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ABSTRACT 
In this work, the influence of the characteristic geometric 

parameters of a cylindrical shell, such as radius-to-thickness and 

radius-to-length ratios, on both the linear and non-linear 

vibrations of a fluid-filled cylindrical shell with internal flowing 

fluid is studied. The Donnell non-linear shallow shell equations 

are used to study a simply supported cylindrical shell subjected 

to both lateral and axial time-dependent loads with internal 

flowing fluid. The fluid is assumed to be inviscid and 

incompressible and the flow isentropic and irrotational. An 

expansion with eight degrees of freedom, containing the 

fundamental, companion, gyroscopic and five axisymmetric 

modes is used to describe the lateral displacement of the shell. 

The Galerkin method is used to obtain the nonlinear equations 

of motion which are, in turn, solved by the Runge-Kutta 

method. First, the parametric linear equations are used to study 

the influence of geometry and physical properties on the natural 

frequencies, critical flow and critical circumferential 

wavenumber. Secondly, numerical methods are used to describe 

the influence of geometric characteristics on the non-linear 

frequency-amplitude relations of the shell. The results obtained 

show the influence of the geometric parameters on the vibration 

characteristics of the shell and can be used as a basic tool for 

design of cylindrical shells in a dynamic environment. 

 

1. INTRODUCTION 
Cylindrical shells are widely used structures in several 

engineering areas such as civil, mechanical, and offshore among 

others. Their high efficiency as load carrying members for both 

axial and lateral loads makes cylindrical shells the most 

common shell geometry for industrial applications. In many of 

these applications the shells are used for the transportation of 

fluids. Hence, the analysis of the linear and non-linear 

vibrations of cylindrical shells with internal flowing fluid and 

under various loading conditions has thus become an important 

research area in applied mechanics. Also, the adequate selection 

of geometric characteristics is fundamental in designing against 

instability. 

In [1] and [2], it is possible to find very extensive literature 

reviews related to the nonlinear dynamics of shells in vacuum, 

and shells filled with or surrounded by quiescent or flowing 

fluids. These topics are also presented in detail in the book by 

Paidoüssis [3] on fluid-structure interactions and the book by 

Amabili [4] on nonlinear vibrations and stability of shells and 

plates. Here only a few key contributions are mentioned. 

The seminal works [5] and [6] gave the original idea for the 

modal expansions of the shell flexural displacement involving 

the symmetric and asymmetric modes; later, the studies [7] and 

[8] contributed to the understanding of the influence of the 

companion mode on the behavior of cylindrical shells. In the 

fundamental work [9] it was found that the presence of a dense 

fluid in the shell increases the softening characteristics of the 

frequency-amplitude relation when compared with the results 

for the same shell in vacuum. In a series of important papers 

[10] – [13] the nonlinear free and forced vibrations of a simply 

supported, circular cylindrical shell in contact with an 
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incompressible and inviscid, quiescent or flowing dense fluid 

are studied using the Donnell’s nonlinear shallow-shell theory. 

However most of these investigations are concerned with the 

analysis of elastic isotropic shells with fixed geometric 

characteristics and there are very little specific works related to 

the analysis of the effect of geometry on the non-linear 

vibrations of cylindrical shells. Other interesting works on 

nonlinear dynamics of cylindrical shells can be found in [14]-

[17]. Recently, Karagiozis et al. [19] using Donnell’s nonlinear 

theory studied the nonlinear stability of cylindrical shells 

subjected to internal fluid flow. The effect of varying the 

thickness-to-radius (h/R) and length-to-radius (L/R) was 

investigated. Results show that, depending on the radius and on 

the circumferential wavenumber, the shells show completely 

different behavior. 

In this work, an eight-degree-of-freedom model is used to 

study the instabilities of perfect circular cylindrical shells with 

both axial and lateral loads and with internal flowing fluid. The 

fluid is assumed to be inviscid and incompressible and the flow 

isentropic and irrotacional. To discretize the shell, the Donnell 

shallow shell equations are used together with the Galerkin 

method to derive a set of coupled ordinary differential 

equations. In order to study the effect of the geometrical 

characteristics of the shell, several analyses are developed to 

understand their influence on the natural frequencies, critical 

loads, circumferential wavenumber and nonlinear frequency-

amplitude relation. The results obtained could be used as a 

design tool by engineers and scientist to select adequate shell 

geometries. 

