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ABSTRACT 
Drastic changes occur in the dynamics of pipes conveying 

fluid when passing from the discharging flow case to the 

aspirating flow case. This can be attributed to modifications in 

the flow conditions which prevail at the aspirating tube inlet 

versus those prevailing at a discharging tube outlet. In the 

present paper the point is investigated in relation with the 

behavior of two elementary systems, namely a single degree of 

freedom system (1-DOF oscillator) made of a rigid pipe 

supported at one end by a rotational spring and a two degrees of 

freedom system (2-DOF coupled oscillators) made of a pair of 

articulated tubes. In the first system, flow-structure coupling 

reduces essentially to a Coriolis force while in the second, it 

arises via both centrifugal and Coriolis forces. The present 

paper is devoted to theoretical modeling and prediction of the 

dynamical behavior of these systems according to a few basic 

assumptions concerning the flow conditions at the aspirating 

inlet. It serves as an introduction to the companion paper by 

Debut et al. [1] where theoretical predictions are confronted to 

experiment. As a major result it is found that even “small 

changes” in the flow conditions at the aspirating inlet can lead 

to important changes in the tube dynamics which are amenable 

to measurement, even if the experiments are restricted to 

relatively low flow velocities because of limited capacity of the 

test loop.  

 

1 INTRODUCTION 
Since about two decades it was recognized that the 

dynamics of cantilevered pipes conveying fluid drastically 

differs depending whether the fluid discharges freely into the 

atmosphere, or equivalently into a large volume of liquid, at the 

free end of the pipe, or in the opposite case it is aspirated from 

it, see Hsu [2], Païdoussis [3-7] Kuiper & Metrikine [8-10], 

Giacobbi et al.[11,12]. Briefly summarized, in discharging flow, 

linear instability of the pipe via 1-DOF flutter is observed 

beyond a certain critical value of mean flow velocity. Moreover, 

the critical value at which flutter is initiated may be 

satisfactorily predicted based on a flow-structure coupling 

mechanism which is linear in nature and entirely governed by 

the unsteady inertia force of the conveyed fluid, see in 

particular the comprehensive book by M.P. Païdoussis [3] 

which reviews exhaustively the research work devoted to the 

subject up to the nineties. In contrast, according to the 

experiments performed independently by Kuiper et al. at TNO 

Delft, and by Païdoussis and co-workers at McGill Montreal, in 

aspirating flow, the linear flutter instability has not been 

identified even if large vibrations can still be observed provided 

the flow velocity is high enough. According to these authors, 

they correspond to rather complicated and irregular sequences 

of large amplitude orbital oscillations interrupted by quasi-

chaotic motions of less amplitude which are likely related to 

some flow nonlinearity. Keeping to the linear domain, a major 

part of the difference observed was attributed to a drastic 

change between the flow conditions which prevail at the free 

outlet of a discharging tube and those which prevail at the free 

inlet of an aspirating tube. In this respect, a linear model 

including several variants has been proposed in refs [4,5] and 

[8], which comprises a depressurization effect related to the 

singular pressure drop at the tube intake and an unsteady force 

related to an abrupt change in flow momentum at the tube 

aspirating end.  

As crude representations of reality this type of one 

dimensional and linear models of aspirating flow at the tube 

intake may be, they however have the virtue of bringing out 

major effects which can be reasonably expected to hold, at 

sufficiently low aspirating flow velocity, at least. Moreover their 

imprint on the dynamical behavior of the pipe is amenable to 

experimental diagnosis as further demonstrated in this paper 

and in a companion paper by Debut et al. [1]. Our approach 
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consists in analyzing the modal properties of two articulated 

pipe systems, especially selected for their theoretical simplicity 

and practical feasibility, first in discharging flow and then in 

aspirating flow, to infer the flow-coupling forces acting on the 

system. As a first part, described here, a few distinct flow 

conditions are assumed at the free aspirating pipe inlet, and the 

consequences on the response properties of the pipes are 

investigated by theory. This work served as a guideline to 

conduct pertinent validation experiments and stands here as an 

introduction to the companion paper [1], which is devoted to 

the experimental part of the present investigation.  

 

2 FLEXIBLE PIPES CONVEYING FLUID 
2.1 Equation of motion and energy balance 

For mathematical and experimental convenience the 

present work deals with articulated and rigid pipe elements, the 

case of flexible pipes is however briefly reviewed first in order 

to set the points treated here into a more general context where 

the pipes behave as slender flexed beams. The motion of the 

pipe is described using the Euler-Bernoulli equation loaded by 

the coupling force induced by the conveyed fluid: 
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 ;Z x t  denotes the lateral displacement field. EI is the flexural 

rigidity of the pipe, sC  is the viscous damping coefficient used 

to account for dissipation in still fluid and s s sm S  means 

solid mass per unit pipe length.  T x  stands either for an axial 

prestress, due to gravity for instance, or for an axial follower 

force. Finally, ( ; )f x tW  is the net force per unit pipe length 

exerted in the direction of the lateral motion of the pipe wall by 

the internal flowing fluid. It comprises a few distinct 

components related to fluid inertia, pressure and viscous 

stresses. It turns out however that if the pressure field is entirely 

controlled by viscous losses (no pressurization), the resulting 

pressure force is exactly cancelled by the viscous stresses in 

such a manner that ( ; )f x tW  reduces to the inertia component. 

