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ABSTRACT
We report the parameter estimation results of a self-

sustaining aeroelastic oscillator. The system is composed of a
rigid wing that is elastically mounted on a rig, which in turn is
fixed in a wind tunnel. For certain flow conditions, in particu-
lar dictated by the Reynolds number in the transitional regime,
the wing extracts energy from the flow leading to a stable limit
cycle oscillation. The basic physical mechanism at the origin
of the oscillations is laminar boundary layer separation, which
leads to negative aerodynamic damping. An empirical model of
the aeroelastic system is proposed in the form of a generalized
Duffing-van der Pol oscillator, whereby the linear and nonlin-
ear aeroelastic terms are unknowns to be estimated. The model
(input) noise process accounting for the amplitude modulation
observed from experiments will also be estimated. We apply
a Bayesian inference based batch data assimilation method in
tackling this strongly nonlinear and non-Gaussian model. In
particular, Markov Chain Monte Carlo sampling technique is
used to generate samples from the joint distribution of the un-
known parameters given noisy measurement data. The extended
Kalman filter is utilized to obtain the conditional distribution of
the model state given the noisy measurements. The parameter
estimates for a third order generalized Duffing-van der Pol os-
cillator are obtained and marginal and joint probability density
functions for the parameters will be presented for both a numer-
ical model and a rigid wing that is elastically mounted on a rig
in a wind tunnel.

∗Address all correspondence to this author.

1 INTRODUCTION
The use of flight vehicles operating in low-Reynolds-number

regime has recently increased in both military and civil sectors.
In this range of Reynolds numbers, i.e. 104 ≤ Re≤ 106, lam-
inar boundary layer separation may occur leading to the for-
mation of a laminar separation bubble (LSB), transition of the
laminar shear layer, and subsequent re-attachment of the turbu-
lent layer [1]. Experimental aero-elastic investigations involving
a freely-rotating NACA 0012 airfoil in this Reynolds-number
regime showed self-sustained oscillations of the airfoil[2, 3].
The physical mechanism causing the self-sustained oscillations
is laminar boundary layer separation leading to negative aerody-
namic damping. In previous work by the authors, an empirical
model of the aeroelastic system was proposed in the form of a
generalized Duffing-van der Pol oscillator[4], whereby the linear
and nonlinear aeroelastic terms were then estimated from joint
state and parameter estimation using ensemble Kalman filtering
technique[5].

In this paper, we apply Bayesian inference parameter esti-
mation technique to estimate these parameters for a numerical
model. Furthermore, the model (input) noise process account-
ing for the amplitude modulation observed from experiments will
also be estimated. To achieve this, Markov Chain Monte Carlo
(MCMC) sampling technique [6, 7] is used to generate sam-
ples from the joint distribution of the unknown parameters given
noisy measurement data. The samples obtained from MCMC
runs provide estimated marginal and joint densities of the pa-
rameters to be estimated. The evaluation of the joint probability
density function (pdf) of these parameters requires the evaluation
of the conditional distribution of the model state (pitch and angu-
lar velocity) given the noisy measurements. The state estimation
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is carried out using the extended Kalman filter (EKF) [8–10],
which provides a Gaussian joint pdf approximation of the system
state state. The assimilation of dense measurements in time ren-
ders the system state weakly non-Gaussian for a nonlinear sys-
tem and thus EKF is well suited as a state estimation technique
here. The parameter estimates obtained using the proposed tech-
nique will be compared with those obtained using Least-Squares
estimation.

2 THEORY
Bayesian inference provides a statistical framework which

relates physical observations to mathematical models[6, 7, 11].
Let θ be the vector of system parameters and the vectord de-
notes a collection of physical observations. In Bayesian settings,
the conditional pdfp(d|θ ) of the observations given the sys-
tem parameters is called theforward pdf or likelihood function.
When observations are available, Bayesian inference deduces the
value of the system parameters relying on a valid mathematical
model. This step provides the conditional pdfp(θ |d) of the sys-
tem parameters given the observations, denoted by theinverse
or posterior pdf. Bayes theorem relates the inverse and forward
pdf[6, 7, 11]:

p(θ |d) =
p(d|θ)p(θ )

p(d)
. (1)

In Eq. (1),p(θ ) is the pdf that contains the available knowl-
edge of the parameters before making the observationd[6, 7, 11].
It is called theprior pdf of θ . On the left-hand side of Eq. (1),
we have theposteriorpdf p(θ |d) of θ that represents our knowl-
edge of the system parameters after making the observations.
To obtain the posterior pdf, the prior pdf is multiplied by the
forward or likelihood pdf p(d|θ ) which can be characterized
by the mathematical model of the system. The factorp(d) =
∫

p(d|θ )p(θ )dθ is just a normalization constant.

