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ABSTRACT
Zimmerman and Weissenburger flutter margin method is ex-

tended to account for modal parameter uncertainties by applying
a Bayesian estimation technique to obtain the probability distri-
bution function of the flutter speed. In previous work, a least-
squares estimation technique was applied to obtain the posterior
pdf of the flutter speed. The limitation of this technique is the as-
sumption that the flutter margin at each airspeed is strictly Gaus-
sian. In this paper, the joint distribution of the modal parameters
(and consequently the flutter margin) is obtained from preflutter
measured system responses using a full Bayesian analysis utiliz-
ing Markov Chain Monte Carlo sampling technique. The flutter
margin pdfs are then utilized to obtain the posterior probability
density function of the flutter speed. Results are presented for
a two-degrees-of-freedom numerical model, for which the true
flutter speed is known.

INTRODUCTION
The flutter margin, a quantity first utilized by Zimmerman

and Weissenburger [1], is a measure of stability of an aeroelastic
system. On the basis that the instability mechanism is dictated
by the coalescence of the two modes of vibration that partici-
pate in flutter, the typical section model (two degrees-of-freedom
(DOF), in pitch and heave) is used. The flutter margin is equiv-
alent to the third sub-determinant of the fourth-order character-
istic equation of the typical section model. Hence, according to
the Routh’s stability criteria, a necessary condition for stability
is that the flutter margin must be positive. The flutter margin is
given in terms ofω1, ω2 andβ1, β2 being the modal frequencies

∗Address all correspondence to this author.

and negative of decay rates, respectively, of the two modes that
participate in flutter:
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The flutter margin can be used to extrapolate the classical
flutter speed from pre-flutter flight test data. Under modest re-
strictions, the flutter margin varies parabolically in dynamic pres-
sure if structural damping is neglected. The inclusion of struc-
tural damping in the analysis leads to a sixth-order relationship
between the flutter margin and airspeed. For larger airspeeds
the relationship converges to a fourth-order polynomial, as per
Eq. (2), since aerodynamic damping dominates structural damp-
ing.

F = b1U
4 +b2U

2 +b3. (2)

The coefficients,b1 throughb3, can be estimated using a
least-square fitting procedure of Eq. (2) with at least three sub-
critical airspeeds. The flutter speed,U f , is the root of Eq. (2).
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Since its establishment in 1964, the flutter margin method
has been generalized to tackle various cases overlooked by the
basic method. Price and Lee [2] extended the method to trinary
flutter, for instance. Recently, the uncertainty in the modal pa-
rameters has been propagated by Poirelet al. [3] to provide a
probability density function (pdf) of the flutter margin and con-
sequently the flutter speed. The basic idea is to directly carry
through the analysis the modal parameter uncertainties to con-
struct flutter margin and flutter speed histograms from which dif-
ferent statistics are calculated. It was shown that although the
modal parameters were assumed to be Gaussian, the flutter speed
pdf was not symmetric, but skewed. This methodology was fur-
ther examined by Heeg [4]. A maximum likelihood parameter es-
timation method was used to construct a pdf of the flutter speed.
Khalil et al. [5] provided a pdf of the flutter speed by estimating
the joint distribution of the flutter margin equation coefficients in
Eq. (2). The flutter margin pdfs were obtained from modal pa-
rameter estimates which were artificially perturbed by Gaussian
noise.

In this paper, the method developed by Khalilet al. [5] is
further developed as a number of refinements are possible. Here,
the joint distribution of the modal parameters is obtained from
measured noisy free decay responses of the system. Bayesian
inference provides a pdf of these parameters and Markov Chain
Monte Carlo (MCMC) sampling technique [6, 7] is utilized to
provide samples from this pdf. The flutter margin pdf is then
constructed from these modal parameter samples. Finally, the
joint distribution of the flutter margin equation coefficients in
Eq. (2) (and consequently the flutter speed) is obtained again
using Bayesian inference. For numerical illustration, the pro-
posed method is applied for a two-degrees-of-freedom numerical
model, for which the true flutter speed is known.