According to the plug-flow model which assumes a uniform 

steady flow velocity, it may be written as 
22
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D/Dt denotes the material time derivative and  ; )V x t is the 

Eulerian flow velocity field, which stands for an unsteady entity 

since the flow is perturbed by the motion of the tube. V  

denotes the mean flow velocity as averaged over the cross-

sectional area of the tube. The mass of conveyed fluid per unit 

tube length is f f fm S . The unit vector k indicates the 

direction of the lateral vibration. If the tube is pressurized by a 

uniform pressure pP  counted from the external ambient 

pressure, the force becomes: 
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where  means the unit vector in the axial direction of the 

deflected tube. It is recalled that the first term in fW  which is 

independent of V  means the added mass force also present in 

still fluid, while the term proportional to V  stands for a flow-

induced Coriolis force, and the term proportional to 2V  means 

a flow-induced centrifugal force. Finally, the pressurization 

term is similar to the centrifugal force. Conservative or 

nonconservative nature of these forces depends on the support 

conditions at the pipe ends as can be conveniently discussed 

starting from the work done by the flow-structure coupling 

force on the whole tube of length L  over a given time T . 

Using a few standard manipulations it is written as 
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The last term in the above formula accounts for the work 

induced by the small change in the actual tube length induced 

by the lateral displacement. This change of length corresponds 

to the axial displacement: 
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                 (5) 

Considering first the contribution of the time integral 

solely, if    0 0Z Z L  , no work is performed, neither by 

the Coriolis nor by the centrifugal force. As a consequence, 

periodic or damped vibration is expected depending on whether 

damping in still fluid is discarded, or not. Then, in the case of 

periodic motion, the contribution of the contraction term is nil, 

while in the damped case, it is negative since LX decreases in 

magnitude with time proportionally to  exp 2 t  where 

 denotes the natural angular frequency of the vibration and 
 

the reduced damping. Nevertheless, in agreement with Done & 

Simpson [13], net energy can still be fed into the vibrating tube, 

even if lateral motion is prevented at both ends, provided the 

axial motion is not; which explains the post-divergence 

mechanism of coupled mode flutter discovered by Païdoussis & 

Issid [14]. The necessary work is related to the axial contraction 

of the pipe. This is the very reason why in the energy balance 

the last term is not dropped in contrast with the form broadly 

assumed in the open literature.  

Finally, as soon as    0Z Z L  energy can be exchanged 

between the solid and the fluid due to the work of all terms in 
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the energy balance (5). Depending on its sign, the internal flow 

is found to damp out the vibration of the pipe or at the opposite 

to destabilize it via dynamic instability, commonly called 

„flutter‟ for historical reasons related to the aeronautical 

industry, see Bisplinghoff et al. [15]. 

 

2.2 Flow conditions at the free tube end 

The real flow conditions at a discharging pipe outlet largely 

differ from those which hold at an aspirating pipe inlet, in such 

a manner that more conditions than a sign change in mean flow 

velocity must be fulfilled to describe the mean flow properties 

when shifting from one operating mode to the other. A first 

mechanism to be considered is related to the steady pressure 

drop taking place at the end of the tube, which may be 

described using the concepts of pipe hydraulics. Accordingly, 

the steady pressure drop is assumed to be governed by the 

dissipative and steady version of Bernoulli‟s equation which 

reads as: 
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where lossP  means the pressure drop between two cross-

sections, labelled (1) and (2) respectively. The overbar indicates 

that the dynamical pressure is averaged over the cross-sectional 

area. The corresponding mean flow velocity is again denoted by 

V  for the sake of conciseness and 2 2 2

1 2V V V   is assumed to 

hold in agreement with the plug flow model.  Finally, lossK  is 

the dimensionless coefficient of pressure loss. It is also worth 

recalling that equation (6) may be interpreted as an energy 

balance since it can be derived by integrating the energy 

equation between two cross-sections, under a few restrictive 

assumptions at least, see for instance Blevins [16]. As a well 

known result, if the flow discharges freely from the tube into the 

atmosphere it can be shown that  
2
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      (7) 

This remarkable result means that the kinetic energy of the 

conveyed flow is entirely and irreversibly lost by the outflowing 

jet and no pressure drop takes place at the exit section, implying 

that static pressure inside the tube is equal to the ambient 

pressure outside the tube. Hence, the boundary conditions 

which hold at the outlet section, if considered as a part of the 

tube flow, are as follows: 

out out, .aP P V V 
        (8) 

According to conditions (8), the outflow from a pipe exit is 

shaped as a cylindrical jet at ambient pressure aP  and with the 

same velocity as in the discharging tube. In reality, downstream 

of the tube outlet, the jet is destroyed over a characteristic 

length cL  due to viscous friction. In contrast, if the outlet is 

considered as a part of the external fluid, which is at rest, the 

appropriate boundary conditions become: 

out out, 0,aP P V 
      (9) 

meaning that the condition is applied in fact at the distance cL  

from the tube outlet. In both cases, it is not needed to specify 

the actual value of cL  and the latter may be assumed arbitrarily 

small.  