NOMENCLATURE 
c    damping coefficient 

D    flexural rigidity 

E     Young’s modulus 

f    amplitude of lateral load 

F    stress function 

Fo   lateral load parameter 

In, 
'
nI   modified Bessel functions 

L, R, h length, radius and thickness 

m    number of half-waves in the axial direction 

n    number of waves in the circum. direction 

n    circumferential wave length parameter 

xN
~

   axial load 

Pe   compressive uniform static axial load 

Pd   amplitude of dynamic axial load 

Ph   perturbation pressure 

t    time 

u, w, θ axial, lateral and circumf. displacements 

U    flow velocity 

U , Ub velocity parameter 

crbU   critical velocity parameter 

Va   non-dimentionalizing factor 

x, z, v   axial, lateral and circumferential coordinates 

Z    Batdorf’s parameter 

Γo   static load parameter 

∆    fluid parameter 

ν    Poisson ratio 

ξi,j   time dependent modal amplitudes 

ρs   mass density 

ρF   internal fluid density 

ωL   frequency of axial load 

ωo   natural frequency 

Ω   frequency parameter 

∇    bi-harmonic operator 

2. MATHEMATICAL FORMULATION 

2.1 Shell equations 
Consider a simply supported thin-walled circular 

cylindrical shell of radius R, length L, and thickness h. The shell 

is assumed to be made of an elastic, homogeneous and isotropic 

material with Young’s modulus E, Poisson ratio ν, and mass 

density ρs. The axial, circumferential and radial co-ordinates are 

denoted by x, y and z, respectively, and the corresponding 

displacements on the shell surface are denoted by u, v and w, as 

shown in Fig. 1. In this work the mathematical formulation will 

follow that previously presented in references [10], [14], [15] 

and [17]. 

The shell is subjected to both a lateral pressure f and a 

distributed axial load along the edges x=0 and L given by 
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where Pe is a compressive uniform static load. 

The nonlinear equation of motion, based on the von 

Kármán-Donnell shallow shell theory, in terms of a stress 

function F and the lateral displacement w, is given by  
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where )]1(12/[ 23 ν−= EhD  is the flexural rigidity, c (kg/m
3
 s) is the 

damping coefficient, and f and Ph are the radial pressures 

applied to the surface of the shell. 

The compatibility equation is given by 
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In Eqs. (2) and (3) the bi-harmonic operator is defined as 

2222224 )]/(/[ θ∂∂+∂∂=∇ Rx . 
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Figure 1: Shell geometry and loads 

 

2.2 Solution expansion for the transverse 
displacement 

The numerical model is developed by expanding the 

transverse displacement component w in series form in the 

circumferential and axial variables. From previous 

investigations on modal solutions for the nonlinear analysis of 

cylindrical shells under axial loads [10, 17] it is clear that, in 

order to obtain a consistent modeling with a limited number of 

modes, the sum of shape functions for the displacements must 

(i) express the most important nonlinear coupling between the 

modes and (ii) describe consistently the correct frequency-

amplitude relation. Here, the following modal expansion is 

adopted [10]: 
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where ξ1,1(t), ξ1,1c(t),   ξ1,2(t), ξ1,2c(t), ξ0,1(t),  ξ0,3(t),  ξ0,5(t) 

and ξ0,7(t) are the time dependent modal amplitudes, 

Lxmq /π=  and m and n are, respectively, the number of half-

waves in the axial direction and the number of waves in the 

radial direction. This leads to an eight-degree-of-freedom 

reduced order model. This model includes the basic vibration 

mode, the companion mode, gyroscopic modes and four axi-

symmetric modes. These modes are enough to describe the 

basic nonlinear interactions responsible for the characteristic 

softening behavior exhibited by most cylindrical shells, the in-

out asymmetry of the displacement field, the internal resonance 

1:1 and the symmetry-breaking effect of the axial fluid flow in 

the axial direction.. 

2.3 Fluid loading 
The shell is assumed to be filled with a flowing fluid with 

velocity U. Using the linear potential flow theory, the 

perturbation pressure on the shell wall is given by [3, 4] 
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where In is the modified Bessel functions of order n and '
nI  its 

derivative with respect to the argument; ρF is the fluid density. 

2.4 Linear analysis 
Substituting the fundamental mode in Eq. (3), obtaining the 

stress function, applying the Galerkin method and considering 

only one half-longitudinal wave in the axial direction (m=1), it 

is possible to obtain the expressions for the lowest natural 

frequency. Using the circumferential wave length parameter ( n ) 

and Batdorf’s parameter (Z) given respectively by [18] 
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the lowest non-dimensional frequency is given by 
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3. NUMERICAL RESULTS 

3.1 Linear analysis 
Consider a simply supported cylindrical shell loaded with 

both an axial load and a lateral pressure and with the following 

physical properties ν = 0.3 and E = 2.1x10
11

 N/m
2
. As a first 
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analysis, Fig. 2 shows the influence of the L/R and R/h ratios on 

the lowest natural frequency of an empty cylindrical shell and 

the associated number of circumferential waves (n). As can be 

observed, the L/R and R/h ratios influence directly the natural 

frequencies values and the number of circumferential waves. 

Shells with the same L/R and R/h ratios (same Z) have the same 

lowest non-dimensional natural frequency and wavelength. This 

figure shows that most shell geometries can be analyzed using 

Donnell’s shallow shell theory ( 5≥n ). For a given R/h ratio, Ω 

and n decrease as L/R increases, and the shell tends to a long 

tube. For a given L/R, Ω decreases as R/h increases. 

