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ABSTRACT
Stationary data lend themselves well to the Fourier decom-

position into harmonic components. Conversely, spectral char-
acteristics of non-stationary data vary with time, and hence do
not generally admit the application of Fourier transform. In
order to investigate the localized time-frequency characteristics
of non-stationary data, the notions of instantaneous frequency
and amplitude are invoked. These concepts are applied to the
von Kármán vortex shedding observed in the wake of a self-
sustained pitching airfoil. For this range of Reynolds numbers
(104 − 105), it has been reported that at any given airspeed the
shedding frequency of the vortex street varies with angle of at-
tack (AOA), ranging from the Strouhal number St ≈ 0.6 at zero
AOA and tending to St ≈ 0.1 for high AOA. For the pitching mo-
tion, which originates from a positive energy transfer from the
flow to the airfoil due to negative aerodynamic damping, the von
Kármán vortex shedding frequency varies with pitch angle hence
with time. Hilbert transform provides a robust estimate of in-
stantaneous frequency through the definition of analytic signals.
However, Hilbert transform provides meaningful instantaneous
frequency for only monocomponent signals. To overcome this

∗Address all correspondence to this author.

difficulty, the Hilbert-Huang transform is commonly exploited.
In this paper, both the Hilbert and Hilbert-Huang transforms
are applied in order to capture the instantaneous vortex shed-
ding frequency. For multicomponent signals Empirical Mode
Decomposition (EMD) splits the signal to monocomponent sig-
nals, namely Intrinsic Mode Functions, through a so-called sift-
ing process. Application of Hilbert transform to these functions
produces instantaneous frequencies and amplitudes. Therefore
the time-frequency-amplitude representation of the signal ap-
pears to be a promising tool for obtaining more physical insight
into the time-varying vortex shedding frequency in the wake of a
pitching airfoil.

1 INTRODUCTION
Time-frequency characteristics of vortex shedding in the

wake of a self-sustained pitching airfoil is investigated using
time-frequency analysis tools. Initially, a brief introduction to
time-frequency analysis is presented. The concepts of Hilbert
transform and analytic signal are reviewed and a simple exam-
ple is adapted to demonstrate the performance of Hilbert trans-
form in order to identify the local frequencies in monocompo-
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nent signals. Furthermore, Hilbert-Huang transform, a method
for analysing multicomponents signals, is discussed briefly. As
an illustrative example, this method is used to extract the local
frequencies of the sum of two frequency modulated signals. Fi-
nally the aforementioned methods are used to explore the time-
varying frequency of vortices shed in the wake of a self-sustained
oscillating NACA0012 airfoil; the axis is located at 18.6% of
the chord length from the leading edge. The estimated frequen-
cies are compared to those calculated from the successive zero-
crossings of the signal.

2 Hilbert Transform and Instantaneous Frequency
2.1 Definition

In the study of vibration, the notion of frequency refers to the
number of cycles of oscillation per unit time [1]. This definition
is well-suited for stationary data, where Fourier transform is ap-
plicable. In Fourier perspective, at least one cycle of oscillation
is necessary to identify its corresponding frequency[2]. How-
ever, the spectral characteristics of non-stationary data changes
with time (e.g. frequency changes with time). For non-stationary
data, therefore the notion of instantaneous frequency is intro-
duced [1, 3–5].
In 1946, Gabor introduced the definition of analytic signal
through Hilbert transform [6], which offers a unique way of
defining instantaneous frequency. Consider the real signal s(t)
where the complex analytic signal, which is defined as z(t) is
constructed from the real signal [7]

z(t) = s(t)+ iH[s(t)] (1)

where H[.] refers to Hilbert transform defined as

H[s(t)] =
1
π

p
∫ s(t ′)

t − t ′
dt ′ (2)

where p is the Cauchy Principal Value [4, 7]. Note that all the
integrals without limits imply the integration from −∞ to +∞ un-
less otherwise stated.
It is worth mentioning that Hilbert transform is the convolution
of the original signal s(t) and the function 1

t , which enables the
identification of local properties of the signal in time [2, 7].
Consider the polar coordinate representation of the analytic sig-
nal z(t) as

z(t) = a(t)eiϕ(t) (3)

where

a(t) =
√

(s(t))2 +(H[s(t)])2, (4)