The streamlines corresponding to the inflow into a pipe 

entrance markedly differ from those which hold at a pipe exit. 

They are typically converging from all directions available 

outside the tube entrance, as sketched in Figure 1. Furthermore, 

flow conditions highly depend on the detailed geometry of the 

inlet and so does the inlet loss coefficient inK , as also indicated 

in Fig. 1 for three contrasting cases, namely the thin wall tube 

with unbaffled inlet, tube flush with a wall at right angle and 

finally the gently rounded wall entrance. Depending on the 

cases, the loss coefficient changes by one to two orders of 

magnitude, see Blevins [16], Idel‟cik [17]. To drive a given 

mean flow velocity V into the tube, the static pressure to be 

prescribed at the exit of the aspirating tube is found to be: 
2

out in 1 .
2
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The coefficient fL / D  accounts for the pressure drop due to 

fluid friction at the wall of the pipe of length L  and hydraulic 

diameter D  (cf. Darcy-Weissbach law, see refs. [16] or [17]).  

 

 

Figure 1. Pressure drop at a tube inlet 

 

The conditions at the external side of the tube inlet deserve 

a special comment since they are less intuitive than in the outlet 

case. The conditions found to be consistent with the concept of 

pressure loss and with experimental data read 

in in, 0,aP P V 
          (11) 

where the inlet is considered as a part of the external fluid at a 

distance cL'  of the tube inlet, which again may be assumed to 

be arbitrarily small, in analogy with the discharging outlet case. 

If the inlet is considered as a part of the internal fluid, the 

conditions (11) are replaced by the following ones: 
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      (12) 

Application of these basic concepts, whose validity is 

firmly established in the steady case of motionless tubes, to the 

deceptively „simple‟ riddle asked by Richard Feynman as a 

physics student at Princeton circa 1940 about the rotating lawn 

sprinkler (see Feynmann [18] Forrester [19], Wheeler [20], 

Païdoussis [3]) leads to the answer that in aspirating flow the 

sprinkler is expected to remain at rest. The driving torque is 

determined using the control volume method. As sketched in 

Fig. 2, the control volume is defined as an arm of the sprinkler 

delimited by the cross-sections at the rotation axis of the device 

and at the discharging or aspirating pipe end. As a well known 

result, the net force exerted by the flowing fluid on the arm at 

rest  0 , u i    is: 

 
in

2

out
,f fF P V S  
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where aP P P 
 
is the pressure counted above the external 

ambient pressure and V is the mean flow velocity, both 

quantities referring to the internal fluid, that is within the 

control volume. 

 

 

Figure 2.  Sprinkler arm considered as the control volume. 

Here ,i j designate the unit vectors of the non rotating frame 

of reference, while 1,u u  are those of the co-rotating frame 

 

The driving torque exerted on the arm at rest follows 

immediately as 

  .jR i F RF k  W W WM
        (14) 

Considering the discharging case, out 0 0cos sini j    and 

in u i   , whence 
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The result is arrived at as a direct application of conditions (8). 

It may also be noted that it would be the same in a frictionless 

plug flow: 0 00;P V V  . In the aspirating case, out i   and 

in 0 0cos sini j    , whence 
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Substituting the appropriate value in 1K   for the pressure loss 

coefficient into (16) the torque is thus found to be nil, a value 

which clearly differs from that which would be obtained using 

the frictionless plug flow model, where no distinction can be 

made between the discharging and the aspirating cases. 

Moreover, it can also be argued that even if the geometry of the 

tube intake is modified with respect to the unbaffled case, the 

above result remains valid, since the change in the flow induced 

force at the tube wall is expected to be exactly balanced by the 

force exerted at the tube intake. As a typical example amenable 

to short calculation, we may consider an intake device shaped 

as an abrupt change in cross sectional area, see Fig. 3. Denoting 

by 2P  the pressure and 2V  the velocity at the elbow, the force 

exerted on the elbow in the 1  direction is 

   2 2
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while the force exerted on the intake component reads as 
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2 2
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Hence, the net force exerted on the whole pipe reads 

   2

elbow compo 1 1 1 1. .fF F V P S           (19) 

 

 

Figure 3. Elbow terminated by an abrupt change of section 

 

The intermediate result (19) clearly indicates that the net force 

does not depend on the actual value of the pressure loss 

coefficient of the intake component set at the inlet of the elbow. 

