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ABSTRACT 
 
A state-space model, based upon computational modeling, is 
used to investigate the hydroelastic stability of a finite flexible 
panel interacting with a uniform flow. A merit of this approach 
is that it allows the fluid-structure system eigenmodes to be 
found readily when structural inhomogeneity is included or a 
source of external excitation is present. The system studied 
herein is two-dimensional although the concepts presented can 
be readily extended to three dimensions. Two problems are 
considered. In the first, we solve the initial-value, boundary-
value, problem to show how the system response evolves from a 
source of localized excitation. This problem is deceptively 
complex and has evidenced some very unusual behaviour as 
demonstrated by theoretical studies based on the assumption of 
an infinitely long flexible panel. Our contribution herein is to 
formulate and illustrate the use of a hybrid of theoretical and 
computational models that includes the effects of finiteness. In 
the second problem we solve the boundary-value problem to 
determine the long-time response and investigate the effects of 
adding localized structural inhomogeneity on the linear 
stability of a flexible panel. It is well known that a simple 
flexible plate first loses its stability to divergence that is 
replaced by modal-coalescence flutter at higher speeds. Our 
contribution is to show how the introduction of localized 
structural inhomogeneity can be used to modify the divergence-
onset and flutter-onset critical flow speeds.  
 

INTRODUCTION 
 
This paper addresses and extends the classical fluid-structure 
interaction (FSI) problem wherein a flexible panel is 
destabilized by the action of a fluid flow parallel to the 
undisturbed panel; see Fig. 1. This FSI system is representative 
of many engineering applications; the interaction of the panels 
comprising the external skin of aircraft or ships with the 
adjacent flow is a common example. The high Reynolds 
number regime typical of these applications makes the neglect 
of viscous effects on the flow a good approximation. 
Accordingly, potential flow is most often assumed as is the case 
in this study. Given the importance and ubiquity of 
applications, this FSI system has generated a rich literature in 
which, most commonly, a Galerkin method is used to predict 
the system response with a particular focus on the parameters 
for which it becomes unstable. Thus, for example, [1-4], show 
that as the flow speed is increased for a given flexible plate, the 
panel first loses its stability to divergence. This buckling type 
of instability occurs because the fluid forces generated by a 
deformation exceed the restorative structural forces of that 
deformation. The fundamental is the critical mode for 
divergence. If the flow speed is increased further, divergence is 
replaced by modal-coalescence flutter that is best characterized 
as a Kelvin-Helmhotz resonance. Using a more versatile 
modeling approach [5], the engineering goal of this paper is to 
show how the introduction of localized structural 
inhomogeneity can be used to postpone the onset of divergence.  
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Clearly, the aforementioned boundary-value studies predict the 
long-time response of the system after transients from some 
form of initial excitation have either been attenuated or 
convected away. The finite-time response can be of equal 
importance in that it links the original source and characteristics 
of an initial deformation to the long-time response through a 
process of response evolution. The ability to model the finite-
time, or receptivity, problem may lead to engineering strategies 
that interrupt or modify this evolution and thereby prevent or 
postpone panel instability. Studies of system response to a 
source of initial or continuing localized excitation have been 
presented. For example, [6] and [7] respectively used initial 
impulse and oscillatory line excitation for the present system, 
while [8] tackled the closely related shell problem with 
oscillatory line excitation. Using a different analytical 
approach, [9] showed that absolute instability – that aligns with 
divergence - could exist in the system if structural damping 
were included. However, these analyses assumed an infinitely 
long flexible panel and focused on the long-time response. 
Nevertheless, they showed that the system could support a 
remarkable range of FSI wave types. Using numerical 
simulation, [10] showed that the effects of finiteness and 
transients led to unstable responses unseen in the analyses of 
infinitely long elastic panels. Thus, the second goal of this 
paper is to extend the hybrid of theoretical and computation 
methods developed in [5] so as to be able to assemble the 
transient response of finite flexible panels in terms of system 
eigenmodes.  
 
The paper is laid out as follows. We first extend the FSI system 
model of [5] to permit the inclusion of impulse line excitation 
and a supporting spring foundation that may be either uniform 
or comprise a discrete spring at some point along the flexible 
plate. We then briefly illustrate how our model is able to model 
transient responses; however, we do not present a 
comprehensive investigation of this problem herein. The major 
results of this paper that follow pertain to the long-time 
response of simple panels. These focus on the effects of 
structural inhomogeneity as a means of postponing the critical 
flow speed at which hydroelastic instability, most particularly 
divergence, sets in.  
 