ϕ = arctan
H[s(t)]

s(t)
. (5)

It can be shown that the derivative of the phase function ϕ(t) is
the instantaneous frequency [3] as discussed in the Appendix

ω =
dϕ
dt

. (6)

In addition to the original signal s(t), the need for the complex
signal z(t) are as follows [4]:
(1) The derivative of the phase function is defined as the instan-
taneous frequency. However, the phase function of the original
real signal is always zero. Therefore it fails to provide any mean-
ingful information of the frequency content of the signal. How-
ever the analytic signal constructed from the original real signal
and its Hilbert transform is complex (i.e. having non-zero phase
function). The derivative of this phase function provides the in-
stantaneous frequency.
(2) The Fourier transform of a real signal is always symmetric
with respect to the frequency. Thus, the mean frequency value
of the signal turns out to be zero, which is again problematic.
This problem can be circumvented through the complex analytic
signal. In order to demonstrate this fact, let us apply the Fourier
transform on the analytic function of Eq. (1), namely

F [z(t)] = F [s(t)]+ iF [H [s(t)]] . (7)

Eq. (7) is valid due to linear property of Fourier transform. Using
the following property of Fourier transform [7]

F [H [s(t)]] = −i sgn(ω)S(ω) (8)

it can easily be proved that

Z(ω) = (1+ sgn(ω))S(ω) =

{
2S(ω), if ω > 0
0, if ω < 0

. (9)

Note that the spectrum of the analytic signal z(t) is zero for neg-
ative frequencies and double for the positive frequencies, which
maintains the energy of the analytic signal to that of the origi-
nal signal. This property introduces a positive mean frequency,
which is physically more plausible.

2.2 Illustrative example
In order to demonstrate the performance of Hilbert trans-

form in identifying local frequency, the Hilbert transform is ap-
plied to the frequency modulated signal depicted in Fig. 1. The
mathematical description of the signal is given by

s(t) =

{
sin(2π (0.4t +2) t), if 0 ≤ t ≤ 5s
sin(2π (3) t), if 5s < t ≤ 10s

. (10)

According to Eq. (6), the instantaneous frequency can be ob-
tained by finding the derivative of the phase function with respect
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to time, namely

ω =
dϕ
dt

=

{
2π (0.8t +2) , if 0 ≤ t ≤ 5s
2π (3) , if 5s < t ≤ 10s

. (11)

The frequency of the signal changes linearly up to 5s: it begins
at 2Hz and ends 6Hz at 5s. At this time instance, the frequency
drops off sharply and becomes 3Hz. This frequency remains con-
stant until the end of oscillation.
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FIGURE 1. Monocomponent frequency modulated signal s(t)
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FIGURE 2. Hilbert transform of frequency modulated signal s(t)

The Hilbert and Fourier transforms of the signal are shown
in Fig. 2 and Fig. 3 respectively. Since Hilbert transform involves
convolution with time, it is able to capture the variation of fre-
quency in time, whereas Fourier transform fails to provide such
information.
Note that Hilbert transform only provides meaningful instan-
taneous frequency for monocomponent signals [2]. An exten-
sion of Hilbert transform, namely Hilbert-Huang transform is

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

A
m

pl
itu

de

FIGURE 3. Fourier transform of frequency modulated signal s(t)

proposed by Huang et al.[2] to handle multicomponent non-
stationary signals as discussed next.

3 Intrinsic Mode Functions
3.1 Definition

Huang et al. [2] proposed two restrictions in order to guar-
antee a well defined signal for applicability of Hilbert transform:
(1) The signal has to possess the same number of zero crossings
and extrema.
(2) The signal has to be symmetric with respect to local zero
mean.
Huang et al. [2] proposed Empirical Mode Decomposition
method (EMD) that decomposes any arbitrary signal into a set of
oscillatory modes that satisfies the aforementioned restrictions.
These oscillatory modes are referred to as Intrinsic Mode Func-
tions (IMF). EMD decomposes the signal into IMFs through a
procedure called sifting process, which is described as following
[2]:
(1) The extrema are identified first. Then upper and lower en-
velopes are constructed by connecting all maxima and minima
respectively. The mean of the two envelopes m1 is computed and
subtracted from the original signal. The result is called h1:

s(t)−m1 = h1. (12)

(2) In order to obtain a more symmetric signal, step 1 is repeated.
Hence h1 is treated as the original signal and h11 is obtained as

h1 −m11 = h11. (13)

(3) After k time repetitions of the process, the result is

h1(k−1) −m1k = h1k. (14)

Thus the first IMF is given by

IMF1 = h1k. (15)
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(4) The criterion for stopping the iteration can be expressed in
terms of the standard deviation SD, computed from the two suc-
cessive sifting processes, i.e.

