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ABSTRACT
Aeroelastic stability remains an important concern for the

design of modern structures such as wind turbine rotors, more
so with the use of increasingly flexible blades and military air-
crafts with increasing maneuvering capabilities etc. A nonlinear
aeroelastic system has been considered in the present study with
parametric uncertainties. The analysis has been put in a stochas-
tic framework and the propagation of system uncertainties have
been quantified in the aeroelastic response. A spectral uncer-
tainty quantification tool called Polynomial Chaos Expansion has
been used. A projection based non-intrusive Polynomial Chaos
approach is compared to its classical Galerkin based counterpart,
and proven to be more efficient as order of chaos expansion in-
creases. Effect of system randomness on the bifurcation behavior
and the flutter boundary has been significant. Stochastic bifurca-
tion results and bifurcation of probability density functions are
presented here.

NOMENCLATURE
ah Non-dimensional distance from airfoil mid-chord to elastic

axis.
b Airfoil semi-chord.
CL Lift coefficient.
CM Pitching moment coefficient.
rα Radius of gyration about elastic axis.
U Non-dimensional speed.

∗Address all correspondence to this author, Tel.:+914422574024.

xα Non-dimensional distance from elastic axis to center of
mass.

α Pitch angle of airfoil.
ε Non-dimensional plunge displacement.
βα ,βε Cubic spring coefficients in pitch and plunge.
ζα ,ζε Viscus damping ratio in pitch and plunge.
µ Airfoil/air mass ratio.
τ Non-dimensional time.
ϖ Natural frequency ratio.

INTRODUCTION
Uncertainty quantification of aeroelastic systems is an im-

portant design concern for modern structures such as wind tur-
bine rotors. With increasing flexibility of wind turbine blades [1]
it has become even more crucial. Uncertainty in structural pa-
rameters, aerodynamic parameters and initial conditions etc, af-
fects the characteristics of such dynamical systems. To make the
computational aeroelastic model more trustworthy and reliable
to predict aeroelastic stability, we put the problem into stochastic
framework, which enables quantifying the propagation of sys-
tem uncertainty into the response. The stochastic input has tradi-
tionally been analyzed with Monte Carlo simulation (MCS) [2].
However, it is computationally expensive as it needs a large num-
ber of realizations. Perturbation method is a fast tool for obtain-
ing the response statistics in terms of its first and second order
moments [3]. However, applications of this method are limited
to small perturbation only and does not readily predict high or-
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der statistics [4]. The resultant system of equations becomes ex-
tremely complicated beyond second order expansions as shown
in the literature [5]. Sensitivity method is a more economical ap-
proach, based on the moments of samples, but it is less robust
and depends strongly on modeling assumptions [6].

Polynomial chaos expansion (PCE) is a more effective ap-
proach pioneered by Ghanem and Spanos [5]. It uses a spectral
representation of the system uncertainties in terms of orthogo-
nal polynomials. Unlike perturbation method PCE allows high
order statistics. The stochastic input is represented spectrally
by employing orthogonal polynomials functionals from the gen-
eralized Askey scheme as basis in the random space [7]. The
original homogeneous PCE was based on Hermite polynomials
and it can give optimal exponential convergence for Gaussian in-
puts [8]. PCE based approaches have been examined extensively
with different basis functions to model several uncertainty prob-
lems [9, 10].

A standard Galerkin projection is applied along the random
dimension to obtain the weak form of the equation. The resultant
deterministic systems are solved using standard time integration
techniques to solve for each random mode [11]. Galerkin poly-
nomial chaos expansion (Galerkin-PCE)(also called intrusive ap-
proach) modifies the governing equation to a coupled form in
terms of the chaos coefficients. These are usually more com-
plex and arriving at them are quite often a tedious task. In or-
der to avoid these, several alternative approaches have been pro-
posed. These are collectively called as non-intrusive methods.
In non-intrusive PCE, samples of solutions of the differential
equation are used to construct the coefficient of the polynomial
chaos expansion. The probabilistic collocation method is such a
non-intrusive method [12]. The non-intrusive polynomial chaos
method proposed by Walter and co-workers [13–15] is based on
approximating the polynomial chaos coefficients. A similar ap-
proach called non-intrusive spectral projection has been used by
Reagan et al. [16]. Petit and Beran [17,18] has also used this for
an aeroelastic system.