BAYESIAN INFERENCE
Bayesian inference provides a statistical framework which

relates physical observations to mathematical models[6–8]. Let
x be the vector of system parameters and the vectord denotes
a collection of physical observations. In Bayesian settings, the
conditional pdfp(d|x) of the observations given the system pa-
rameters is called theforward pdf or likelihood function. When
observations are available, Bayesian inference deduces the value
of the system parameters relying on a valid mathematical model.
This step provides the conditional pdfp(x|d) of the system pa-
rameters given the observations, denoted by theinverseor poste-
rior pdf. Bayes theorem relates the inverse and forward pdf[6–8]:

p(x|d) =
p(d|x)p(x)

p(d)
. (3)

In Eq. (3),p(x) is the pdf that contains the available knowl-
edge of the parameters before making the observationd[6–8]. It
is called theprior pdf of x. On the left-hand side of Eq. (3), we
have theposteriorpdf p(x|d) of x that represents our knowledge
of the system parameters after making the observation. To obtain
the posterior pdf, the prior pdf is multiplied by the forward or

likelihoodpdf p(d|x) which can be characterized by the mathe-
matical model of the system. The factorp(d) =

∫

p(d|x)p(x)dx
is just a normalization constant.

In many cases of practical interest, the analytical expres-
sion for the posterior pdf is not generally available, since (1) the
prior probability functionp(x) may involve information which
is difficult to express in analytical form and (2) the normaliza-
tion constantp(d) is hard to evaluate. Even when the analytical
expression for the posterior pdf is available, the integration of
the posterior pdf becomes difficult to evaluate when the number
of components inx is large. One way to alleviate this difficulty
is to use random sampling techniques such as MCMC which is
adopted in this paper.

MARKOV CHAIN MONTE CARLO SAMPLING
Simple Monte Carlo sampling technique (e.g. [6]) can gen-

erateindependentrandom samples from the posterior pdfp(x|d)
from which one can extract relevant statistical information (e.g.
mean and mode). For a general non-Gaussian posterior pdf, in-
dependent samples are difficult to simulate in practice. One can
however sample from a Markov chain whoseequilibriumor sta-
tionary pdf matches the posterior pdfp(x|d) as described in the
following Subsection. Although the samples are not indepen-
dent, the statistical features of the posterior pdf can be estimated
with reasonable accuracy using a large enough sample size. In
this Section, we briefly describe Markov chains and present the
general algorithm of MCMC adopted in this paper, namely the
Metropolis algorithm. More details can be obtained in the books
by Gilkset al. [6] and Liu [7].

Markov Chains
A sequence of random vectors{x0,x1, . . .} is called a first-

order Markov chain if it satisfies the property[7]

p(xi+1 = y|xi = x, . . . ,x0 = z) = p(xi+1 = y|xi = x) . (4)

It states thatxi+1 statistically depends only on the pre-
vious random vectorxi . When the transition pdf (kernel)
p(xi+1 = y|xi = x) is time-invariant (independent ofi), it can be
denoted byA(x,y).

The pdfp(xi) converges to a stationary pdfπ (xi) asi → ∞ if
the chain satisfies three properties[6]: (1) the chain is irreducible,
i.e. starting with any possible state forx0 the chain can reach
any other state in some number of iterations; (2) the chain is
aperiodic, i.e. the chain does not periodically oscillate among
different sets of states; (3) the chain is positive recurrent, i.e. if
the value ofx0 is sampled from the stationary distributionπ , all
subsequent iterates will be distributed according toπ . The last
condition is met if the stationary pdfπ and the transition kernel
A(x,y) satisfy the following eigenvalue problem:

∫

π (x)A(x,y)dx = π (y) . (5)
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The left-hand side of Eq. (5) gives the marginal distribution
of y under the assumption thatx is fromπ (x). Therefore, Eq. (5)
guarantees that ifx is fromπ (x), so will bey.