This is precisely because the force exerted on the component 

cancels out exactly that at the inlet of the elbow. Furthermore, 

the net force is precisely zero, since 
2

1 1fP V   in agreement 

with condition (12), where again in 1K  .  

Actually, theoretical justification of such behavior and even 

validity of it based on experiment gave rise to a rather abundant 
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and controversial literature, see in particular Weyland & 

Patterson, [21], Forrester [19], Hsu [2] Berg et al. [22], Collier 

[23], Païdoussis, [3,7], Païdoussis & Tétreault-Friend, [24]. 

This motivated us to repeat the experiment. The device devised 

and built by J. Antunes is shown in Figure 4. Possibility was 

provided to set nozzles of different geometries with the 

objective to check whether the behavior of the inverse sprinkler 

depends, or not, on the pressure drop at the aspirating intake. To 

avoid the risk of flooding the lab, due to excessive 

pressurization in an attempt to make the aspirating device 

rotate, experiments were carried out using air instead of water. 

As in the similar experiment conducted by Païdoussis & 

Tétreault-Friend [24], great care has been provided to minimize 

friction at the bearing supporting the sprinkler arms. In our 

experiment in the aspirating case, the sprinkler was invariably 

found to remain at rest, in contrast with the McGill experiment 

where rotation or oscillations of the sprinkler were initiated 

above a minimum air-flow. The likely reason for having missed 

such exciting behavior is the limited range of flow velocity 

available in our experimental set-up, where a domestic air 

cleaner was used to drive the flow. Even if validity of flow 

conditions (11), or (12) equivalently, is limited to a range of low 

flow velocities, it is nevertheless of interest to investigate their 

effect on the dynamics of a vibrating pipe. 

 

 

Figure 4. Sprinkler experimental model 

 

As suggested first by Pramila [25] and further elaborated in 

Païdoussis [4,5] and Kuiper & Metrikine [8], a second type of 

flow-condition to be considered is the change of flow 

momentum at the tube intake and the related unsteady force 

exerted on it. Within the vibrating pipe, the velocity is the same 

either in the aspirating mode or in the discharging mode: 

.L L
L

Z Z
V Vi V k

t x
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where V is taken positive for discharging flow and negative for 

aspirating flow and  ,LZ Z L t . 

In contrast to the discharging case, the mean velocity of the 

aspirated flow outside the tube, denoted outV , is likely to differ 

from LV . The net force LF  related to the momentum change 

reads 

 in out
,L

d P P
F

dt


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         (21) 

where inP  means the fluid momentum within the tube and outP  

that outside the tube. The minus sign means that we consider 

here the force exerted by the flowing fluid on the tube. These 

quantities are calculated referring to the amount of fluid 

conveyed during a small interval of time 0t t , a procedure 

devised in Benjamin [26] to derive the Lagrange equations of 

the coupled system in a natural and elegant way. So the inlet 

values of the fluid momentum inside and outside of the tube, 

respectively, are expressed as 
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Since the time interval can be made arbitrarily small, the time 

differentiation in (22) is followed by the limiting process 

0t t  to get rid of the secular term. Accordingly, the inlet 

force follows as 

out .L L
L f

Z Z
F m V Vi V k V

t x
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Of course, the actual value of LF  depends critically on that of 

outV . To the author‟s knowledge at least, there is no theoretical 

solution to the problem, while to be reliable CFD solutions 

ought to be checked by comparison with other methods. 

Therefore, an experimental approach is clearly needed where 

the aim is to infer LF  from the dynamical response of the pipe. 

Experimental procedures and results obtained so far make the 

object of a companion paper by Debut et al. [1]. Here, the 

dynamical response of two elementary pipe systems, as 

predicted by linear theory, is discussed in relation with a few 

more or less plausible assumptions concerning the unknown 

field outV . As a first working hypothesis, outV  is written as 

out ,
Z Z

V V i k k
x t

  
  

   
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         (24)

 

where , ,    are treated as free parameters to be determined. 