2.1 State Space Models
The discrete state-space representation of a nonlinear system

is given by [8–10, 12–17]

xk+1 = gk (xk, fk,qk) . (2)

Herex ∈ R
n is the state vector,g ∈ R

n is the discrete nonlinear
model operator,f ∈ R

p is a deterministic input andd ∈ R
m is the

measurement vector which relates to the true state by the mea-
surement operatorh ∈ R

m. q ∈ R
s andε ∈ R

r are independent
Gaussian random vectors with meanqk ∈ R

s andεk ∈ R
r and

covariance matricesQ ∈ R
s×s andΓ ∈ R

r×r respectively. We as-
sume that the model depends on some unknown parameter vector
θ .

The state vectorx is a hidden Markov process with a tran-
sition densityp(xk|xk−1). One can obtain observational data of

this process modelled by the following measurement equation

dk = hk (xk,εk) (3)

wheredk is the measurement vector which relates to the true
statexk and measurement noiseεk by the measurement operator
hk. From this observational model one can also obtain a condi-
tional density of the measurements given the state, denoted by
p(dk|xk).

We can obtain the posterior pdf of the unknown parameter
vector given the measurements as follows[18]

p(θ |d1:n) ∝ p(d1:n|θ )p(θ )

= p(θ )
n

∏
k=1

p(dk|θ)

= p(θ )
n

∏
k=1

∫

p(dk|xk) p(xk|θ ,d1:k−1)dxk. (4)

We need to obtainp(xk|θ ,d1:k−1) being the posterior den-
sity of the statexk at timetk given the observationsd1:k−1 at time
steps up to but not includingtk and the unknown parameter vec-
tor θ . We resort to filtering techniques to obtain this conditional
(or posterior) distribution.

2.2 Data Assimilation via Filtering
The Kalman filter (KF) has become a popular tool for state

estimation problems in linear systems (i.e. linear model and mea-
surement operators) due to its mathematical simplicity [19, 20].
KF results in a recursive analytical solution of theposteriordis-
tribution of the system state conditional upon measurement data.
For weakly nonlinear systems, KF can be extended to the non-
linear case by linearising the model and measurement operators
around the current estimate of the state vector, leading to the
popular (but no longer optimal) extended Kalman filter (EKF)
[9, 10]. Both KF and EKF provide a Gaussian posterior pdf of
the state given observational data. We will briefly overview EKF
as a tool to obtainp(xk|θ ,d1:k−1) which would allow us to eval-
uate the posterior pdf in Eq. (4) of the unknown parameters.

2.2.1 Extended Kalman Filter For nonlinear sys-
tems, the pdf of the state vectorx is generally non-Gaussian even
if the model noise is additive and Gaussian. For weakly non-
Gaussian behavior, one can reasonably approximate the condi-
tional pdf ofx by a Gaussian process through linearization.

One can linearize the measurement operatorhk in Eq. (3)
aboutxk = x f

k andεk = εk to obtain a linearized measurement
model given by

hk (xk,εk) ≈ hk

(

x f
k ,εk

)

+
∂hk (xk,εk)

∂xk

∣

∣

∣

∣

xk=x f
k ,εk=εk

(

xk−x f
k

)

+
∂hk (xk,εk)

∂εk

∣

∣

∣

∣

xk=x f
k ,ε k=εk

(εk− εk) (5)
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where∂hk(xk,εk)
∂xk

∈ R
m×n and ∂hk(xk,ε k)

∂εk
∈ R

m×r describe the Ja-
cobian matrices ofhk (xk,εk) with respect toxk andεk respec-
tively. It is further assumed thatx has a Gaussian prior pdf given

by xk ∼ N

(

x f
k ,P f

k

)

. In the analysis step, EKF estimates the

conditional meanxa
k and covariancePa

k of xk given the measure-
ment vectordk:

Analysis step [8–10]:

Ck =
∂hk (xk,εk)

∂xk

∣

∣

∣

∣

xk=x f
k ,εk=εk

, (6)

Dk =
∂hk (xk,εk)

∂εk

∣

∣

∣

∣

xk=x f
k ,εk=εk

, (7)