For an aperiodic, irreducible and positive-recurrent Markov
chain (i.e. satisfying the above three conditions), the limiting dis-
tribution of successive iterates will reach the stationary (target)
pdf, regardless of the starting value of the chain[6, 7]. The num-
ber of samples required to reach the stationary distribution from
a starting samplex0 is called theburn-in periodof the chain.
After the burn-in period, the samples of the Markov chain ap-
proximately follow the target pdfπ [6, 7].

The Metropolis-Hastings algorithm
Given a transition kernelA(x,y) for a 1st-order aperiodic, ir-

reducible and positive-recurrent Markov chain, its stationary dis-
tributionπ satisfies Eq. (5). In Bayesian inference problems, the
target (posterior) distribution is available, but the corresponding
transition kernel is not knowna priori. The method first pro-
posed by Metropoliset al. [9] and generalized by Hastings[10]
is adopted in this paper.

Starting from an arbitrary sample, a candidate pointy is
generated from an arbitrarily chosen proposal pdfq(x,y) in
Metropolis-Hastings algorithm. Then the candidate pointy is
accepted with probabilityα (x,y) where

α (x,y) = min

(

1,
π (y)

π (x)

)

. (6)

For the Metropolis algorithm[9], the proposal pdfq(x,y) is
chosen to be symmetric, i.e.q(x,y) = q(y,x). This constraint
is however relaxed in the Metropolis-Hastings algorithm[10], in
which case the acceptance probability is

α (x,y) = min

(

1,
π (y)q(y,x)

π (x)q(x,y)

)

. (7)

Appendix A explains why the above choice of acceptance
probability α (x,y) leads to the target pdfπ . The Metropolis-
Hastings algorithm has the following attractive features: (1) the
normalization constantp(d) in Eq. (3) is not needed; (2) the can-
didate pointy can be generated from any proposal distribution
q(x,y).

APPLICATION OF BAYESIAN INFERENCE TO FLUT-
TER SPEED ESTIMATION

This Section describes the application of Bayesian infer-
ence for flutter speed estimation problem. For given airspeeds
Ui , i = 1, . . . ,nu, one can estimate the joint distribution of the
modal parameters of the two modes involved in coalescence flut-
ter from noisy measurements of free decay system response us-
ing Bayesian inference. Assuming the typical section model (two
degrees-of-freedom (DOF), in pitchθ and heaveh) is utilized,
the problem involves identifying the parametersa1, . . . ,a12 that
describe the free decay response of the system given unknown

initial conditions (please refer to [11] for the derivation of this
representation):

h(t) = a1e−a10tcos(a9t +a5)+a2e
−a12tcos(a11t +a6) (8)

θ (t) = a3e−a10tcos(a9t +a7)+a4e
−a12tcos(a11t +a8) (9)

from noisy measurements

hk = a1e−a10tkcos(a9tk +a5)+a2e
−a12tkcos(a11tk +a6)+n1,k

(10)

θk = a3e−a10tkcos(a9tk +a7)+a4e
−a12tkcos(a11tk +a8)+n2,k

(11)

wheren1,k andn2,k are independent and identically distributed
Gaussian noise with zero mean and variance equal toγ1 andγ2,
respectively.

The likelihood function of these unknown parameters is

p(a1, . . . ,a12|h1, . . . ,hN,θ1, . . . ,θN)

=
1

(2πγ1)N/2
exp

[

N

∑
k=1

−
1

2γ1

(

hk− ĥk(a1, . . . ,a12)
)2

]

×
1

(2πγ2)N/2
exp

[

N

∑
k=1

−
1

2γ2

(

θk− θ̂k (a1, . . . ,a12)
)2

]

(12)

ĥk (a1, . . . ,a12) andθ̂k (a1, . . . ,a12) are the predicted free de-
cay system responses for the assumed values ofa1. . . . ,a12. Sam-
ples of these parameters (and thus samples of modal parame-
ters ω1 = a9, ω2 = a11 and β1 = −a10, β2 = −a12) are ob-
tained from this joint pdf using MCMC sampling technique. The
modal parameter samples are consequently transformed using
Eq. (1) to obtain flutter margin samples from which a flutter mar-
gin pdf is constructed. The flutter margin pdf obtained at each
experimental airspeed using the proposed method will be de-
noted byp(Fi|b), being conditional on the unknown coefficients
b = {b1,b2,b3} from Eq. (2).