The assumptions concerning outV  contemplated in Païdoussis et 

al. [4] or Kuiper & Metrikine [8] follow as particular cases. For 

instance, the choice 1      corresponds to the less 

plausible case of a fully matched aspirating flow out inV V  
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where LF  vanishes to zero. As suggested in Païdoussis et al. [4] 

the set 1, 0      may stand for a more plausible 

assumption of partial flow adaptation, where outV  is parallel to 

the deflected pipe axis, while it does not adapt to the lateral 

translation of the tube, in such a manner that the inlet force 

becomes  

.L
L f

Z
F m V k

t


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            (25)
 

Finally, if the outside flow fully ignores the fluctuations related 

to the motion of the pipe intake while 1  , the inlet force 

reads: 
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More generally, the force predicted by this kind of model is of 

the type 
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Consequences of these variants of the same basic aspirating 

flow model are investigated in the next section considering two 

mechanical systems especially selected for their simplicity and 

feasibility as experimental devices. Being aware of the 

difficulties in performing reliable and easy to interpret 

experiments using flexible and submerged aspirating tubes, the 

choice was made to go back to the articulated rigid pipe 

elements investigated first in Benjamin [26,27]. Pertinence of 

such a choice lies in the fact that the present work is entirely 

focused on the flow conditions at the pipe entrance (or outlet in 

the case of discharging flow) which can be reasonably assumed 

to hold independently of the tube flexibility. Furthermore, 

articulated chains of rigid pipes are also selected for their 

conceptual and experimental convenience in providing 

discretized models of flexible pipes of the lumped type which 

have the advantage of being physically feasible in contrast with 

those stemming from modal expansion or finite element models. 

 

3 DYNAMICS OF ARTICULATED PIPE SYSTEMS 
3.1 Single pipe element supported by a rotational spring 

The simplest possible system to deal with is shown in Fig. 5. 

It consists of a straight and uniform tube element of length L 

conveying an incompressible fluid. In the discharging case, tube 

entrance is supported by an elastic articulation and the other end 

is free. We are interested in the dynamics of the system when 

restricted to motions of small amplitude taking place in the 

plane of the figure. The latter is assumed to be horizontal or 

vertical, according to gravity being discarded or not. This 1-

DOF system is described by using the angular variable  . 

Derivation of the equation of motion in flowing fluid is 

straightforward. The flow-structure coupling force (3) reduces 

to the Coriolis component and the modal equation in the 

vertical layout reads 

 
2

2

0 .
2 3

e e

a L

gM L M L
K i C M V L Li F   

   
       

      

                         (28) 

K  is the rotational stiffness coefficient of the articulation and 

g  is the acceleration of gravity. Dissipation due to friction at 

the articulation is modelled as an equivalent viscous torque of 

damping coefficient C . 
sM  designates the mass of the tube 

and 
aM  is the fluid added mass for a lateral motion, equal here 

to the physical mass fM  of the fluid contained in the pipe 

element. Finally, e s fM M M   is the equivalent mass of the 

pipe filled with fluid. 

 

  
Figure 5. Rigid tube provided with an elastic articulation at 

one end 

Equation (28) is suitably recast in dimensionless form as 

    2

0

3
1 2 1 ,

2

a R

L

V
i


    

 
      
 
 

M

            (29) 

where the reduced quantities are defined as follows: 
2

0

2

0

, , ,
3 2

3 .
, .

e e a

a

s a

a L

R L

e

M L M gL M

K K M M

V K LF k
V

L M L






   







   


 M       (30)

 

In discharging flow 0LF   while the Coriolis term is 

dissipative in nature. Hence, the reduced damping  RV
 
is 

expected to increase linearly with the reduced flow velocity RV , 

while the natural frequency is expected to decrease according to 

the parabolic law  21 Rf V   , vanishing to zero when 

damping becomes critical   1RDV  . In the range R RDV V
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the oscillator is overdamped. In aspirating flow, both the 

stiffness and the damping operators of the oscillator equation 

may become dependent on RV  which is negative: 

   

 

2

0

1 1 ,

2 1 3 .

R R

R a R

K V V

C V V

 

   

   

  
           (31) 

Accordingly, response of the oscillator is expected to be 

insensitive to the aspirating flow, if and only if 1   and 

0  . Otherwise, divergence or flutter may be expected to 

occur, depending on the values of the oscillator parameters in 

still fluid and those of the aspirating flow. Furthermore, even if 

the experiment is not conducted up to the critical flow velocity 

for instability to occur it may be reasonably expected that the 

changes in the oscillator stiffness and damping coefficients are 

amenable to quantitative measurement as RV  is increased, 

while validity of the procedure can be conveniently checked by 

performing tests in discharging flow. 

 

3.2 Articulated pair of rigid pipe elements  

Once the values of the aspirating flow parameters   and   

have been elucidated, the depressurization conditions (11) or 

(12)  may be investigated by considering articulated chains of 

rigid pipe elements where curvature of a fully flexible pipe is 

discretized as abrupt changes in flow direction at the junction 

between two adjacent tube elements. This enables us to account 

for the flow-induced centrifugal and pressurization forces which 

are missing in the 1-DOF system considered just above. The 

system considered here is the hanging pair of tubes sketched in 

Fig. 6. 