In the subsequent sections, the intrusive and non-intrusive
PCE approaches and their implementation with one and more
random system parameters are discussed, and their combined ef-
fects on the bifurcation behavior of the aeroelastic system is stud-
ied in details.

NON-LINEAR AEROELASTIC SYSTEM
Figure 1 shows a schematic plot of the two degree-of-

freedom pitch-plunge aeroelastic system and also the notations
used in the analysis. The aeroelastic equations of motion for
the linear system have been derived by Fung [19]. For nonlin-
ear restoring forces such as with cubic springs in both pitch and
plunge, the mathematical formulation is given by Lee et al. [20]
in the non-dimensional form as follows:

FIGURE 1. THE SCHEMATIC OF A SYMMETRIC AIRFOIL
WITH PITCH AND PLUNGE DEGREES-OF-FREEDOM.
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ζα and ζε are the damping ratios in pitch and plunge respec-
tively, βα and βε denotes coefficients of cubic spring in pitch and
plunge respectively. For incompressible, in-viscid flow, Fung
[19] gives the expressions for unsteady lift and pitching moment
coefficients, CL(τ) and CM(τ).

Using Wagner function and introducing the following new
variables w1,w2,w3,w4, the original integro-differential equa-
tions for aeroelastic system given by Eqn. (1) are reformulated
into set of first order autonomous differential equations,

x′ = f (XXX , system parameters) (2)

where XXX is an array of eight variables as given below;
{x1,x2,x3,x4,x5,x6,x7,x8}= {α,α ′,ε,ε ′,w1,w2,w3,w4}. For
detail, refer to Lee et al. [20],

UNCERTAINTY QUANTIFICATION AND POLYNOMIAL
CHAOS EXPANSION

It is increasingly being felt among the aeroelastic commu-
nity that aeroelastic analysis should include the effect of paramet-
ric uncertainties. This can potentially revolutionize the present
design concepts with higher rated performance and can also re-
shape the certification criteria. Nonlinear dynamical systems are
known to be sensitive to physical uncertainties, since they often
amplify the random variability with time. Hence, quantifying
the effect of uncertainty propagation on the aeroelastic stability
boundary is crucial. Flutter, a dynamic aeroelastic instability in-
volves a Hopf bifurcation where a damped (stable response) os-
cillation changes to a periodic oscillatory response at a critical

2 Copyright c© 2010 by ASME



wind velocity. In a linear system this post flutter response can
grow in an unbounded fashion [19]. System parametric uncer-
tainties can significantly affect the onset and properties of bifur-
cation points. The importance of stochastic modeling of these
uncertainties is that they can quantify the effect of the uncertain-
ties on flutter and bifurcation in a probabilistic sense and gives
the response statistics in a systematic manner.

The original homogeneous polynomial chaos expansion [5]
is based on the homogeneous chaos theory of Wiener [21, 22].
This is based on a spectral representation of the uncertainty in
terms of orthogonal polynomials. In its original form, it employs
Hermite polynomials as basis from the Askey scheme in terms of
Gaussian random variables [22]. According to Cameron-Martin
theorem [23], it can approximate any functionals in L2(C) and

converges in the L2(C) sense, where C is the space of real
functions which are continuous on the interval [0,1] and vanish
at 0. Therefore, polynomial chaos provides a means for expand-
ing second-order random processes in terms of Hermite polyno-
mials. Second order random processes are processes with finite
variance, and this applies to most physical processes [11].

Spectral polynomial chaos based approaches with other ba-
sis functions have also been used in the recent past in various
unsteady flow and flow-structure interaction problems of practi-
cal interest [24, 25].

Polynomial Chaos Expansion
As per the Cameron-Martin theorem [23], a random process

X(t,θ), viewed as function random event θ , which is second or-
der stationary can be written as,

X(t,θ) = â0ψ0 +
∞

∑
i1=1

âi1ψ1(ξi1 (θ))+
∞

∑
i1=1

i1

∑
i2=1

âi1i2 ψ2(ξi1(θ),ξi2(θ))

+
∞

∑
i1=1

i1

∑
i2=1

i2

∑
i3=1

(âi1i2i3)ψ3(ξi1(θ),ξi2(θ),ξi3 (θ))+ ..., (3)

where, ψn(ξi1 , ξi2,. . . . . .ξin) denotes the Hermite polynomial of
order n in terms of n-dimensional independent standard Gaus-
sian random variables ξξξ= ( ξi1,ξi2,. . . . . .ξin) with zero mean and
unit variance. The above equation is the discrete version of the
original Wiener polynomial chaos expansion, where the continu-
ous integrals are replaced by summations. For notational conve-
nience Eqn. (3) can be rewritten as:

X(t,θ) =
∞

∑
j=0

ajΦj(ξξξ (θ)) (4)

There is an one-to-one relationship between the ψ’s and Φ’s and
also â j’s and a j’s in Eqn. (3) and Eqn. (4). In the original form,
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FIGURE 2. UNCERTAIN CUBIC SPRING: STOCHASTIC BIFUR-
CATION DIAGRAM (SUPERCRITICAL Hopf BIFURCATION).