 
METHODS 
 
Our methods extend the modeling of [5] in which the Laplace 
equation for the perturbation-velocity potential is solved using 
a boundary-element method fully coupled to a finite-difference 
representation of classical thin-plate mechanics. A single 
system equation was derived in terms of the interfacial 
deflection, η(x,t), and its time derivatives which could then be 
cast in time-invariant state-space form and thus permitted the 
extraction of the system eigenmodes. For the present 
investigation of long-time response, we modify the structural 
side of the equation to permit the incorporation of structural 
inhomogeneity.  

For the initial-value problem we extend the governing state-
space equation to include a forcing vector; this can be used to 
model the response to any of an impulse, step function or 
continuous sinusoidal excitation Alternatively, an initial 
condition such as enforced initial surface curvature can be 
applied to which the system responds. The SIMO (single input 
multiple output) state-space model is then used to investigate 
the eigenmodes and transient response of the system. 
 
In Fig. 1, Pe is a pressure disturbance acting at the i-th 
collocation point of the structure surface where x=(i/N)L and L 
is the panel length discretized into N elements. Pe can be 
viewed as a form of external disturbance to the system. In the 
case of an impulse 
 

Ι = ∫𝑃𝑃𝑒𝑒 𝛿𝛿𝛿𝛿 𝑑𝑑𝑑𝑑                                               (1) 
 
where 𝑃𝑃𝑒𝑒  is the magnitude of the pressure pulse, 𝛿𝛿𝛿𝛿 is the 
streamwise extent of the panel on which it acts and the integral 
is taken over the time during which the pulse is applied. 
 

 
 

FIGURE 1. SCHEMATIC OF THE FLUID-STRUCTURE 
SYSTEM STUDIED 

 
The fluid pressure perturbation experienced by the wall is 
found by solving the Laplace equation for the perturbation 
potential. A source-sink singularity boundary-element is used, 
having first discretized the interface into the set of N elements 
(or panels). The strength of the singularities is determined by 
the enforcement of the kinematic (or no-flux) boundary 
condition at the fluid-solid interface. The perturbation potential, 
Φ, can then be written in terms of the interfacial deflection, 
η(x,t). Finally, the linearized unsteady Bernoulli equation is 
used to determine the pressure perturbation along the interface. 
Full details of this method are documented in [5] and [11]. The 
resulting pressure perturbation in the discretized system is then 
given as 
 
−{Δ𝑃𝑃} =  2𝜌𝜌[𝛷𝛷][𝐷𝐷+]{�̈�𝜂} + (2𝜌𝜌𝑈𝑈∞[𝑇𝑇][𝐷𝐷+] + 2𝜌𝜌𝑈𝑈∞[𝛷𝛷][𝐷𝐷1]){�̇�𝜂}

+ 2𝜌𝜌𝑈𝑈∞2[𝑇𝑇][𝐷𝐷1]{𝜂𝜂}                                            (2) 
 
where [Φ] and [T] are matrices of invariant influence 
coefficients that arise from the boundary-element deployed,   
[D+] and [D1] are spatially averaging and differentiation 
matrices, and ρ and U∞ are the density and mean speed of the 
fluid; the over-dot notation on the interfacial variable indicates 
differentiation with respect to time. 

x 

y 

η Interfacial deflection 

Interfacial pressure 
ΔP 

Pe acting at i-point 

Structure 

Potential flow 
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For the structural side of the system, a spring-backed flexible-
plate model is used [12]. Here, the mass times acceleration of 
material points of the wall results from the action of the flexural 
and spring forces generated by the wall deformation, together 
with fluid loading, −{Δ𝑃𝑃}, and the externally applied excitation, 
{𝑃𝑃𝑒𝑒}. Cast in finite-difference form, using the same discretisation 
that defined the panels in the flow solution, the FSI-system 
equation is therefore 
 

𝜌𝜌𝑚𝑚ℎ[𝛪𝛪]{�̈�𝜂} + 𝑑𝑑[𝛪𝛪]{�̇�𝜂} + (𝐵𝐵[𝐷𝐷4] + 𝐾𝐾[𝛪𝛪]){𝜂𝜂} = −{Δ𝑃𝑃} + {𝑃𝑃𝑒𝑒}       (3) 
 
where, 
 

{𝑃𝑃𝑒𝑒} = �

...
𝑝𝑝𝑒𝑒
...