 

 
 

Figure 6. Pendular system of two articulated rigid tubes 
vibrating about the stable static equilibrium  

The system set free at the bottom end is governed by the 

modal equation, written in matrix form as: 

       

   
 

2

2

,

,

,

.

e L

e g a p V

s a V

e s a

K V i C V M q Q

K V K K m V P K

C V C m V C

M M M

             

               

          

           

                      (32)
 

In eq. (32) the generalized displacement vector is defined as 

   1 2

T
q   , where 1  and 2  are the small angles of the 

tube elements to the vertical.  eK  means the stiffness matrix 

which accounts for the elasticity of the articulations, while 

gK 
   is the prestress matrix related to gravity.  sM  means 

the mass matrix of the solid part of the system, while  aM  is 

the added mass matrix related to the internal fluid. All these 

matrices are symmetrical positive definite as suitable for 

conservative operators. They are written as: 

 

 

2

1

2

2 2

1

2 3

1

1 1
,

1 1

1 2 0
,

02

1 3 1.5
,

3 1.5

,

e

e
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e
s a

e s f s f

K K

M gL
K

M L
M M

M M M m m L







 

 

  
    

 

 
     

 

   
             

  

   

              (33) 

with the following reduced quantities: 

2 1 2
0 3

1 2 01

3
; ; ; .

e

L K K

L K m L


   


   

       (34) 

The centrifugal matrix VK    and the Coriolis matrix VC    

are 

2 2

1

2

1 2

1 1

0 0

1 2

0

f V f

f V f

m V K m V L

m V C m VL




 
    

 

 
    

 

          (35) 

Both of them are nonsymmetrical indicating that they govern 

nonconservative effects, as must be expected.  

Finally, small dissipation taking place at the articulations 

can be described by a viscous damping matrix of the type 

  2

1 1

1 1
s

c
C C

  
  

                   (36) 

where 1 2/c C C  is the ratio of the damping coefficient 

associated with the first articulation over that associated with 

the second articulation. However, to conduct tests in aspirating 

flow it is necessary to submerge the lower tube element, partly 

at least, in the water of the feeding tank from which fluid is 
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sucked. Dissipation due to friction in the external fluid is likely 

to be non-negligible. It may be accounted for by a viscous 

damping matrix of the type: 
2 2

2 2 3 3

2

2 3

f fC C

 
 

   

 
 

       
 
 

        (37)

 

The ratio 1/H L   means the non submerged length of the 

lower tube over the length of the first tube. It is a fact of 

common experience that neither solid damping nor fluid 

induced damping is amenable to modeling. Therefore the 

current practice is to adjust heuristically the coefficients 1 2,C C  

and fC  to the proper values using experimental data in air and 

in still water.  

Substantial dissipation could also be expected at the free 

level due to excitation of water waves, a priori at least. As 

detailed in Axisa & Antunes [29], analytical formulation of 

damping induced by radiation of water waves is not an easy 

task. However, in the case the free surface is bounded by the 

wall of the water tank, radiated energy is in fact reflected back 

to the vibrating structure, a substantial part of it at least. 

Moreover, as indicated in the companion paper, water waves 

can be efficiently prevented to occur in the experimental device 

by providing the free level with a rigid plate. Then, for all of 

these reasons, no attempt was made in the present study to 

include radiation damping into the theoretical analysis. 

In discharging flow the generalized force vector  LQ  is 

nil. Solving the complex modal equation (32) is nowadays 

standard routine using commercially available software. Here 

we use MATLAB. Matrix equation (32) is first recast in 

dimensionless form as  

         

   
 

 

2

2

2
0 1 0

0 ,

2
,

2

2
; ; .

a u

p

e g u

paa
a p

e f

u i u c

u
u

PVm
u

m L V

     


    


 

 

      


       

  

            (38) 

The most salient features of the dynamical behavior 

predicted by linear theory are summarized in the stability plots 

of Fig.7, which refer to the idealized case where damping in 

still fluid is discarded. Provided gravity is sufficiently high, 

stability is lost either via flutter of the so-called “phase- 

opposition mode”  1 2 0   or by divergence of the so-called 

“in-phase mode”  1 2 0   , depending on whether a  is 

smaller or larger than a transition value which is a decreasing 

function of  . On the stability lines, transition from flutter to 

divergence is marked by a singular point with a finite tangential 

discontinuity. The tangent is horizontal at the line portion 

related to divergence while it is tilted at the line portion related 

to flutter. Moreover, if   is sufficiently large, the slope of the 

tilted tangent is negative. Accordingly, if flow velocity is 

progressively increased in that part of the stability line, the 

system is found to lose stability via flutter, then to be 

restabilized in a narrow range of flow velocity at least and 

destabilized eventually via divergence. 