ψns were Hermite polynomials. The first few one-dimensional
Hermite polynomials are given as:

ψ0 = 1,

ψ1 = ξ ,

ψ2 = ξ 2 −1,

ψ3 = ξ 3 −3ξ ,

ψ4 = ξ 4 −6ξ 2 + 3,

Other Hermite polynomials can be generated from the following
recurrence relationship,

ψn = ξ ψn−1 − (n−1)ψn−2.

However, the exponential convergence of the polynomial
chaos expansion has been extended to several other types of
commonly used probability distributions. One can use orthog-
onal polynomials from the generalized Askey scheme for some
standard non-Gaussian input uncertainty distributions such as
gamma and beta [24]. For any arbitrary input distribution, a
Gram-Schmidt orthogonalization can be employed to generate
the orthogonal family of polynomials [26]. Any stochastic pro-
cess α(t,ξξξ (θ)), governed by Gaussian random variable ξ (ξ can
always be normalized as a standard Gaussian one) can then be
approximated by the following truncated series:

α(t,θ) =
p

∑
j=0

α̂ j (t) Φ j(ξξξ (θ)) (5)

Note that, here the infinite upper limit of Eqn. (4) is replaced
by p, called the order of the expansion. For multi-dimensional
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FIGURE 3. UNCERTAIN CUBIC SPRING: PDF COMPARISON
WITH INCREASING ORDER OF GALERKIN-PC EXPANSION,
WITH U = 6.42.

random variables (n), with number of polynomial terms denoted
by np, it is given by the following [7].

p =
(n+np)!

n!np!
−1 (6)

Classical Galerkin Polynomial Chaos Approach
In the classical Galerkin-PCE approach, the polynomial chaos
expansion of the system response is substituted into the govern-
ing equation and a Galerkin error minimization in the probability
space is followed. This results in a set of coupled equations in
terms of the polynomial chaos coefficients. The resulting system
is deterministic, but they are significantly modified to a higher
order and complexity depending on the order of chaos expan-
sion and system nonlinearity. After solving this set of coefficient
equations, they are substituted back to get the system response.

We demonstrate the Galerkin-PCE approach for a general-
ized dynamical system for a single random variable case, that is,
with a random cubic stiffness. Let us write the governing equa-
tion with a cubic nonlinearity in the following form [25],

£[α(t,θ)]+βα [α(t,θ)]3 = 0, (7)

here, £ is a linear differential operator. If the cubic spring stiff-
ness is assumed to be a Gaussian random variable with mean β̄α

and standard deviation β̃α , it can be characterized by,

βα = β̄α +ξ β̃α (8)
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FIGURE 4. UNCERTAIN CUBIC SPRING: PDF COMPARISON
FOR INTRUSIVE AND NON-INTRUSIVE PCE, WITH U = 6.42

Substituting the chaos expansion terms in Eqn. (7), and us-
ing a Galerkin projection < ., φk >, for k = 0,1, ....p, and sim-
plifying we get;

£[α̂k]+
1

< Φk
2>

1

∑
l=0

p

∑
i=0

p

∑
m=0

p

∑
n=0

βα l α̂i α̂m α̂n < Φl ΦiΦmΦnΦk >= 0

(9)
Here, βα 0 = β̄α and βα 1 = β̃α . The expected value operator,< >,
called the inner product is defined as,

< Φl ...Φk> =
∫ ∞

−∞
Φl ...Φk ω(ξ ) dξ . (10)

Where the weighting function ω (ξ ), is the Gaussian probability
density function. For single random variable case it is given as:

ω(ξ ) = (
1√
2π

) e−( 1
2 ξ 2), (11)

The Galerkin approach is also called the intrusive approach
as it modifies the system governing equation in terms of the chaos
coefficients. The modification results into a higher order and
much more complex form of the equations. As a result, this ap-
proach may become computationally quite expensive as order of
expansion increases [18, 27].