� 

 
and where ρm ,h and B are respectively, the density, thickness 
and flexural rigidity of the flexible plate, K is the coefficient of 
the uniform spring foundation, d is the coefficient of a dashpot 
type of damping in the structure, and [I] and [D4] are 
respectively, the identity and fourth-order spatial differentiation 
matrices.  
 
By substituting the interfacial fluid pressure of Eqn. (2) into 
Eqn. (3), and re-arranging, we obtain 
 

[𝐴𝐴]{�̈�𝜂} + [𝐵𝐵]{�̇�𝜂} + [𝐶𝐶]{𝜂𝜂} = −{𝑃𝑃𝑒𝑒}                             (4) 
 
where 
 [𝐴𝐴] = −𝜌𝜌𝑚𝑚ℎ[𝛪𝛪] + 2𝜌𝜌[𝛷𝛷][𝐷𝐷+] 
 [𝐵𝐵] = −𝑑𝑑[𝛪𝛪] + 2𝜌𝜌𝑈𝑈∞[𝑇𝑇][𝐷𝐷+] + 2𝜌𝜌𝑈𝑈∞[𝛷𝛷][𝐷𝐷1] 
 [𝐶𝐶] = −𝐵𝐵[𝐷𝐷4] −𝐾𝐾[𝛪𝛪] + 2𝜌𝜌𝑈𝑈∞2[𝑇𝑇][𝐷𝐷1] 
 
Re-arranging Eqn. (4) so that the left-hand side is the 
acceleration term gives, 
 

{�̈�𝜂} = −[𝐴𝐴]−1[𝐵𝐵]{�̇�𝜂} − [𝐴𝐴]−1[𝐶𝐶]{𝜂𝜂} − [𝐴𝐴]−1{𝑃𝑃𝑒𝑒}            (5) 
 
We now define [𝐸𝐸] = −[𝐴𝐴]−1[𝐵𝐵] and [𝐹𝐹] = −[𝐴𝐴]−1[𝐶𝐶], so that 
Eqn. (5) becomes 
 

{�̈�𝜂} = [𝐸𝐸]{�̇�𝜂} + [𝐹𝐹]{𝜂𝜂} − [𝐴𝐴]−1{𝑃𝑃𝑒𝑒}                            (6) 
 
Introducing state variables  𝛿𝛿𝑖𝑖 = 𝜂𝜂𝑖𝑖  and 𝛿𝛿𝑁𝑁+𝑖𝑖 = �̇�𝜂𝑖𝑖  for i from 1st 
point to the Nth point, the 2N output vector for the state-space 
model is 
 

�
{𝜂𝜂}
{�̇�𝜂}� = {𝛿𝛿} or �

{𝜂𝜂}
{�̇�𝜂}� = [Ι]{𝛿𝛿}                     (7) 

 
Using these definitions, Eqn. (6) is then converted into the state 
differential equation 
 

{�̇�𝛿} = �0 Ι
𝐹𝐹 𝐸𝐸�

{𝛿𝛿} − �0 0
0 𝐴𝐴−1� �

0
{𝑃𝑃𝑒𝑒}�                        (8) 

 
and letting  

 
[𝐺𝐺] = −� 0

𝑖𝑖𝑑𝑑ℎ  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐 𝑐𝑐𝑜𝑜 [𝐴𝐴]−1�  and  [𝐻𝐻] = �0 Ι
𝐹𝐹 𝐸𝐸� 

 
noting that vector G is of length 2N and matrix H is 2N x 2N,  
the final form of the state differential Eqn. (8) is 
 

{�̇�𝛿} = [𝐻𝐻]{𝛿𝛿} + [𝐺𝐺]𝑝𝑝𝑒𝑒                                        (9) 
 
In the absence of continuing excitation, the long-time response 
is found by first assuming single-frequency response in the time 
domain, and then extracting the resulting eigenvalues of [H]. 
The system eigenvectors can then be used to assemble the 
deflection, η(x,t), of the panel.  
 