 

 
Figure 7. Stability maps for the articulated pair of rigid tube 

elements versus the added-mass ratio (dashed line: flutter, full 

line: divergence) 1, 0p    

Turning now to the case of aspirating flow,  LQ  is derived 

using the virtual work of the end force: 

    . .
T

L L L Lq Q Z F   W                          (39) 

The virtual displacement is found to be: 

   1 1 2 2 1 1 1 2 2 2 ,LZ L L k L L i                

(40) 

where the axial component stems from the axial displacement 

(5). Substituting (40) and (27) into (39) and collecting the 

coefficients of the generalized displacements 1 , 2  gives 

 LQ  as the sum of a centrifugal component and a Coriolis 

component: 

 

 

1
1

2

12
1 2

2

1 1
,

0

1
1 .

f

f

m V VL

i m V L

  

   

 
 

 

    
      

   
    

  

               (41) 

The net flow-structure coupling force acting on the system 

in aspirating flow follows by substituting (41) into the left hand-

side of the modal equation (38). Of course, it also comprises 

centrifugal and Coriolis operators expressed in dimensionless 

form as  



 9 Copyright © 2010 by ASME 

 

 

 

2

2

2 1 11 1
,

00 02

1
.

1

p
u

i u

  

  

  


  

         
          

    
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          (42) 

A priori, the relevant value of the pressurization coefficient 

is 2p   , in such a manner that the first term in the 

centrifugal component is nil, in full agreement with the 

observation that the sprinkler remains at rest in aspirating flow, 

provided flow velocity is sufficiently low, at least, cf. 

Païdoussis & Tétreault-Friend [24]. Nevertheless, departure 

from this steady value is also plausible as resulting from a 

possible unsteady component of the pressure drop related to the 

tube motion, or/and resulting from the follower axial force 

induced by suction of the external fluid at the aspirating 

entrance, as suggested in Païdoussis et al. [4]. The second term 

of the centrifugal matrix and the Coriolis matrix depend on the 

outside flow direction at the intake. As a particularly interesting 

case, the partially matched flow 1, 0      is found to be 

gyroscopically conservative since the flow-structure coupling 

operator reduces to a skew-symmetrical Coriolis matrix. If the 

outside flow fully ignores the fluctuations related to the motion 

of the pipe inlet  1, 0      the system is prone to 

flutter instability as the Coriolis matrix leads again to 

gyroscopic coupling while the centrifugal component acts as a 

follower force.  

Tube dynamics is further described below using a typical 

example selected for its feasibility as an experimental set-up. 

Two identical steel tube elements of length 40 cmL  , external 

radius 1cmeR  , thickness 2 mmh  , are articulated using an 

anisotropic spring system to restrict motion within a single 

vertical plane. The related spring coefficient is so soft that the 

gravity parameter is fairly high, 1  . The conveyed fluid is 

water, implying an added mass ratio 0.19a . The lower tube 

element is assumed to be fully submerged into the feeding tank 

( 0  ). The mode shapes and related natural frequencies in 

still fluid are shown in Fig. 8. 

 

Figure 8. Real mode shapes and natural frequencies in still 

fluid:  = 0.19,  = 1,  = 1, 0, = 0a p      

Reduced damping induced by solid friction at the 

articulations is found to be much less in the in-phase mode than 

in the phase-opposition mode, while the opposite occurs as the 

damping induced by external fluid friction is concerned. For the 

present purpose, the value of the reduced damping in still fluid 

may be set to a unique value of a few percent in both modes.  

The computations presented here were carried out by assuming 

the damping matrix     0.02 5s fC C C     , which leads to  

 0 2%u  . Fig. 9 refers to the discharging flow case.  It 

displays the real frequency  R   and the damping   plots of 

the system versus the mean flow velocity in dimensionless form, 

using the scaling factors defined in eqs. (34), (38).  

 

 
Figure 9. Frequency and damping plots vs flow velocity in 

discharging flow:  = 0.19,  = 1,  = 1, 0, = 0a p      

Frequency of the in-phase mode vanishes to zero at about 

1.42u , where overdamping occurs up to 1.75u . Then, in 

the interval 1.75 2.3u  , damping  assumes large, though 

undercritical, values and finally in the range 2.3u  , the in-

phase mode is overdamped again. Turning to the phase-

opposition mode, frequency is also decreasing as mean flow 

velocity increases. Threshold for divergence occurs at 

1.75Cdu , that is essentially the same flow velocity at which 

the in-phase mode leaves the first overdamped domain. More 

important, damping is increasing first to a maximum value of 

about 18%  at 1.15u  and then is found to decrease down to 

the divergence critical value of 1 . Flutter is expected to occur 

above the threshold value 1.42Cfu , which corresponds also 

to the threshold velocity at which the in-phase mode becomes 

overdamped for the first time. In physical units, flutter 

instability is expected in the phase-opposition mode at 

8m/sCfV . To lose stability via divergence the springs ought 
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to be four times softer than the value assumed here, in such a 

manner that  would be equal to 2 instead of 1, see Fig 7. 

Fig. 10 to 13 refer to aspirating flow cases, as indicated by 

the negative values of u  in the frequency and damping plots, 

where distinct assumptions are made concerning the external 

flow velocity outV . Partially adapted flow model is considered 

first where mean flow velocity is the same just inside and 

outside the tube intake except the lateral component ( 0  ). 