Non-intrusive Projection Method A number of non-
intrusive variants of PCE have been developed to counter the dis-
advantages of the classical Galerkin method. Stochastic projec-
tion is one of them [5, 28]. In the present study, a stochastic pro-
jection based approach is used to evaluate the chaos coefficients.
Here, the chaos expansions are not substituted in the governing
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FIGURE 6. UNCERTAIN CUBIC SPRING: A TYPICAL TIME
HISTORY WITH 12th ORDER PCE AND MCS FOR ξ = 1.5 AND
U = 6.42.

equations; instead samples of the solutions are used (using a low
order pseudo-Monte Carlo method) to evaluate the coefficients
directly using a projection formula. As a result, this approach
can utilize the existing deterministic code and hence the name
non-intrusive. The random process is approximated by a trun-
cated series, as shown in Eqn. (5).

The Hermite polynomials are statistically orthogonal, that
is, they satisfy < Ψi,Ψ j >= 0 for i 6= j, hence the expansion
coefficients can be directly evaluated as:

α̂ j (t) =
< α(t,θ),Φ j>

< Φ j
2 >

(12)

The denominator in Eqn. (12) can be shown to satisfy
< Φ j

2 > = j ! for non-normalized Hermite polynomials [17].
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FIGURE 7. UNCERTAIN CUBIC SPRING: AMPLITUDE RE-
SPONSE PDF AS A FUNCTION OF REDUCED SPEED.

So the key step in projecting α(t,θ) along the polynomial chaos
basis is the evaluation of < α,Φ j>. This is done by a nu-
merical integration scheme using Simpson’s rule by employing
Eqn. (13).

For two random variable, (ξ1 and ξ2).

< α(t,θ),Φk> =
∫ ∞

−∞

∫ ∞

−∞
α(t,θ) Φk ω(ξξξ ) dξ1dξ2. (13)

Where the weighting function ω (ξξξ ) is the Gaussian proba-
bility density function is given by the following,

ω(ξξξ ) = (
1√

(2π)2
) e−

1
2 (ξ1

2+ξ2
2) (14)

A pseudo Monte Carlo Simulation approach employing N
samples of ξ1 and ξ2 is used (N being lesser than that used in a
full MCS) to generate the response realizations. The samples of
ξ1 and ξ2 are taken as the equi-probability points (for the defini-
tion of equi-probability points, see [29]). The corresponding βα
and ζα samples (from Eqn. (8)) are used to run the pseudo-MCS.
The realizations of the system response α(t,θ) are then used to
estimate the deterministic coefficients, α̂ j(t)s in Eqn. (12) us-
ing the Simpson’s rule. More efficient approaches that could be
considered for practical implementation include the many effi-
cient sampling techniques [30], which should improve the con-
vergence of the MCS, and Gauss-Hermite quadrature of the inte-
gral. However, the results presented below show that oscillatory
random process become increasingly oscillatory in the random
dimension as time progresses, which suggest that even Gauss
quadrature would require many samples to yield acceptable ac-
curacy also suggested by Pettit and Beran [17].
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FIGURE 8. UNCERTAIN VISCOUS DAMPING: STOCHASTIC
BIFURCATION PLOT.
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FIGURE 9. UNCERTAIN VISCOUS DAMPING: FIVE DIFFER-
ENT REALIZATION TIME HISTORIES AT U = 6.52.

RESULTS AND DISCUSSION
The main focus of the present study is quantifying the ef-

fects of parametric uncertainty of the system on the bifurcation
behavior and the flutter boundary. In this paper we will consider
a single random variable model first, then a two random variable
case.

The parameter values used for calculation are [20]: µ =
100, ω̄ = 0.2,ah = −0.5, xα = 0.25,ζα = 0,ζε = 0, rα =
0.5, βα = 3, βε = 0. First, consider a single random variable
model, the cubic hardening spring is assumed to be a Gaussian
random variable with mean β̄α =3 and standard deviation β̃α
=0.3. Fig. 2 shows bifurcation behavior for the supercritical re-
sponse, with the cubic stiffness as random, it now has a range
of possible LCO amplitudes for each reduced velocities and the
onset of flutter is unaffected. The standard deviation, that is, the
amplitude variation range increases as reduced speed increases.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2
0

1

2

3

4

5

6

7

pitch angle (α, radian )

P
ro

b
ab

ili
ty

 D
en

si
ty

 F
u

n
ct

io
n

 

 

9rd order PCE
12th order PCE
MCS

FIGURE 10. UNCERTAIN VISCOUS DAMPING: COMPARISON
OF THE PDFs WITH INCREASING ORDER OF PCE AT NONDI-
MENSIONAL TIME t = 1400 AND U = 6.52.
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FIGURE 11. UNCERTAIN VISCOUS DAMPING: COMPARISON
OF THE PDFs WITH INCREASING ORDER OF PCE AT NONDI-
MENSIONAL TIME t = 5000 AND U = 6.52.