To solve for the transient response to a form of external 
excitation, the Laplace transform of Eqn. (9) is taken. Re-
arranging gives 
 

𝑋𝑋(𝑠𝑠) = [𝑠𝑠𝛪𝛪 − 𝐻𝐻]−1𝑋𝑋(0) + [𝑠𝑠𝛪𝛪 − 𝐻𝐻]−1𝐺𝐺𝑝𝑝𝑒𝑒(𝑠𝑠)                (10) 
 
where X(s) is the transform of the state-space vector. We note 
that [𝑠𝑠𝛪𝛪 − 𝐻𝐻] = 𝛹𝛹(𝑠𝑠) is the Laplace transform of state transition 
matrix 𝛹𝛹(𝑑𝑑) = exp(𝐻𝐻𝑑𝑑). 
Taking the inverse Laplace transform of Eqn. (10), we obtain 
 

𝑋𝑋(𝑑𝑑) = exp(𝐻𝐻𝑑𝑑)𝛿𝛿(0) + ∫ 𝑒𝑒𝛿𝛿𝑝𝑝[𝐻𝐻(𝑑𝑑 − 𝜏𝜏)]𝐺𝐺𝑝𝑝𝑒𝑒(𝜏𝜏)𝑑𝑑𝜏𝜏𝑑𝑑
0          (11) 

or 

𝑋𝑋(𝑑𝑑) = 𝛹𝛹(𝑑𝑑)𝛿𝛿(0) + � 𝛹𝛹(𝑑𝑑 − 𝜏𝜏)𝐺𝐺𝑝𝑝𝑒𝑒(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑑𝑑

0
 

 
Once the initial condition x(0), the input pe(τ) and the state 
transition matrix Ψ(t) are known, the time response of x(t) can 
be numerically evaluated. This matrix-inversion approach is 
convenient for low-order systems.  
 
For higher-order systems, there are several other methods for 
evaluating the state transition matrix in closed form. Instead of 
solving the two main Eqns. (2)-(3) by finite-differences in the 
time domain, we apply a zero-order hold on our input Eqn. (8) 
to make the system digital. This gives the time-domain 
continuous system (H,G). So we can use the relationship t=kT to 
transform the state-space solution into a sampled system with a 
sampling time T. To implement this approach we use 
MATLAB to compute the transient responses. The MATLAB 
function lsim is used to simulate a continuous system with a 
specified input. This function works by calling the c2d, which 
converts the system (H, G) into the equivalent discrete system. 
Once the system model is discretized, the function is used to 
simulate discrete-time systems with the specified input. 
Because of this, simulation programs like MATLAB are 
subjected to round-off errors associated with the discretization 
process that are similar to finite-differencing errors in the time 
domain. 
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RESULTS 
 
Complex flexible panel: divergence-onset prediction and 
transient response 
 
Here we consider a spring-backed flexible plate that 
approximates a compliant wall of the type investigated in 
[5,12,13]. The properties of this wall have h=0.01m, 
ρm=852kg/m3, B=4.44x10-2Nm2, d=20000Ns/m3 and 

K=3.68x107N/m3; the length, L, of the flexible panel is 0.6m 
and the fluid is water with density ρ =1000kg/m3. However, for 
greater generality and following [13], we present our results 
using a non-dimensional flow speed, or flow-to-wall stiffness 
ratio, defined as 
 

𝛬𝛬𝛪𝛪 = 3π3ρ 𝑈𝑈∞ 2

(3𝐵𝐵𝐾𝐾3)
1
4
                                   (12) 

 
By applying the state-space model and setting the forcing term 
to zero, the eigenvalues and eigenmodes are calculated. Figs. 
2(a) and 2(b) show the variation of the 40 eigenvalues closest to 
origin with flow-to-wall stiffness ratio ΛI. In this calculation, 
the wall was discretized into N=800 elements and all 2N=1,600 
system eigenvalues are computed to determine the point of 
divergence-onset accurately; this is the value of ΛI at which a 
positive (amplifying) part to the real part of the eigenvalue 
appears in Fig. 2(a). 
 