SD =
T

∑
t=0

[∣∣h1(k−1)(t)−h1k(t)
∣∣2

h2
1(k−1)(t)

]
. (16)

The typical limit on the value of SD can be set between 0.2 and
0.3.
(5) For the extraction of the second IMF , IMF1 is subtracted
from the original signal, namely

s(t)− IMF1 = r1. (17)

Then the residual, r1, is treated as the original signal and the steps
1 to 4 are applied to it. After performing the sifting process iter-
atively until the stopping criterion is satisfied, the second IMF is
extracted.
(6) The entire process is repeated until nIMFs are produced, i.e.

ri−1 − IMFi = ri 2 < i < n. (18)

There are two criteria to terminate the entire process:
(a) When IMFn or residual rn is smaller than a specified value.
(b) rn is a monotonic function from which no IMF can be ex-
tracted.
Finally the complete decomposition process can be summarized
through the following equation:

s(t) =
n

∑
i=1

IMFi + rn. (19)

3.2 Illustrative example
In order to demonstrate the application of EMD on multi-

component signals, the sum of two frequency modulated signals
is considered in this section. The sum of the two complex sig-
nals a1(t)eiϕ1(t) and a2(t)eiϕ2(t) with time varying amplitudes and
frequencies, has an instantaneous frequency given by [5]

ϕ ′(t) =
1
2

(
ϕ ′

1(t)+ϕ ′
2(t)

)
+

1
2 (ϕ ′

1(t)−ϕ ′
2(t))

(
a2

1(t)−a2
2(t)

)
a2(t)

+
(a′1(t)a2(t)−a′2(t)a1(t))sin(ϕ1(t)−ϕ2(t))

a2(t)
(20)

with

a2(t) = a2
1(t)+a2

2(t)+2a1(t)a2(t)cos(ϕ1(t)−ϕ2(t)). (21)

Note that the prime symbol (′) implies the derivative of the func-
tion. We consider the sum of two frequency modulated signals
given by

s(t) = cos [2π (0.1t +2) t]+2cos [2π (0.2t +4) t]. (22)

This signal is plotted in Fig. 4. Fig. 5 shows the Fourier transform
of the signal. Evidently, the frequency band of the signal spans
from 2Hz to 8Hz. However the Fourier transform of the signal
is not able to detect the variation of frequency in time. In or-
der to obtain the instantaneous frequency, first the analytic signal
corresponding to s(t) is constructed numerically using Hilbert
transform. Next the instantaneous frequency of the same signal
is calculated using Eq. (20). Instantaneous frequencies obtained
by these two methods show excellent agreement as evident from
Fig. 6. Although Hilbert transform identifies the general trend in
the temporal variation of frequency, it cannot provide any infor-
mation of the individual components buried in the multicompo-
nent signal.
Fig. 7 shows the IMFs extracted from the signal using EMD.
Note that the two components are completely separated. These
components are well suited for applying Hilbert transform. The
frequency contents of the IMFs can be estimated from Fig. 8 and
Fig. 9, which closely match:

ω =
dϕ
dt

=

{
2π (0.2t +2) , IMF1
2π (0.4t +4) , IMF2

. (23)
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FIGURE 4. Sum of two frequency modulated signals
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FIGURE 5. Fourier transform of s(t)
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FIGURE 6. Hilbert transform of s(t)
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FIGURE 7. IMFs extracted from s(t)
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FIGURE 8. Fourier transform of the IMFs extracted from s(t): (a)
first IMF (b) second IMF
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FIGURE 9. Time-frequency representation of s(t)
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4 Vortex shedding frequency of a pitching airfoil
A rigid, but flexibly mounted, NACA0012 airfoil is oscillat-