As V  is increased due to flow-induced gyroscopic coupling, 

the natural frequency of the phase-opposition mode is found to 

increase, while that of the in-phase mode is found to decrease. 

Damping of both modes is found to decrease with V . 

Nevertheless, no linear instability of any kind is expected to 

occur even if V  is assumed to tend to infinity.  

 

 
Figure 10. Frequency and damping plots in aspirating flow:      

Partially adapted flow model 1, 0      

Fig. 11 refers to the case where some mismatch is also 

assumed to occur in the axial flow component. Restricting 

discussion to the limited range of flow-velocity less than 

2.5u  , that is about 14 m/s, the most conspicuous difference 

with respect to the former case resides in the fact that frequency 

of both modes increases with V , as a consequence of the 

tensioning effect of the flow-induced centrifugal matrix (42) 

which reduces here to an axial tensioning matrix, conservative 

and positive definite. Another point worth to be noted is that 

damping of the in-phase mode decreases faster with u  than 

that of the phase-opposition mode. Nevertheless damping of 

both modes is found to remain positive at any u  and no 

instability may be induced by changing the value of the intake 

flow parameter  , that is the vertical component of the flow 

velocity.  

 

 

 
Figure 11. Frequency and damping plots in aspirating flow:     

Partially adapted flow model 0.8 , 1, 0      

In the case depicted in Fig. 12 the outside flow is allowed 

to have a component in phase with the velocity of the vibrating 

intake. Even if the magnitude of this component is small, 

0.025   in the present example, drastic changes in the tube 

dynamics are expected to occur since the Coriolis matrix (42) 

becomes non conservative in nature. Actually, dynamic 

instability via flutter of the in-phase mode is expected beyond 

1.9Cfu  , that is about 10 m/s, a value not very far from that 

predicted in discharging flow. Of course by increasing the value 

of   this threshold may be decreased down to very small 

values, while no instability occurs if  assumes negative values. 

Similarly, in Fig. 13 a mismatch is assumed in the unsteady 

tangential flow component  0.9  . As a consequence, the 

centrifugal operator (42) describes a follower force. As could 

be expected, this also leads to drastic changes since the system 

is predicted to lose stability via flutter of the phase-opposition 

mode at 1.83Cfu  while damping of the in-phase mode is 

rapidly increasing up to supercritical values. It is worth noticing 

that if   is assumed larger than unity, flutter is expected in the 

phase opposition mode while damping of the in-phase mode 

increases slightly with flow velocity.  

Finally, it is worth noticing that any departure of the 

pressurization parameter p  from the steady value 2p    

also gives rise to a net follower force in aspirating flow. As 

already mentioned above, physical origin of such a follower 

force could be the suction of fluid at the free-end cross-section 

of the lower tube element and possibly also the presence of an 
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unsteady component of the pressure drop. The destabilizing 

effect of these mechanisms is found to be qualitatively 

equivalent to that arising from the departure of   from the 

perfect matching value 1  . Hopefully, distinction between 

the two cases may be possible since dynamics of the 1-DOF 

system is sensitive to   but not to p . 

 

 
 

 
Figure 12. Frequency and damping plots in aspirating flow:    

Partially adapted flow model 1, 0.025      

 

 

 

Figure 13. Frequency and damping plots in aspirating flow:    

Partially adapted flow model 0.9; 0.      

4 CONCLUSION 
In this paper, the flow conditions at an aspirating pipe inlet 

have been investigated in close relation to their imprint on the 

dynamics of the vibrating pipe; discussion being restricted to 

the linear models already considered in Païdoussis et al. (2005) 

which can be expected to hold at sufficiently low aspirating 

flow velocity, at least. The few distinct variants of the same 

basic model analyzed here are concerned with the mismatch 

between the mean flow properties just outside and just inside 

the tube intake. For that purpose it was found convenient to deal 

with discrete systems of articulated rigid pipes made as simple 

as possible (1-DOF and 2-DOF oscillators) instead of fully 

flexible pipes. As a major result, we arrive at the conclusion that 

even relatively small changes in the flow conditions assumed at 

the aspirating tube inlet are likely to lead to significant changes 

in the tube response. They can be used for experimental 

diagnoses, as further demonstrated in the companion paper by 

Debut et al. [1]. It will be shown that the experimental data 

produced so far at ITN are in fair agreement with the specific 

variant of the entrance flow model where depressurization is 

found to cancel completely the centrifugal force present in 

discharging flow, whatever the value of the pressure drop at the 

intake may be, while the lateral force cancels the Coriolis force 

induced by the conveyed flow. This model implies partial 

matching of the outside flow which is assumed to follow the 

axial direction of the deflected tube end. However the data do 

not preclude possibility for small correction terms, acting on the 

system damping, such as additional unsteady pressure loss or 

suction as suggested by Païdoussis et al. [4]. 
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