We are interested in estimating the joint distribution of the
vectorb = {b1,b2,b3} of unknown coefficients. This would in
turn provide a pdf for the flutter speed being the root of Eq. (2).
Let F = {F1,F2, . . . ,Fnu} represent the random vector of the flut-
ter margin at airspeedsUi , i = 1, . . . ,nu. By Bayes’ theorem, we
have

p(a|F) ∝ p(F|b)p(b) . (13)

We assume that the likelihood functionp(F|b) can be ex-
pressed by the product of the marginal pdfs ofFi as

p(F|b) =
nu

∏
i=1

p(Fi |b) (14)
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and the prior probability function ofa is expressed as

p(b) ∝







1 , if b1,b2,b3 satisfy conditions(1)− (2)

0 , otherwise
. (15)

where

condition 1 : b2
2−4b1b3 > 0

condition 2 : b3 > 0
.

The above form forp(F|b) is valid under the simplifying
assumption that the flutter margin at one airspeed is independent
from the flutter margin at other airspeeds. As for the prior pdf
p(b) in Eq. (15) of the unknown coefficients, it reflects the as-
sumption that the polynomial in Eq. (2) (a) has real roots (condi-
tion 1) and (b) provides a positive flutter margin at zero airspeed
(condition 2). The two conditions guarantee physically meaning-
ful realizations of the flutter margin polynomial.

As a result, the conditional pdf fora in Eq. (13) has a com-
plicated mathematical expression and the normalization constant
is hard to obtain. Consequently, MCMC sampling technique is
applied to obtain samples from this complex conditional distri-
butionp(a|F). These would in turn provide samples of the flut-
ter speedU f , being the root of the flutter margin equation. The
specific MCMC sampling technique utilized is the Metropolis-
Hastings algorithm which was overviewed previously.

Application to a Two-DOF Airfoil
We apply the proposed methodology to a two-DOF airfoil

model with quasi-steady aerodynamics model and compare these
results with the conventional flutter margin method. The re-
sults are then compared with the known (deterministic) flutter
speed, which is 23.69 m/s for the airfoil parameters chosen as
determined by eigenvalue analysis. Note that proportional struc-
tural damping is assumed with damping ratios equal to 10% for
both structural modes of vibration. Five equally spaced airspeeds
were chosen for numerical experiments with the lowest airspeed
being 65% of the flutter speed and the highest airspeed is at 87%
of the flutter speed. The chosen airspeeds for the analysis and the
respective modal parameter and flutter margin values are summa-
rized in Tab. 1.

At each airspeed, noisy measurements of the free decay re-
sponse of the system are obtained over an interval of 0.8 sec-
onds. The initial condition for the system is−0.05 m in heave
and 0.175 rad in pitch with velocities equal to zero for both de-
grees of freedom. The variance of measurement noise for the
heave and pitch measurements were chosen to beγ1 = 2×10−5

and γ2 = 2× 10−4, respectively. The measurements were ob-
tained with a sampling rate of 5 kHz. Figs. 1-5 display the true
trajectories of the system as well as the corresponding measured
responses at all five airspeeds in Tab. 1.