ing freely in transitional Reynolds number and incompressible
flow. Its axis of rotation is located at 18.6% chord. The
phenomenon of low amplitude self-sustained pitch oscillations
in this flow regime (5.0× 104 < Rec < 1.2× 105) has recently
been observed experimentally and numerically (See Poirel et al.
[8], Poirel and Yuan [9] and Métivier et al. [10]). It has been
shown that the laminar separation of the boundary layer near
the trailing edge plays a critical role in sustaining the pitching
oscillations. Their main features are small amplitude (θ < 5.5◦)
and essentially simple harmonic motion whose frequency can
be related to the so-called aeroelastic natural frequency, as
calculated using linear thin-airfoil theory with unsteady effects
based on Theordorsen’s model. It is shown not to coincide with
a simple von Kármán vortex shedding mechanism which occurs
at frequencies two orders of magnitude higher. Accordingly,
the high-frequency, shear instabilities present in the flow which
leads to von Kármán vortex shedding are not crucial, nor
necessary, to the maintaining mechanism of the self-sustained
aeroelastic oscillations. They exist regardless if the airfoil is
pitching or not. For the statically held airfoil, Huang et al.
[11] showed experimentally that the shedding frequency, as
characterized by the Strouhal number, St = fsd/U , decreases
with angle of attack and converges toward a value of St ≈ 0.1
for angles above 20◦, which is close to the classic bluff-body
value of 0.2. The parameter, d, is the frontal projection that the
airfoil makes with the incoming free-stream. For the NACA0012
airfoil at small angles of attack, the value of d will be very close
to 0.12c, where c is the chord length.

4.1 Numerical study
4.1.1 simulation set-up The case studied here

originates from a two-dimensional aeroelastic numerical simu-
lation performed at the Laboratoire de Mécanique des Fluides
Numériques (LMFN) at Laval University. The mesh generator
and flow solver used in this study are the commercial codes
Gambit 2.3 and Fluent 6.3. Spatial and temporal discretizations
were performed with second-order schemes for all quantities.
The velocity-pressure coupling is based on a SIMPLE segre-
gated algorithm. Unstructured meshes are used throughout this
investigation. The flow is simulated based on the incompressible
Unsteady Reynolds Averaged Navier-Stokes (URANS) equa-
tions under Boussinesq’s assumption. The URANS simulations
were run with the SST k − ω turbulence closure model and
with the transitional flow option activated. The transitional flow
option specifies a low-Reynolds-number dampening correction
to the turbulent viscosity and allows for a more accurate rep-
resentation of the actual flow, which is expected to exhibit an
attached laminar boundary layer up to separation. This aspect
of the modeling is critical since unsteady separated flows may
be strongly affected by the choice of turbulence and transition
models.
The elastically mounted rigid airfoil is modeled as a one degree-
of-freedom in pitch, with linear structural forces balancing

the aerodynamic loads. The structural equation is solved at
every time-step and is then coupled with the flow solver, as
illustrated in the Fig. 10. The time-step size for the calculations
is ∆t = 10−5 s, i.e., over 30,000 time-steps per aeroelastic oscil-
lation (3Hz) and about 400 time-steps per Strouhal period due
to von Kármán vortex shedding (≈ 250Hz). At each time-step,
iterations were carried out until an RMS convergence criterion
of 10−5 on all residuals was reached.