These results are obtained by using MCS.
A Galerkin-PCE approach is used to quantify the propaga-

tion of this uncertainty on the response. The Galerkin approach
modifies the 8th order system to a 8×(p+1) order system. It also
involves calculating the complex fifth order inner product terms,
as shown in Eqn. (9), which are calculated before-hand by us-
ing symbolic mathematical solver Mathematica and used in the
solution. As a result, the solution process is computationally in-
tensive for the nonlinear system in question. After solving for the
chaos coefficients, in the post processing stage, the coefficients
are substituted back to the expansion form to get the stochas-
tic response. Probability density functions (PDFs) and other re-
quired statistics can then be readily obtained. Fig. 3 shows, a rep-
resentative PDF for increasing order of chaos expansion at a time
instant when the solutions are well past their transients and is sta-
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FIGURE 12. UNCERTAIN VISCOUS DAMPING: COMPARISON
OF THE PDFs WITH INCREASING ORDER OF PCE AT NONDI-
MENSIONAL TIME t = 7800 AND U = 6.52.
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FIGURE 13. UNCERTAIN VISCOUS DAMPING: A TYPICAL
TIME HISTORY WITH 15th ORDER PCE AND MCS AT ξ = 2.3
AND U = 6.52.

tionary. The reduced speed is considered to be U = 6.42, close
to the deterministic bifurcation point. The figure shows how in-
creasing the order of expansion the CPU time for the solve is
increasing. For the 12th order expansion the CPU time is almost
same as MCS and PDF is matching well with that of MCS. Thus
the computational disadvantages of the conventional Galerkin-
PCE for nonlinear system is easily demonstrated.

A more effective way to evaluate the chaos coefficients
without solving coupled differential equation is the projection
method. With the projection approach, for the same random vari-
ation of the uncertain cubic spring stiffness, the PDF is calculated
and compared with that of Galerkin-PCE in Fig. 4. Both match
well but projection approach takes comparatively less CPU time.
We used a 12000 sample standard MCS results as reference solu-
tion. The pseudo-MCS needed to estimate the chaos coefficients
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FIGURE 14. UNCERTAIN VISCOUS DAMPING: BLOWN UP
VERSION OF THE SAME TIME HISTORY GIVEN IN FIG. 13

−0.05
0

0.05
0.1

0.15
0.2

6.5

6.52

6.54

6.56

6.58

6.6

α
LCO

(radian)

reduced
speed (U)

FIGURE 15. UNCERTAIN VISCOUS DAMPING: AMPLITUDE
RESPONSE PDF AS A FUNCTION OF REDUCED SPEED.

with the projection approach is of much lower order. The sam-
pling points chosen for this are the equi-probability points in the
random domain, with the range from -4 to 4 [29]. Projection
based non-intrusive PCE method is proved to be computation-
ally much-more efficient than the conventional Galerkin based
PCE and hence, in the remaining part of the paper we will use
non-intrusive PCE method.

The response realization time histories for a few samples of
random variable are plotted in Fig. 5, The response time histories
show difference in amplitude but not in phase. A typical realiza-
tion time history obtained with PCE along with its deterministic
counterpart is given in Fig. 6, in a blown up version. The match
is perfect even at long time. Amplitude response PDFs as a func-
tion of reduced velocities (bifurcation parameter) are shown in
Fig. 7. They represent single peak monotonic behavior as all the
realizations give finite amplitude LCOs. Effectively, the PDFs
are not undergoing any bifurcations. Close to U=6.4 the PDF
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TION PLOT.
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6.52.

looks sharper and narrower as most realizations are going to-
wards the same limit cycle amplitude. As the speed increases,
the PDF is broader and less sharp, indicating that the realization
amplitudes are spread over a wider band of amplitudes.