Carpenter & Garrad [12] derived analytical expressions for the 
divergence-onset flow speed and the wavelength of the critical 
divergence mode. By assuming the wall to be of infinite extent 
they used a travelling–wave approach for all system 
disturbances. Divergence-onset flow speed, UD, and critical 
wavelength, λD, were given respectively by 
 

           𝑈𝑈𝐷𝐷 = 2 �𝐵𝐵𝐾𝐾
3

27𝜌𝜌4�
1/8

         and          𝜆𝜆𝐷𝐷 = 2π�3𝐵𝐵
𝐾𝐾
�

1/4
           (13a,b) 

 
Using the wall properties above in these analytical expressions 
gives a value of UD that, when non-dimensionalized using Eqn. 
(12), yields a divergence-onset stiffness ratio of ΛI=124.0. Our 
prediction of divergence-onset gives its value as just above 127 
as can be seen in Fig. 2(a). Hence there is a difference of 
approximately 2.4% between the two approaches. Exact 
agreement could only be expected in the limit of infinite plate 
length and the present prediction for a plate of finite length is 
expected to be higher, as found, because of the structural 
restraints at its leading and trailing edges. This correlation 
serves to validate the integrity of our approach and its 
implementation.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    (b) 
 
FIGURE 2. VARIATION OF SYSTEM EIGENVALUES WITH 
NON-DIMENSIONAL FLOW SPEED FOR A SPRING-BACKED 
FLEXIBLE PLATE, (a) IS THE REAL (POSITIVE, GROWTH; 
NEGATIVE, DECAY) PART, AND (b) IS THE IMAGINARY 
(OSCILLATORY) PART OF THE EIGENVALUES. 
 
We now illustrate the application of our initial-value modeling 
of the system behavior that would lead to the long-time 
instability predicted above. Figs. 3(a) and 3(b) show the 
transient response of the compliant wall. A point impulse is 
applied at the centre of the panel to initiate motion. Fig. 3(a) 
shows the time sequence of wall deformations at the non-
dimensional flow speed ΛI=127, just below divergence onset, 
for the sequence of time steps 2ΔT, 3ΔT, 4ΔT and 50ΔT where 
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ΔT = 0.016. After the initial wave propagation from the 
impulse, the wall is seen to select the 12th mode shape that is 
the critical divergence mode at a slightly higher flow speed than 
that of divergence onset. Again, good agreement is found with 
the traveling-wave based predictions of [12]; Eqn. (13b) 
predicts a critical wavelength of 0.49 m that would yield close 
to 12 disturbance wavelengths on the present finite wall of 
length 0.6 m. After the wave has propagated outwards from the 
point of initial excitation, it then decays due to the effect of 
structural damping.  At the much higher flow speed than that of 
divergence onset, represented by ΛΙ= 350 used to generate Fig. 
3(b), the wall is unstable. In this figure the sequence of time 
steps is 3ΔT, 5ΔT, 7ΔT and 9ΔT where ΔT = 0.255 ms. Rapid 
growth is seen to spread to both upstream and downstream of 
the point of initial excitation; this is characteristic of absolute 
instability in such systems [9,10]. 
 
 
Simple flexible panel: the effect of structural inhomogeneity 
on divergence onset 
 
We now consider a panel comprising a simple elastic plate and 
show how the addition of a single (line) spring support affects 
its stability bounds. The dimensional properties used herein 
correspond to those of an aluminum panel of length L=0.6 m 
with h=0.0025 m, ρm=2600 kg/m3 and B=76.62 Nm2; the fluid 
is water with density ρf=1000 kg/m3 Hinged-end restraints are 
applied to the panel. The spring constant is varied in the form 
of multiples of k where k=6x103 N/m2. In the results that first 
follow we present the variation of system eigenmodes with a 
non-dimensional flow-speed parameter, ΛF, based upon the 
flow-to-wall stiffness ratio for the basic panel. Thus 
 

𝛬𝛬𝐹𝐹 = ρ 𝑈𝑈∞ 2𝐿𝐿3

𝐵𝐵
                                              (14) 