FIGURE 10. Calculation algorithm

The pitching airfoil problem is here solved in a fixed frame
of reference, which thus requires moving body and moving grid
capabilities. To retain second-order time accuracy in Fluent,
deforming mesh and re-meshing around the rotating airfoil is
avoided. Rather, a circular, non-conformal sliding interface
located on a radius of two chords about the pitching axis is used.
This allows taking into account the oscillating motion of the
airfoil without deforming the mesh since the inner part rotates
rigidly with the body while the outer part remains stationary.
There is no need for time-varying boundary conditions in
this case as long as only pitching oscillations are considered.
The simulated airfoil is located in the center of a very large
calculation domain, which extends 100 chord lengths in both
directions. Constant and uniform velocity is imposed at the inlet
while constant static pressure is imposed at the outlet. Far above
and below the wing section, symmetry conditions are used to
model slip walls. Sufficient wake and near-body resolution is
used to capture accurately the vorticity gradients and to satisfy
the turbulence model requirement for the first cell thickness,
namely y+ ≈ 1 on the airfoil surface over the whole cycle.
In comparison with the experimental data, these aeroelastic
simulations are found to produce reasonably accurate self-
sustained pitching oscillations (LCO), with a good match in both
amplitude and frequency, as well as for the wake vortex shedding
frequency. Note that preliminary tests with turbulence modeling
without low-Re number correction (i.e. Sparlat-Allmaras in
Fluent) did not predict any LCOs. This brings support to the
notion that boundary layer separation must occur on the θ = 0◦
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airfoil configuration for any oscillation to kick in. Artificially
robust boundary layers in a URANS model or tripped boundary
layers in an actual laboratory set-up concur on that point.
Fig. 11 shows the pitch motion as well as vertical and horizontal
velocity fluctuations in the wake measured at one chord length
behind the trailing edge. The free-stream velocity is U = 6m/s,
which corresponds to a Reynolds number of Rec = 6.4 × 104.
It is reported by Huang et al. [11] that for a static airfoil at low
angle of attack (< 8◦) and chord Reynolds number of 64000, the
flow regime becomes either subcritical or transitional. It is also
reported that in the subcritical regime, the periodic and smooth
structure of vortex shedding as observed in the laminar regime
becomes superimposed by turbulent fluctuations. The structure
of vortex shedding becomes even more irregular in the case of
transitional mode of flow. This irregular structure of the shed
vortices in the wake can be noticed in Fig. 11.

0 0.5 1 1.5 2 2.5 3

−5

0

5

P
itc

h(
de

gr
ee

)

(a)

0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

V
er

tic
al

 v
el

oc
ity

(m
/s

) (b)

0 0.5 1 1.5 2 2.5 3
4

5

6

7

Time(s)

H
or

iz
on

ta
l v

el
oc

ity
(m

/s
) (c)

FIGURE 11. (a) Pitch motion (b) Vertical velocity at one chord length
behind the trailing edge (c) Horizontal velocity at one chord length be-
hind the trailing edge

4.1.2 Analysis The instantaneous frequency shed in
the wake of the pitching airfoil is analysed using the methods
described in previous sections. The pitching motion is a har-
monic function with the fundamental frequency of 2.67Hz. The
velocity measurements consist of two parts: a low frequency
component corresponding to the pitching motion of the airfoil
and high frequency components related to the vortices shed at
the trailing edge. The frequencies of these two parts are shown
in Fig. 12, which illustrates the Fourier transform of the pitch

motion, vertical and horizontal velocities. The low frequency
component of vertical velocity has the same frequency as the
pitching motion i.e. 2.67Hz whereas for the horizontal velocity,
this frequency is double as expected.

In order to study the frequency of vortex shedding, the
analysis is focused on the frequencies between 20Hz and 300Hz.
Thus, the frequency components outside of this range are
removed using a Fourier based filter. The time and frequency
results are shown in Fig. 13 and Fig. 14 respectively. Note that
the vortex shedding pattern is non-periodic and turbulent-like.
To obtain the instantaneous frequency of vortex shedding, the
velocity responses corresponding to one full cycle of pitch
motion i.e. between 0.2977s and 0.6863s, is chosen for the
analysis as shown in Fig. 15. Note that the pitch motions are
also plotted in these figures: the pitch motion represented by the
solid line shows the angular displacement of the airfoil at the
same time that the velocity is obtained, whereas the dashed line
represents the pitch motion at the time the vortices are shed at
the trailing edge. It is worth to mention that the time lag between
the two pitch motions represents the time it takes for the vortices
to travel from the trailing edge to the one chord length behind the
trailing edge where the velocities are obtained (∆τ = c/Ūwake).

Applying the EMD procedure, the IMFs are extracted for
vertical and horizontal velocities. The first five IMFs of the ver-
tical response and their frequency contents are shown in Fig. 16
and Fig. 17 respectively. As shown in these figures, the energy of
the signal is concentrated in more than one IMFs. Therefore, it
can be concluded that the signal is multicomponent. Fig. 18 and
Fig. 19 show the first five IMFs extracted from the horizontal
velocity represented in time and frequency respectively. Fig. 17
and Fig. 19 reveal that each IMF is a narrow banded signal that
has higher frequency components comparing with its successive
IMF.