Kk = P f
kCT

k

[

DkΓkDT
k + CkP f

kCT
k

]−1
, (8)

xa
k = x f

k + Kk

(

dk−hk

(

x f
k ,εk

))

, (9)

Pa
k = [I−KkCk]P

f
k . (10)

We can also linearize the model operatorgk in Eq. (2) about
xk = xa

k andqk = qk to obtain a linearized model equation:

gk (xk, fk,qk) ≈ gk (xa
k, fk,qk)

+
∂gk (xk, fk,qk)

∂xk

∣

∣

∣

∣

xk=xa
k,qk=qk

(xk−xa
k)

+
∂gk (xk, fk,qk)

∂qk

∣

∣

∣

∣

xk=xa
k,qk=qk

(qk−qk) (11)

where
∂gk(xk,fk,qk)

∂xk
∈R

n×n and
∂gk(xk,fk,qk)

∂qk
∈R

n×s describe the
tangent linear model operators, being the Jacobian matrices of
gk (xk, fk,qk) with respect toxk andqk respectively.

From Eqs. (2)-(11), one obtains the posterior mean and error
covariance matrix [8–10, 12–17] which constitutes the forecast
step.

Forecast step [8–10]:

Ak =
∂gk (xk, fk,qk)

∂xk

∣

∣

∣

∣

xk=xa
k,qk=qk

, (12)

Bk =
∂gk (xk, fk,qk)

∂qk

∣

∣

∣

∣

xk=xa
k,qk=qk

, (13)

x f
k+1 = gk (xa

k, fk,qk) , (14)

P f
k+1 = AkPa

kAT
k + BkQkBT

k . (15)

2.3 Markov Chain Monte Carlo Sampling
EKF can be applied to obtain the conditional pdf

p(xk|θ ,d1:k−1) which would allow us to evaluate the posterior
pdf in Eq. (4) of the unknown parameters. It is important to no-
tice that the the normalization constantp(d) is hard to evaluate.
When the conditional pdf is only known up to a normalization,

direct Monte Carlo sampling techniques are difficult to apply.
One way to alleviate this difficulty is to use MCMC which does
not require the knowledge of this constant.

Simple Monte Carlo sampling technique (e.g. [6]) can gen-
erateindependentrandom samples from the posterior pdfp(θ |d)
from which one can extract relevant statistical information (e.g.
mean and mode). For a general non-Gaussian posterior pdf, in-
dependent samples are difficult to simulate in practice. One can
however sample from a Markov chain whoseequilibriumor sta-
tionarypdf matches the posterior pdfp(θ |d) as described in the
following Subsection. Although the samples are not indepen-
dent, the statistical features of the posterior pdf can be estimated
with reasonable accuracy using a large enough sample size. In
this Section, we briefly describe Markov chains and present the
general algorithm of MCMC adopted in this report, namely the
Metropolis algorithm. More details can be obtained in the books
by Gilkset al. [6] and Liu [7].

2.3.1 Markov Chains A sequence of random vectors
{θ0,θ1, . . .} is called a first-order Markov chain if it satisfies the
property[7]

p(θi+1 = y|θi = z, . . . ,θ0 = z) = p(θi+1 = y|θi = z) . (16)

It states thatθi+1 statistically depends only on the pre-
vious random vectorθi . When the transition pdf (kernel)
p(θi+1 = y|θi = z) is time-invariant (independent ofi), it can be
denoted byA(z,y).

The pdfp(θi) converges to a stationary pdfπ (θi) asi → ∞ if
the chain satisfies three properties[6]: (1) the chain is irreducible,
i.e. starting with any possible state forθ0 the chain can reach
any other state in some number of iterations; (2) the chain is
aperiodic, i.e. the chain does not periodically oscillate among
different sets of states; (3) the chain is positive recurrent, i.e. if
the value ofθ0 is sampled from the stationary distributionπ , all
subsequent iterates will be distributed according toπ . The last
condition is met if the stationary pdfπ and the transition kernel
A(z,y) satisfy the following eigenvalue problem:

∫

π (z)A(z,y)dz = π (y) . (17)

The left-hand side of Eq. (17) gives the marginal distribu-
tion of y under the assumption thatz is from π (z). Therefore,
Eq. (17) guarantees that ifz is fromπ (z), so will bey.