Next, we consider the viscous damping ratio in pitch (ζα)
to be uncertain (in the earlier part damping was put to be zero)
and all the other parameters deterministic. This case seems more
interesting than the earlier one. The damping ratio is assumed to
be a Gaussian random variable with mean ζ̄α =0.1 and standard
deviation ζ̃α =0.01. Fig. 8 shows the bifurcation behavior with
random damping ration. Now, the stochastic onset of flutter is
well below the deterministic onset, we now have the range of
flutter points.

In this case, the response realizations are shifted in phase
from each other due to random damping ratios. This becomes
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FIGURE 18. UNCERTAIN βα AND ζα : COMPARISON OF THE
PDFs OBTAINED BY PCE AND MCS AT NONDIMENSIONAL
TIME t = 4000 AND U = 6.52.

more pronounced with time as shown in Fig. 9. Five different
realizations time histories have been presented here for different
values of the random variable ζα . The response PDF at non-
dimensional time 1400 and U = 6.52 is shown in Fig. 10. A
reasonably good match with MCS results is observed for a 12th

order expansion. Please note that this time level is past the ini-
tial transients. Due to the phase shifting time histories of the
response realizations, the PDF at higher time levels take a de-
formed shape from the monotonic single peak behavior. Fig. 11
shows the PDF at non-dimensional time 5000 and U = 6.52, in
which a double-peak bimodal PDF is emerging. In this case
a 12th order expansion is not sufficient to capture the response
accurately, a 15th order expansion gives better results. At non-
dimensional time 7800 with same reduced speed, the response
PDF is more deformed and gives a two-peak bimodal shape more
clearly as seen in Fig. 12. However, even a 15th order chaos ex-
pansion does not give the required accuracy. The reason for the
mismatch is apparent from Fig. 13. A typical realization time
history with PCE along with its deterministic counterpart is pre-
sented. A blown up version of the same plot is given in Fig. 14.
One can clearly see a degeneracy in the time history, which starts
near time levels close to 6000. PCE can show such type of de-
generate behavior in capturing LCO response [18], especially at
very large times. This is known as large time degeneracy. As a
counter measure, one can increase the order of the chaos expan-
sion. However, this can only push the degeneracy to a later time
and can not solve it entirely. Non-polynomial based chaos ex-
pansion approaches have also been attempted in the recent past
towards this end [18]. An unsteady adaptive stochastic finite el-
ements method, developed by Witteveen and Bijl [31–33] has
been used successfully. In this method interpolation of oscilla-
tory samples is based on constant phase instead of a constant
time.

8 Copyright c© 2010 by ASME
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FIGURE 19. UNCERTAIN βα AND ζα : COMPARISON OF THE
PDFs OBTAINED BY PCE AND MCS AT NONDIMENSIONAL
TIME t = 5000 AND U = 6.52.

Amplitude response PDFs as a function of reduced speed
are shown in Fig. 15. A non-monotonic behavior is clearly in-
dicated; some realizations are going to damped oscillation and
others give LCO amplitudes scattered within the domain bound-
ary. At U = 6.5, the double-peak behavior of the PDF indicates
the two different LCO amplitudes around which most of the real-
izations are concentrated. Towards U = 6.6, all realizations give
finite amplitude LCO, thus essentially they are of the same type.
The PDF shows a single-peak monotonous behavior. Therefore,
the PDFs of the response amplitude have clearly gone through
a qualitative change here, in other words, a bifurcation. This
shows that the dynamics of this nonlinear aeroelastic system is
very sensitive to system uncertainty in this range of reduced ve-
locities. The PDFs also clearly show the probability of entering
into LCO (i.e. flutter) which highlights the risk induced by un-
certain parametric variation.

Next, we consider the two random variable case. Parametric
uncertainty is modeled in cubic spring coefficient, βα and viscus
damping ratio, ζα . These parameters are assumed to be Gaussian
random variable with mean values of 3.0 and 0.1 respectively;
each assumed to have the coefficient of variation of 0.10. They
are assumed to be independent random variables. The bifurcation
plots in Fig. 16 shows, the combined effects of first two cases
(see Fig. 2 and Fig. 8), that is, onset of flutter changes, and also
amplitude variation range increases as reduced speed increases.
Fig. 17 shows the time histories for five different realizations, the
response realizations are shifted in phase and also their amplitude
varies from each other, this is due to uncertainties in both βα and
ζα . This becomes more pronounced as time precedes.