The instantaneous frequency of vortex shedding obtained
from the vertical velocity is estimated using Hilbert transform
and is shown in Fig. 20. This instantaneous frequency is also
compared with the conventional frequencies calculated from
zero crossings. The time lapse between two zero crossings
is considered as half of the period of oscillation. These two
curves illustrate the same trend in the variation of frequency
except where the Hilbert transform shows drastic downshift
of instantaneous frequency. These negative frequencies are
not physically meaningful. In order to alleviate this difficulty,
Hilbert transform should be applied on the monocomponent
signals. The extracted IMFs are used to provide more insight
into the shedding frequency variation. The instantaneous
frequency of the first two IMFs, which contain most of the
energy of the signal, are also plotted in Fig. 20. As evident
from the figure, both IMFs show positive frequency contents.
However the physical interpretation of these IMFs need further
investigation. Fig. 21 shows the variation of frequency with
angle of attack. Note that the frequency fluctuates between 50Hz
to 500Hz where the first IMF exhibits higher frequency content
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comparing to the second IMF. It should be mentioned that no
general trend in frequency variation can be observed considering
only one cycle of pitch motion. The variation of frequency with
time and angle of attack for horizontal velocity are illustrated in
Fig. 22 and Fig. 23 respectively.
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FIGURE 12. Fourier based frequency contents of: (a) pitch motion
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FIGURE 13. Filtered velocities: (a) vertical (b) horizontal

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

A
m

pl
itu

de
(m

/s
)

(a)

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

A
m

pl
itu

de
(m

/s
)

Frequency (Hz)

(b)

FIGURE 14. Fourier based frequency content of the filtered veloci-
ties: (a) vertical (b) horizontal

8 Copyright c© 2010 by ASMECopyright © 2010 by ASME and The Government of Canada



0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

−5

0

5

P
itc

h(
de

gr
ee

)

Time(s)

(a)

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
−2

−1

0

1

2

V
er

tic
al

 v
el

oc
ity

(m
/s

)

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

−5

0

5

P
itc

h(
de

gr
ee

)

Time(s)

(b)

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

−1

−0.5

0

0.5

1

H
or

iz
on

ta
l v

el
oc

ity
(m

/s
)

FIGURE 15. Velocity responses between 0.2977s and 0.6863s: (a)
vertical (b) horizontal; pitch motion: dashed line (θ(t)), solid line
(θ(t −∆τ))
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FIGURE 16. IMFs extracted from vertical velocity response between
0.2977s to 0.6863s
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FIGURE 17. Fourier transform of the extracted IMFs: vertical veloc-
ity
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FIGURE 18. IMFs extracted from horizontal velocity response be-
tween 0.2977s to 0.6863s
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FIGURE 19. Fourier transform of the extracted IMFs: horizontal ve-
locity
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FIGURE 20. Time-frequency representation of vortex shedding at
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FIGURE 21. Frequency vs. angle of attack: vertical velocity
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FIGURE 22. Time-frequency representation of vortex shedding at
one chord length behind the trailing edge: horizontal velocity
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FIGURE 23. Frequency vs. angle of attack: horizontal velocity
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4.2 Experimental study
4.2.1 Aeroelastic apparatus The apparatus is a two-

degree-of-freedom system, composed of a rigid wing moving in
translation (plunge - h) and in rotation (pitch - θ ), as shown in
Fig. 24. Note that the grid shown in the figure is used to artifi-
cially generate free-stream turbulence; it is not used in this work.
The wing span is s = 0.61m and its chord is c = 0.156m, thus,
giving an aspect ratio of AR = 3.9. End plates are installed to
minimize 3D effects. The gap between the wing tips and end
plates is 7mm, which is equivalent to 1% of the span. The wing
and the end plates result in a solid blockage ratio of 5%. The
wing is installed vertically in the test section of the wind tunnel
to isolate its motion from the effect of gravity. Both the pitch and
plunge dynamics are measured with rotary potentiometers and
are recorded via a National Instruments PCI-6034E A/D card us-
ing a LabVIEW based data acquisition system in which the sam-
pling rate is set at 5kHz. In this work, the motion is restricted to
pitch alone, with plunge motion held fixed.