For an aperiodic, irreducible and positive-recurrent Markov
chain (i.e. satisfying the above three conditions), the limiting dis-
tribution of successive iterates will reach the stationary (target)
pdf, regardless of the starting value of the chain[6, 7]. The num-
ber of samples required to reach the stationary distribution from
a starting sampleθ0 is called theburn-in periodof the chain.
After the burn-in period, the samples of the Markov chain ap-
proximately follow the target pdfπ [6, 7].
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2.3.2 The Metropolis-Hastings algorithm Given a
transition kernelA(z,y) for a 1st-order aperiodic, irreducible
and positive-recurrent Markov chain, its stationary distribution
π satisfies Eq. (17). In Bayesian inference problems, the target
(posterior) distribution is available, but the corresponding transi-
tion kernel is not knowna priori. The method first proposed by
Metropoliset al. [21] and generalized by Hastings[22] is adopted
in this paper.

Starting from an arbitrary sample, a candidate pointy is
generated from an arbitrarily chosen proposal pdfq(z,y) in
Metropolis-Hastings algorithm. Then the candidate pointy is
accepted with probabilityα (z,y) where

α (z,y) = min

(

1,
π (y)

π (z)

)

. (18)

For the Metropolis algorithm[21], the proposal pdfq(z,y)
is chosen to be symmetric, i.e.q(z,y) = q(y,z). This constraint
is however relaxed in the Metropolis-Hastings algorithm[22], in
which case the acceptance probability is

α (z,y) = min

(

1,
π (y)q(y,z)
π (z)q(z,y)

)

. (19)

Appendix A explains why the above choice of acceptance
probability α (z,y) leads to the target pdfπ . The Metropolis-
Hastings algorithm has the following attractive features: (1) the
normalization constantp(d) in Eq. (1) is not needed; (2) the can-
didate pointy can be generated from any proposal distribution
q(z,y).

3 NUMERICAL STUDY - SELF-SUSTAINED OSCILLA-
TIONS OF AN AIRFOIL
An empirical model of the aeroelastic dynamics of a NACA

0012 airfoil is proposed in the form of a generalized Duffing-
van der Pol oscillator. We model a wing confined to pure rota-
tion only and forced by random input by the following 3rd order
model:

θ̈ =a1 +a2θ +a3θ̇ +a4
∣

∣θ̇
∣

∣+a5θ 2 +a6θ θ̇ +a7θ̇ 2

+a8θ 3 +a9θ 2θ̇ +a10θ θ̇ 2 +a11θ̇ 3 +a12ξ (t) (20)

with θ is the pitch angle of the wing,ξ (t) is a Gaussian white
noise describing the random input (additive modeling error) and
a12 denotes its strength. We would like to estimatea1 . . . ,a12

using Bayesian inference from a set of noisy observational data
obtained at discrete timestk:

dk = θ (tk)+ εk (21)

whereεk is white Gaussian measurement noise. We will look
at two cases. The first involves assimilating data from one

five second long numerical experiment to obtain joint distribu-
tions of these parameters. The second case involves assimilating
data from four independent experiments, each being five seconds
long.

For numerical investigation purposes, the following numer-
ical values of the system parameters are considered:a1 = 0,
a2 = −540, a3 = 4, a4 = −0.05, a5 = −180, a6 = 0, a7 = 0,
a8 = 2.4×104, a9 = −2.2×103, a10 = 0, a11 = 0 and the inten-
sity of model noise was chosen to bea12= 0.07. These parameter
values lead to self-sustained oscillations with frequency and am-
plitude typical of experimental observations[2–4]. The time inte-
gration step was chosen to be∆t = 2×10−4 and the variance of
the measurement noise is 5×10−6. Fig. 1 displays a sample tra-
jectory of the system as well as the corresponding measured pitch
from which we would like to estimate the model parameters. The
sampling rate for the measurements is 1 kHz as is for the wind-
tunnel experiments. Initial conditions ofθ0 = 0.0034 rad and
θ̇0 = −0.048 rad/s were used. The effect of model noise mani-
fests itself in the response as both amplitude and frequency mod-
ulation, where the measurement noise induces uncorrelated small
amplitude fluctuations.
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−0.05

0
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(r
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(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−0.05
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θ 
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FIGURE 1. RESPONSE OF THE PERTURBED NONLINEAROS-
CILLATOR: (A) SAMPLE TRAJECTORY AND (B) MEASURED
TRAJECTORY

3.1 Parameter estimation
The parametersa1 through a12 will be estimated using

Bayesian inference. The posterior pdf of the unknown param-
eter is provided in general terms in Eq. (4) and the conditional
pdf p(xk = xk|θ ,d1:k−1 = d1:k−1) is obtained using the extended
Kalman filter. Three cases will be examined. In the first case,
data obtained from one five second long numerical experiment
will be used to obtain joint distributions of these parameters us-
ing MCMC sampling technique. The second case involves as-
similating data from four independent experiments, each being
five seconds long. The last case will deal with data obtained
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from wind tunnel experiment.