The response PDF at U = 6.52 and non-dimensional time
4000 is shown in Fig. 18. A reasonably good match with MCS
results is observed for a 15th order expansion. Please note that at
this time level most of the response realizations are past the ini-
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FIGURE 20. UNCERTAIN βα AND ζα : COMPARISON OF THE
PDFs OBTAINED BY PCE AND MCS AT NONDIMENSIONAL
TIME t = 7800 AND U = 6.52.
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FIGURE 21. UNCERTAIN βα AND ζα : A TYPICAL TIME HIS-
TORY WITH 15th ORDER PCE AND MCS AT ξ = 1.5 AND U =
6.52.

tial transients, though not all. Due to large phase shifting, each of
the time history takes different time interval to enter into LCO.
And the PDF at higher time levels take a deformed shape from a
single peak behavior. Fig. 19 shows the PDF at non-dimensional
time 5000 in which a double-peak bimodal behavior is emerging.
In this case a 15th order expansion has not been sufficient to cap-
ture the response accurately. A 20th order expansion gives bet-
ter results. At non-dimensional time 7800, the response PDF is
more deformed and gives a two-peak bimodal shape more clearly
as seen in Fig. 20. However, even a 20th order chaos expansion
does not give the required accuracy. The reason for the mis-
match is apparent in Fig. 21. A typical realization time history
with PCE along with its deterministic counterpart in blown up
version is given. One can clearly see how the time history gives
a perfect match at earlier times but fails at large times that is large
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degeneracy in the time history. Here, PCE is unable to capture
the behavior at long time. As discussed earlier one can increase
the order of chaos expansion (more than 20th order expansion).
However, this only push degeneracy to a later time but can not
solve it entirely. Galerkin-PCE with higher order expansion will
also give the same results. However, due to excessively high
computational cost this simulation is not included in the paper.

Figure 22 shows the amplitude response PDFs as a function
of the reduced speed. At U = 6.49 as the bimodal behavior of the
PDF indicates, most of the realizations are concentrated towards
α = 0 and only few go to some positive value of α . At U = 6.52
PDF is almost flat, all realizations are distributed between α = 0
and some positive value. At U = 6.55, the PDF is again bimodal
but more realizations are concentrated towards some positive val-
ues of α and only few towards α = 0. At any U above 6.56 PDFs
have single-peak monotonous behavior. Therefore, the PDFs of
the response amplitude have clearly gone through a qualitative
change. These changes are more prominent in two random vari-
able case compared to the single variable random damping case
as was shown in Fig. 15.

CONCLUSIONS
The bifurcation behavior of a nonlinear pitch-plunge flutter

problem with uncertain system parameters has been studied. The
problem is a simple model problem to understand the mechanism
of nonlinear flutter in a stochastic framework. The parametric
randomness could be attributed to the uncertainties encountered
during laboratory dynamical experiments. A cubic nonlinear
stiffness could represent various sources of analytic nonlinear-
ities; they often represent different control mechanisms.

The Galerkin polynomial chaos method and the projection
method are applied to propagate the uncertainties through the
system. The focus of this work is to investigate the performance

of these techniques and to see how the aeroelastic stability char-
acteristics are altered due to the random effects. The results
of both the methods are compared to a reference Monte Carlo
solution. The computational cost of the Galerkin polynomial
chaos method was prohibitively high as order of expansion in-
creases, hence, for large order expansion the projection method
can be used to save CPU time. The effect of uncertain cubic
structural nonlinearity and viscous damping parameter are in-
vestigated separately as well as simultaneously. Uncertainty in
the cubic stiffness has not altered the deterministic bifurcation
(flutter) point, it only affects the amplitudes of the periodic re-
sponse in the post flutter stage. The PDF behavior also does not
show any qualitative changes. On the other hand, uncertainty in
damping changes the bifurcation point. It can lower the onset
of flutter which seems to be more dangerous. The PDF of the
response amplitude also undergoes a qualitative change. When
both cubic spring stiffness and viscous damping ratio are taken
randomly, the effects on bifurcation behavior of the system are
more prominent. The amplitude as well as onset of flutter varies.
The PDF response amplitude undergoes qualitative changes. In
other words, bifurcation of the response PDF takes place which
clearly shows the risk induced by parametric uncertainty and im-
portance of uncertainty quantification. Thus the effects on the
bifurcation and stability of the nonlinear aeroelastic systems are
more prominent when uncertain system parameters are taken to-
gether rather than as single.
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