FIGURE 24. Schematic of aeroelastic rig (turbulence-generating grid
not used in this work)

4.2.2 Wind tunnel facility The experiments are
performed in the RMC wind tunnel. It is a closed circuit low
speed tunnel powered by a 75kW three-phase motor. The
flow velocity ranges from 4 to 60m/s, and is controlled by
varying the fan speed. These velocities result in possible chord
Reynolds number (Rec) between 40,000 and 630,000. The test
section measures 0.76m by 1.08m. The free-stream velocity is
measured with a pitot-static tube located at the entrance of the
test section and linked to a manometer. The flow temperature
is also recorded with a thermocouple placed at the exit of
the test section. Unsteady flow measurements are obtained
with a hot-wire anemometer and an X-wire probe. The probe
is mounted to measure the longitudinal (x) and normal (y)
components of the velocity, u and v respectively. In this work,
the probe is located at a distance of one chord aft of the trailing
edge, and aligned with the airfoil when at 0◦ pitch angle. Data
acquisition is conducted using DISA-56C17 CTA bridges and
DISA-56N20 signal conditioning units. The data is sent through
a high pass filter set at 1Hz and a low pass filter at 10kHz. For
the range of airspeeds considered in this work, a maximum

turbulence intensity level (Tu = u′rms/U) of no more than 0.15%
exists. The pitch angle and the wake velocity components,
which are measured simultaneously, are shown in Fig. 25. The
free-stream velocity is U = 7.2m/s and the chord Reynolds
number is Rec = 7.5× 104. As evident from Fig. 25, the wake
pattern is highly fluctuating. In addition to measurement noise,
this phenomenon is due to two physical sources: relatively high
velocity (high Reynolds number) that causes subcritical and
transitional flow regime and the mixing of vortex structures due
to unsteady effect in the aeroelastic system.
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FIGURE 25. Raw measurements (a) pitch motion (b) vertical velocity
at one chord length behind the trailing edge (c) horizontal velocity at one
chord length behind the trailing edge

4.2.3 Analysis In this section the vortex shedding
frequency in the wake of a self-sustained oscillating NACA0012
airfoil from laboratory experiment is investigated. The vortex
shedding frequency of a pitching airfoil at relatively low
Reynolds number (Rec = 27000) and small angle of attack
(< 3◦) is reported by Jung et al. [12]. In this regime, the flow
is laminar and the vortex shedding structure is periodic and
smooth. Hence it is shown by Jung et al. [12] that the Hilbert
transform provides meaningful estimation of instantaneous
frequency. However due to the more complex structure of
vortex shedding at higher Reynolds number (Rec = 75000) , the
analysis is more difficult in the current investigation.
The procedure followed in the previous section for the analysis
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of the numerical data is applied to the experimental data pre-
sented in this section. Fig. 26 shows the frequency contents of
the pitch motion and velocity responses using a Fourier analysis.
Note that the pitch motion has a fundamental frequency of 3.1Hz
and some superharmonics. Note that the pitch measurements
captured by the the rotary potentiometer are not valid for the
frequencies above 30Hz. The velocity measurements in the
wake consists of two parts: the first part includes the input
frequency and its multiples that constitute the frequency content
of LCO, and the second part relates to the frequency content of
the vortex shedding. As shown in this figure, the frequency band
of vortex shedding or more generally the wake lies in a range of
20Hz to 400Hz. Therefore the frequency components outside
of this range are removed from the velocity responses. Fig. 27
and Fig. 28 show these filtered responses in time and frequency
domains respectively.
In order to investigate the vortex shedding frequency, the
analysis is focused on the velocity responses that correspond to
one cycle of pitch motion. These velocities are plotted in Fig. 29.
Similar to the case of numerically simulated data, the pitch
motions are also plotted in this figure: the solid line represents
the pitch motion measured at the same time as the velocity is
captured, and the dashed line is the lagged pitch motion at the
time the vortices left the trailing edge. It should be mentioned
that this time is calculated by dividing the one chord length (the
distance between the trailing edge and measurement location)
by the mean horizontal velocity at the wake.
The first five IMFs obtained from vertical velocity and their
Fourier transform are plotted in Fig. 30 and Fig. 31 respectively.
Fig. 32 and Fig. 33 show the same quantities for horizontal
velocity. Again similar to the numerically simulated data, five
IMFs with significant amplitude are identified. This fact reveals
that the response is multicomponent and application of Hilbert
transform does not lead to meaningful values of instantaneous
frequency, as shown in Fig. 34 and Fig. 36 for vertical and
horizontal velocity respectively. The instantaneous frequencies
obtained by the zero crossing method are also plotted in these
figures. The drastic increase of the estimated frequencies at some
instances illustrates the failure of this Fourier based method in
providing physical frequency content of the dynamical system.
However using first and second IMFs, positive instantaneous
frequencies that are physically more acceptable are obtained
(see Fig. 34 and Fig. 36). The variation of these frequencies
with angle of attack is also plotted in Fig. 35 for the vertical
velocity. In order to correlate the vortex shedding frequency
with the angle of attack and boundary layer conditions, perhaps
more than one cycle of pitch motion seems to be necessary for
the signal processing, but not carried out in this investigation.
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FIGURE 26. Fourier based frequency contents of: (a) pitch motion
(b) vertical velocity (c) horizontal velocity
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FIGURE 28. Fourier based frequency content of the filtered measure-
ments: (a) vertical velocity (b) horizontal velocity
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FIGURE 29. Velocity responses between 0.2242s and 0.5436s: (a)
vertical (b) horizontal; pitch motion: dashed line (θ(t)), solid line
(θ(t −∆τ))
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FIGURE 30. IMFs extracted from vertical velocity response between
0.2242s and 0.5436s
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FIGURE 31. Fourier transform of the extracted IMFs: vertical veloc-
ity
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FIGURE 32. IMFs extracted from horizontal velocity response be-
tween 0.2242s and 0.5436s
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FIGURE 33. Fourier transform of the extracted IMFs: horizontal ve-
locity
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FIGURE 34. Time-frequency representation of vortex shedding at
one chord length behind the trailing edge: vertical velocity
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FIGURE 35. Frequency vs. angle of attack: vertical velocity
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FIGURE 36. Time-frequency representation of vortex shedding at
one chord length behind the trailing edge: horizontal velocity
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5 CONCLUSION
Hilbert transform based non-stationary signal processing