3.1.1 case 1 Using the measured response shown in
Fig. 1b and a flat prior for the parameters (i.e.p(θ ) ∝ 1 in
Eq. (4)), we obtain the posterior marginal pdfs for the param-
eters shown in Fig. 2. The pdfs shown are normalized histogram
obtained from 8.5 million MCMC samples extracted from 170
MCMC chains running in parallel on a distributed-memory mul-
tiprocessor machine (HP Intel Xeon cluster with 178 processor
cores) using message-passing interface (MPI) [23]. The dashed
line indicates the true parameter values. We can see that the
modes of the pdfs does not in general coincide with the true
parameter values. This is due to the limited information that
the measured data contains regarding these parameters. The
marginal pdf with the most non-Gaussian traits is the pdf for the
model noise intensitya12, being a skewed pdf. The other param-
eters have close to Gaussian pdfs.

We also obtained the posterior joint pdfs for the parameters.
Most of the joint distributions between parameter pairs showed
little correlation. For the cases where high correlation was ob-
served (i.e. correlation coefficient greater than 0.4), the joint
distributions are shown in Fig. 3. The high correlation between
some parameters as shown in Fig. 3 can be explained physically.
For example, the high negative correlation between the linear
stiffness coefficienta3 and a nonlinear stiffness coefficienta8 is
expected as the total stiffness in the system is fixed and thus if
one coefficient is overestimated, the other will tend to be under-
estimated. Similar explanations can be presented to describe the
high correlation between some parameters.

3.1.2 case 2 For this case, we will assimilate data ob-
tained from four independent numerical experiments, each one
sampled at a rate of 1 kHz. The overall posterior pdf of the pa-
rameters will be proportional to the product of the four posteri-
ors obtained from data for each experiment. The four trajectories
and the measured responses are all concatenated and shown in
Fig. 4. Once more, a flat prior for the parameters (i.e.p(ai) ∝ 1
is utilized to obtain the marginal posterior pdfs shown in Fig. 5.
In comparison to the marginal distributions obtained using mea-
surements from just one experiment (case 1) as shown in Fig. 2,
the uncertainty in the parameter estimates (measured in terms of
support of the pdfs) decreased for all parameters. Furthermore, if
the mode of the marginal pdfs is chosen as an estimate for the pa-
rameters, the bias in the estimate also decreases when data from
four experiments was assimilated in comparison to data from just
one experiment. Just as in case 1, the joint distributions highly
correlated parameters (i.e. correlation coefficient greater than
0.4) are shown in Fig. 6. It is interesting to note that assimilat-
ing more data does not change the shape of the joint distributions
(i.e. the correlation coefficients do not vary significantly).

4 CONCLUSION
Bayesian inference provides parameter estimates for a self-

sustaining aeroelastic oscillator. An empirical model of the
aeroelastic system is proposed in the form of a generalized
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FIGURE 2. POSTERIOR PARAMETER PDFS OBTAINED USING
MCMC SIMULATIONS FOR CASE 1. DASHED LINE INDICATES
TRUE PARAMETER VALUE.

Duffing-van der Pol oscillator, whereby the linear and nonlin-
ear aeroelastic terms were estimated. The model (input) noise
process accounting for the amplitude modulation observed from
experiments is also estimated. Markov Chain Monte Carlo sam-
pling technique is used to generate samples from the joint dis-
tribution of the unknown parameters given noisy measurement
data. The extended Kalman filter is utilized to obtain the con-
ditional distribution of the model state given the noisy measure-
ments. The parameters of a numerical third order generalized
Duffing-van der Pol oscillator are estimated and marginal and
joint probability density functions are presented. In compari-
son to the case in which data from one experiment was assim-
ilated, assimilating data from four independent experiments re-
duced both the uncertainty as well as the bias in the estimates.
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MCMC SIMULATIONS FOR CASE 2. DASHED LINE INDICATES
TRUE PARAMETER VALUE.
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