We first apply MCMC sampling technique to obtain jointly
distributed samples for the 12 unknown parametersa1, . . . ,a12
in Eq. (12). At each airspeed, 5× 107 MCMC samples

TABLE 1. TRUE MODAL PARAMETERS AND FLUTTER-
MARGIN FOR 2-DOF AIRFOIL

U
(m/s)

ω1

(rad/s)
β1

(1/s)
ω2

(rad/s)
β2

(1/s)
F
(×106)

15.5 55.68 -6.207 12.56 -3.966 2.223

16.75 53.70 -5.934 12.85 -4.431 1.972

18 51.48 -5.553 13.21 -5.004 1.688

19.25 48.99 -5.016 13.62 -5.734 1.372

20.5 46.19 -4.237 14.09 -6.705 1.024
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FIGURE 1. (A) HEAVE RESPONSE AND (B) PITCH RESPONSE
OF THE 2-DOF AIRFOIL FORU = 15.5 m/s
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FIGURE 2. (A) HEAVE RESPONSE AND (B) PITCH RESPONSE
OF THE 2-DOF AIRFOIL FORU = 16.75 m/s

were obtained with 170 MCMC chains running in parallel on
a distributed-memory multiprocessor machine (HP Intel Xeon
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FIGURE 3. (A) HEAVE RESPONSE AND (B) PITCH RESPONSE
OF THE 2-DOF AIRFOIL FORU = 18 m/s
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FIGURE 4. (A) HEAVE RESPONSE AND (B) PITCH RESPONSE
OF THE 2-DOF AIRFOIL FORU = 19.25 m/s

cluster with 178 processor cores) using message-passing inter-
face (MPI) [12]. From these we can extract the marginal pdfs of
each modal parameter at each air speed shown in Figs. 6-10. The
dashed line indicates the true modal parameter value. We can
see that the mode of the pdfs does not in general coincide with
the true parameter value. This is due to the limited information
that the measured data contains regarding these parameters. One
can apply the same technique to data obtained from more than
one experiment at each air speed to decrease this observed bias
as well as decreasing the uncertainty in these estimates. One can
apply the classical method in which flutter margin values at each
airspeed are obtained using the mean modal parameter values.
In this case we obtain five flutter margin values at five different
airspeeds from which a quadratic polynomial in the square of the
airspeed can be obtained using least-squares fitting. The five data
points and least-squares fit are shown in Fig. 11. The extracted
flutter speed using this method is 23.63 m/s, being close to the
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FIGURE 5. (A) HEAVE RESPONSE AND (B) PITCH RESPONSE
OF THE 2-DOF AIRFOIL FORU = 20.5 m/s

true flutter speed of 23.69 m/s. The results using the classical
method are very accurate and the polynomial fit is good (as seen
in Fig. 11). We suspect this would not be the case when a more
realistic case is examined in which external random excitations
perturb the system.
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FIGURE 6. MARGINAL PDFS OF MODAL PARAMETERS FOR
U = 15.5 m/s

One can also examine the joint distributions between the
modal parameter estimates. These joint pdfs are presented in
Figs. 12-16. One observes a jointly Gaussian nature and small
if any correlation between these parameters. Using the MCMC
samples obtained from the joint distribution between the four
modal parameters, we obtain samples of the flutter margin and
construct the flutter margin pdf at each airspeed. These pdfs are
shown in Fig. 17. These flutter margin estimates at the five air-
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FIGURE 7. MARGINAL PDFS OF MODAL PARAMETERS FOR
U = 16.75 m/s
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FIGURE 8. MARGINAL PDFS OF MODAL PARAMETERS FOR
U = 18 m/s

speeds representp(Fi |a) in Eq. (14). We use MCMC technique to
obtain 1.7×109 samples of{a1,a2,a3} from the posterior pdf in
Eq. (13). Each of these samples represent a possible flutter mar-
gin polynomial. In turn, 1.7×109 samples of the flutter speed are
obtained, being the root of the flutter margin polynomial. The
histogram of the root of these realizations is shown in Fig. 18.
We can see that both the true flutter speed as well as the estimate
obtained using the conventional method fall within the support
of the flutter speed pdf obtained using Bayesian inference. Fur-
thermore, the range of possible flutter speed values is relatively
small considering that the maximum experimental airspeed was
20.5 m/s.