methods are applied for the estimation of vortex shedding fre-
quency in the wake of a self-sustained oscillating NACA0012
airfoil. Since the energy of the signal is concentrated in more
than one IMF, it can be concluded that the specific signals in-
vestigated here numerically and experimentally, are multicom-
ponent in nature. The frequencies obtained using Hilbert trans-
form demonstrate some non-physical downshifts that make the
frequencies negative. These frequencies are also compared with
the conventional definition of frequency defined by zero cross-
ing rate. The estimated frequencies by zero crossing rate show
some drastic increase of frequencies that reveal the difficulty of
both methods in estimating the instantaneous frequencies. On the
other hand, applying Hilbert transform on IMFs, leads to positive
frequencies that are physically meaningful. However further in-
vestigation are required in order to relate the extracted IMFs to
the physics of the dynamical system.
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APPENDIX
This Appendix closely follows Cohen [3].

Time-frequency distributions for the signal z(t) can generally be
expressed by the following equation

P(t,ω) =
1

4π2

∫ ∫ ∫
e−iθ t−iτω+iτuφ (θ ,τ)

Z∗
(

u+
1
2

θ
)

Z
(

u− 1
2

θ
)

dudτdθ (24)

where φ (θ ,τ) is called the kernel and Z is the Fourier spectrum
of z(t). The local or mean conditional frequency at a particular
time is given by

〈ω〉t =
1

P1(t)

∫
ωP(t,ω)dω (25)

where P1(t) is the the density in time,

P1(t) =
∫

P(t,ω)dω (26)

and is equal to
∣∣z(t)2

∣∣. Substituting the polar coordinate repre-
sentation of the analytic signal z(t) = a(t)eϕ(t) into Eq. (25) leads
to

〈ω〉t A2(t) =
1

2π

∫ ∫
A2(t)

[
φ (θ ,0)ϕ ′(u)− i

∂φ (θ ,τ)
∂τ

|τ=0

]
eiθ(u−t)dθdu (27)

For the product kernel i.e.φ (θ ,τ) = φ (θτ), Eq. (27) becomes

〈ω〉t A2(t) = φ(0)A2(t)ϕ ′(t)+2φ ′(0)A(t)A′(t) (28)

If it is assumed that φ(0) = 1 and φ ′(0) = 0, Eq. (28) leads to the
following important result

〈ω〉t = ϕ ′(t) (29)

Eq. (29) shows that at any particular time, the local frequency can
be obtained as the derivative of the phase function of the analytic
signal constructed from the original real signal.
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