 
Figs. 4(a) and 4(b) show the effect of adding a localized spring 
support at the panel mid-point on the long-time hydroelastic 
behavior of the flexible panel for the cases 0 (no spring), 6k and 
15k. The variation of the (lowest-frequency) eigenmodes is 
plotted with ΛF. For the standard homogeneous case (0k) 
divergence-onset is seen to occur at ΛF=40 in Fig. 4(a) where 
the first appearance of a positive real part of the eigenvalue 
appears that commences the divergence loop of instability. This 
agrees well with the results of previous Galerkin-based 
analyses, for example [2-4]. As the spring constant, k, is 
increased, the critical value ΛF and, hence, the divergence-onset 
flow speed for a panel of given flexural rigidity, is seen to 
increase. The modal-coalescence flutter that occurs at ΛF-
values higher than those of the divergence loop is also 
postponed to higher flow speeds; however, this effect is not as 
marked as the postponement of divergence. However, the latter 
suggests a simple strategy for extending the envelope of stable 
operation of fluid-loaded panels in engineering applications.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      (b) 
 
FIGURE 3. INSTANTANEOUS FLEXIBLE-WALL PROFILES 
DEVELOPING FROM AN IMPULSE: (a) MARGINALLY PRE-
DIVERGE, (b) POST-DIVERGENCE. 
 
We now show how the added spring contributes to the 
postponement of divergence in terms of energy budgets. The 
dimensional wall energy comprises three parts, namely its 
strain energy ES, its kinetic energy EK and its spring energy ESP, 

η/
h 

η/
h 
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respectively defined as follows 
 

𝐸𝐸𝑆𝑆 = 1
2
𝐵𝐵 ∫ 𝜂𝜂,𝛿𝛿𝛿𝛿

2 𝑑𝑑𝛿𝛿                                    (15) 
 

𝐸𝐸𝐾𝐾 = 1
2
𝜌𝜌𝑚𝑚ℎ ∫𝜂𝜂,𝑑𝑑

2 𝑑𝑑𝛿𝛿                                 (16) 
 

𝐸𝐸𝑆𝑆𝑃𝑃 = 1
2
𝑘𝑘𝜂𝜂𝑖𝑖2                                         (17) 

 
Lucey [10] also introduced a term called the virtual work done 
by the hydrodynamic stiffness component of the pressure in the 
establishment of a wall deformation. This is defined as 
 

𝐸𝐸𝑉𝑉𝑉𝑉 = − 1
2∫ 𝜂𝜂𝑝𝑝 (0,0,𝜂𝜂)𝑑𝑑𝛿𝛿                               (18) 

 
The energy terms shown in Figs. 5(a) and 5(b) are normalised 
by dividing by the square of deflection amplitude A. Hence 
they become independent of amplitude. 
 
It was shown in [10] that divergence onset can be defined as the 
flow speed for which EVW exactly balances the mechanical 
energy of the wall. To show how this occurs, both without and 
with (for 6k) an added spring, we present Figs. 5(a) and 5(b). 
The first corresponds to the result for no added spring in Fig. 4 
and is a time-stepping numerical evaluation of the energy terms 
for a stiffness ratio marginally lower than that  of divergence 
onset at ΛF=40. Because this value of ΛF is so close to 
divergence at which the hydrodynamic stiffness balances the 
restorative stiffness, the wall acceleration and velocity are very 
small, hence the insignificant values of EK in the plot and the 
very slow oscillation of the wall. The key feature of this plot is 
that EVW is almost exactly balanced with the plate’s strain 
energy, ES. Fig. 5(b) is the equivalent result when a localized 
spring is included at the panel mid-point and corresponds to the 
result of Fig. 4 for 6k. The evaluation is conducted just before 
divergence onset at ΛF=122. It is now seen that both the strain 
energy of the plate and the spring energy contribute to the value 
of total value of mechanical energy that balances EVW and the 
proportions in which they do so. In this particular case, it is 
evident that the bulk of the wall’s restorative force is provided 
by the added spring in the stabilisation strategy. 
 
The extent to which the strategy of divergence postponement 
can be taken is now explored. Figs. 6(a) and 6(b) show the 
variation of system eigenvalues with stiffness ratio, ΛF, that 
result when a very large multiple of k is used; the added spring 
is now so stiff as to be considered an additional restraint that 
fixes the wall displacement to be zero at its point of application. 
Contrasting these figures with those of Figs. 4(a) and 4(b), 
shows that a fundamental change in solution morphology 
occurs. In fact it is now the second system mode that first 
succumbs to divergence at approximately ΛF=280. This could 
be anticipated because the effective restraint at the panel mid 
point divides the original into two panels each of length 0.5L. 
An approximate prediction using Eqn. (14) suggests that 

halving the length of the panel changes the critical value of ΛF 
from 40 to 23 x 40 = 320. The actual value of 280 predicted by 
Fig. 4(a) is lower than 320 because there effectively exists two 
adjacent interacting flexible panels of length 0.5L as opposed to 
a single panel of the same length.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    (b) 
 
