of plate length. The 
current theory and experiments achieve good qualitative and 
quantitative agreement with other theories. 
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