48.9 48.95 49 49.05 49.1 49.15
0

2

4

6

8

ω
1

pd
f

pdf
True

−5.1 −5 −4.9
0

2

4

6

8

10

β
1
 

pd
f

pdf
True

13.3 13.4 13.5 13.6 13.7 13.8
0

1

2

3

4

5

ω
2

pd
f

pdf
True

−5.9 −5.8 −5.7 −5.6
0

2

4

6

β
2
 

pd
f

pdf
True

FIGURE 9. MARGINAL PDFS OF MODAL PARAMETERS FOR
U = 19.25 m/s
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FIGURE 10. MARGINAL PDFS OF MODAL PARAMETERS FOR
U = 20.5 m/s

CONCLUSION
A Bayesian estimation technique based on the Metropolis-

Hastings MCMC algorithm is proposed to obtain the probability
distribution function of the flutter speed from modal parameter
estimates using the flutter margin method proposed by Zimmer-
man and Weissenburger. The proposed method is applied to a
two-degrees-of-freedom numerical model. For the numerical ex-
periments conducted in this paper, the proposed method provides
a reasonable confidence interval for the flutter speed that the con-
ventional method does not provide. As a next step, a more re-
alistic numerical model will be examined in which mode noise
is present. Furthermore, the Bayesian methodology used herein
will be validated blind using wind tunnel flutter test data in order
to mimic a realistic flight test environment. The method will also
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FIGURE 12. JOINT PDFS OF MODAL PARAMETERS FORU =

15.5 m/s

be applied to measured response of continuous system including
available real F-18 flight test experiments.
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FIGURE 13. JOINT PDFS OF MODAL PARAMETERS FORU =

16.75 m/s
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FIGURE 14. JOINT PDFS OF MODAL PARAMETERS FORU =

18 m/s

Appendix A
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FIGURE 15. JOINT PDFS OF MODAL PARAMETERS FORU =

19.25 m/s
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FIGURE 16. JOINT PDFS OF MODAL PARAMETERS FORU =

20.5 m/s

STATIONARY DISTRIBUTION SIMULATED FROM
METROPOLIS-HASTINGS ALGORITHM

For the Metropolis-Hastings algorithm[10], the acceptance
probabilityα (x,y) is

α (x,y) = min

(

1,
π (y)q(y,x)

π (x)q(x,y)

)

(16)
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FIGURE 17. FLUTTER MARGIN PDFS
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FIGURE 18. FLUTTER SPEED PDF OBTAINED USING
BAYESIAN INFERENCE

For this choice of acceptance probability, the chain is posi-
tive recurrent with a stationary pdfπ as described next. The tran-
sition kernel for the Metropolis-Hastings algorithm whenx 6= y
is[13]:

A(x,y) = q(x,y)α (x,y)

= q(x,y)min

(

1,
π (y)q(y,x)

π (x)q(x,y)

)

, (17)

When x 6= y, there are two possibilities, namely
π (y)q(y,x)≥ π (x)q(x,y) andπ (y)q(y,x) < π (x)q(x,y). For
brevity, only the first case will be considered for the proof (sec-
ond case can be proved similarly, but omitted here). When
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π (y)q(y,x) ≥ π (x)q(x,y), we have[13]

∫

π (x)A(x,y)dx =

∫

π (x)q(x,y)min

(

1,
π (y)q(y,x)

π (x)q(x,y)

)

dx

=
∫

π (x)q(x,y)dx

=

∫

π (y)q(y,x)min

(

1,
π (x)q(x,y)

π (y)q(y,x)

)

dx

= π (y)
∫

q(y,x)min

(

1,
π (x)q(x,y)

π (y)q(y,x)

)

dx

= π (y)

∫

A(y,x)dx

= π (y) . (18)

This fact proves that the acceptance probabilityα (x,y) in
Eq. (7) leads to the stationary pdfπ which is the target pdf.
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