FIGURE 4. VARIATION OF SYSTEM EIGENMODES WITH 
NON-DIMENSIONAL FLOW SPEED FOR DIFFERENT 
VALUES OF LOCALIZED SPRING SUPPORT APPLIED AT 
PANEL MID-POINT: •, NONE; +, 6k; X, 15k WHERE (a) IS THE 
REAL (POSITIVE, GROWTH; NEGATIVE, DECAY) PART, AND 
(b) IS THE IMAGINARY (OSCILLATORY) PART OF THE 
EIGENVALUES. 
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    (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    (b) 
FIGURE 5. VARIATION OF STRAIN, KINETIC AND SPRING 
ENERGY, AND VIRTUAL WORK DONE BY THE 
HYDRODYNAMIC STIFFNESS, WITH TIME JUST BEFORE 
DIVERGENCE ONSET, FOR (a) HOMOGENEOUS FLEXIBLE 
PLATE, AND (b) FLEXIBLE PLATE WITH AN ADDED SPRING 
SUPPORT OF COEFFICIENT 6k INCLUDED AT THE PANEL 
MID-POINT. 
 
Figs. 7(a) and 7(b) show the effect of moving the effective 
restraint of an infinitely stiff spring from the panel mid-point, 
as for Figs. 6(a) and 6(b), to a point a distance 0.25L from its 
leading edge. The solution morphology now resembles that of 
the base case of the simple flexible panel and represented by 
the results of Figs. 4(a) and 4(b). Compared to the base case, 
the effect of divergence postponement is seen to be less than 
that when the restraint is at the panel mid-point. This is to be 
expected because the critical mode for divergence is the 
fundamental that has maximum deflection at 0.5L. Placing the 
restraint at 0.25L again divides the panel with the critical value 
of ΛF generated by the sub-panel of length 0.75L. Very careful 
inspection of the results in Fig. 7(a) show that a mild instability 

exists at values of ΛF below that of divergence onset. This type 
of low-speed single-mode flutter was identified and its causes 
elucidated in [5]. In most engineering applications, it would be 
eliminated by even small amounts of structural damping 
present in a real panel.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    (b) 
 
FIGURE 6. VARIATION OF SYSTEM EIGENMODES WITH 
NON-DIMENSIONAL FLOW SPEED FOR AN EFFECTIVELY 
INFINITELY STIFF SPRING ADDED AT PANEL MID-POINT 
WHERE (a) IS THE REAL (POSITIVE, GROWTH; NEGATIVE, 
DECAY) PART, AND (b) IS THE IMAGINARY (OSCILLATORY) 
PART OF THE EIGENVALUES. 
 
Finally, we summarize the effects of finite spring stiffness on 
divergence-onset flow speed. To do this, we change the non-
dimensionalization scheme from that of Eqn. (14) that scheme 
was based upon panel length. The foregoing results show the 
added spring can effectively shorten the panel length thus 
rendering this non-dimensional scheme inappropriate as a 
measure of divergence onset flow speed. Thus, we allow panel 
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length to be a free parameter and non-dimensionalize using the 
scheme developed in [7] and elaborated in [14]. This gives  
 

𝑈𝑈� = 𝑈𝑈∞
(ρ𝑚𝑚ℎ)3/2

𝜌𝜌𝐵𝐵1/2                                     (19) 

 
and a non-dimensional panel length  
 

𝐿𝐿� = 𝐿𝐿
𝐿𝐿𝑟𝑟𝑒𝑒𝑜𝑜

                                               (20) 

 
where 
 

   𝐿𝐿𝑟𝑟𝑒𝑒𝑜𝑜 = 𝜌𝜌𝑚𝑚 ℎ
𝜌𝜌

                                         (21) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    (b) 
FIGURE 7. VARIATION OF SYSTEM EIGENMODES WITH 
NON-DIMENSIONAL FLOW SPEED FOR AN EFFECTIVELY 
INFINITELY STIFF SPRING ADDED TO THE PANEL AT A 
LOCATION 0.25L FROM THE LEADING EDGE, WHERE (a) IS 
THE REAL (POSITIVE, GROWTH; NEGATIVE, DECAY) PART, 
AND (b) IS THE IMAGINARY (OSCILLATORY) PART OF THE 
EIGENVALUES. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    (b) 
 
FIGURE 8. VARIATION OF DIVERGENCE-ONSET, 
DIVERGENCE-RECOVERY AND MODAL-COALESCENCE 
FLUTTER-ONSET FLOW SPEEDS WITH THE COEFFICIENT 
OF THE ADDED SPRING SUPPORT FOR A PANEL WITH 
LENGTH 𝐿𝐿� = 92.3: SPRING ADDED AT (a) PANEL MID-POINT, 
AND (b) 0.25L FROM THE LEADING EDGE OF THE PANEL. 
 
Clearly the relationship between the new non-dimensional flow 
speed and the non-dimensional stiffness ratio, ΛF, is  
 

𝑈𝑈� = �Λ𝐹𝐹

𝐿𝐿�3                                              (22) 

 
To complete the non-dimensional scheme, the coefficient of the 
added spring support is non-dimensionalized using the 
reference length of Eqn. (21) and the flexural rigidity of the 
plate.  Thus for uniformly distributed and a single localized 
spring support respectively, we have  
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𝐾𝐾� = 𝐾𝐾𝐿𝐿𝑟𝑟𝑒𝑒𝑜𝑜 4

𝐵𝐵
          and          𝑘𝑘� = 𝑘𝑘𝐿𝐿𝑟𝑟𝑒𝑒𝑜𝑜 3

𝐵𝐵
                     (23a,b) 

 
Thus, for the case of an isolated spring support, the non-
dimensional divergence onset flow speed is functionally given 
as 
 

𝑈𝑈�𝐷𝐷 = 𝑜𝑜�𝐿𝐿� ,𝑘𝑘� , �̅�𝛿𝑘𝑘�                                    (24) 
 
where �̅�𝛿𝑘𝑘 = 𝛿𝛿𝑘𝑘 𝐿𝐿⁄  is the non-dimensional distance of the 
location of the added spring from the panel leading edge.  
 
Figs. 8(a) and 8(b) show the variation of divergence-onset flow 
speed with the magnitude of the added spring  support for the 
two cases of spring location �̅�𝛿𝑘𝑘 =0.5 and 0.25; in each figure 
𝐿𝐿� =92.3 (that gives the same physical length as the panels 
investigated through Figs. 4-6). These results clearly show that 
the addition of a single localized spring support can 
significantly increase the divergence-onset flow speed. As 
could be expected on physical grounds, this strategy is more 
effective when the spring is placed at the panel mid-point. 
When placing it here, it is noted that there is a threshold of 
approximately 𝑘𝑘� =0.4 x 10-3, for which further stabilization of 
the system ceases. This is because the second system mode 
replaces the first as the critical mode for divergence onset. 
Thus, this value of k  may be regarded as optimal for the 
design of divergence-free flexible panels. 
 
 
CONCLUSIONS 
 
A state-space model has been developed for predicting the aero-
/hydro-elastic behavior of a flexible wall. The model fuses 
computational and theoretical methods exploiting the 
advantages of each. A particular merit of the approach is that it 
can be used to find the FSI eigenmodes of flexible panels and 
walls that include localized inhomogeneity. The model also 
permits the study of the initial-value problem so that the way a 
system response develops from some form of initial source of 
excitation can be charted.  
 
In this paper, we have demonstrated how disturbances evolve 
for a spring-backed flexible-plate model of a compliant coating 
in the pre- and post-divergence regimes. For the latter, it is 
demonstrated that the instability is absolute and thereby spreads 
to all parts of the coating.  
 
The results presented herein for a simple flexible panel show 
that the addition of an isolated spring support to the structure 
can yield a very significant extension to the flow-speed range 
before divergence instability sets in. It is also shown that, 
dependent upon the location of the added spring, an optimal 
value of spring stiffness coefficient exists. This type of tailored 
stabilization strategy may find engineering use in that it can be 
far more effective than a ‘brute force’ approach to design that, 

for example, thickens the entire panel to prevent aero-/hydro-
elastic instability within the operating envelope of flow speeds. 
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