Figure 3 shows the influence of the L/R and R/h ratios on 

the critical flow velocity and the associated circumferential 

wavenumber. As the L/R and R/h ratios increase, the critical 

flow velocity also increases. However, for certain values of L/R 

ratio the critical flow suddenly decreases and turns to increase 

again, creating a kind of saw tooth curve. These discontinuities 

are due to the change in circumferential wavenumber (n) 

associated with the critical flow velocity. 

Figure 4 depicts the level curves of the lowest natural 

frequency parameter Ω as a function of the shell geometric 

parameters L/R and R/h. The blank region represents the 

geometries for which Donnell’s theory cannot be applied (n<5). 

It is possible to observe that, for low values of the geometric 

relations, the lowest natural frequency displays both high values 

and strong gradients. The kinks in each level curve correspond 

to changes in the circumferential wavenumber associated with 

the lowest natural frequency. 

3.2 Nonlinear analysis 
Now we study the influence of the geometric parameters on 

the nonlinear frequency-amplitude relation. For this, consider a 

thin-walled cylindrical shell with h=0.002 m, E=2.1x10
11 

N/m
2
, 

ν=0.3, ρS=7850 kg/m
3
 and ρF=1000 kg/m

3
.  

For the parametric analysis, nineteen different shell 

geometries with increasing L/R ratios and different R/h relations 

are adopted. Table 1 shows the L/R and R/h ratios, 

circumferential wavenumber associated with the lowest natural 

frequency, natural frequencies of the empty and fluid-filled shell 

in rad/s and the critical flow velocity. 

First, in Fig. 5 are shown the normalized frequency-

amplitude relations ω/ωo of fluid filled shells. Shells with the 

same L/R ratio but different R/h ratios are displayed together in 

each one of the sub-figures. All curves show a softening 

behavior, but the degree of non-linearity and the folding 

(bending back) point in each curve vary strongly with the shell 

geometry. For a given L/R ratio, the initial nonlinearity of the 

curve increases as R/h decreases. However, for a fixed R/h ratio, 

the nonlinearity decreases as the L/R ratio increases. For a given 

L/R ratio, the vibration amplitude at which the folding occurs 

increases with the R/h ratio. The initial curvature of the 

frequency-amplitude relation can be used to measure the degree 

of non-linearity of the shell, since in most practical applications, 

due to the presence of damping, the initial part of the frequency-

amplitude relation will dictate the behavior of the resonance 

curves and the jumps at the saddle-node bifurcations.  
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(b) 

Figure 2: Variation of the lowest frequency parameter 

ΩΩΩΩ as a function of the shell geometric parameters L/R 
and R/h. 
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Figure 3: Variation of critical flow velocity parameter 
Ubcr as a function of the shell geometric parameters 

L/R and R/h. 
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Figure 4: Level curves of non-dimensional frequency 

parameter ΩΩΩΩ  as a function of L/R and R/h. 
 

Figure 6 shows the level curves of the initial curvature as a 

function of L/R and R/h. For all cases analyzed here the 

curvature is always negative. This means that at the main 

resonance region cylindrical shells usually display a softening 

behavior. As shown in [17], the main factor responsible for this 

behavior is the coupling between the fundamental vibration 

mode (linear mode) with the axisymmetric modes (see Eq. 4). 

This modal coupling leads to dominant negative quadratic terms 

in the discretized nonlinear equation of motion which dominates 

the initial behavior of the frequency-amplitude relation. As in 

Figure 4, the blank region corresponds to geometries with n<5. 

The results of this detailed parametric analysis show clearly that 

the initial curvature increases as the L/R and R/h ratios 

decrease, as illustrated in Figure 5. Long and thin shells display 

an almost linear initial behavior. As observed in Table 1, the 

circumferential wavenumber of associated with the lowest 

natural frequency decreases as R/h decreases and as L/R 

increases. 

 

Table 1: Selected geometric relations, natural 
frequencies and critical flow velocities. 

    Empty Fluid Filled  

Case L/R R/h n ωo ωo Ucr 

1 800 9 160.96 46.22 43.01 

2 300 7 699.43 278.47 101.46 

3 100 5 3687.64 1993.99 264.08 

4 

1.75 

75 5 5550.06 3307.66 344.83 

5 800 9 139.82 40.07 42.61 

6 300 7 609.16 241.87 100.66 

7 100 5 3165.03 1704.36 257.53 

8 

2.00 

75 5 4919.12 2920.81 346.64 

9 800 8 125.04 33.94 40.42 

10 300 6 552.27 205.45 95.11 

11 

2.25 

100 5 2819.21 1513.76 257.03 

12 800 8 111.76 30.30 40.09 

13 300 6 487.85 181.15 93.15 

14 

2.50 

100 5 2585.99 1385.64 261.29 

15 800 7 93.59 23.84 37.66 

16 
3.00 

300 6 411.08 152.28 93.93 

17 800 6 70.50 16.68 34.98 

18 
4.00 

300 5 304.48 104.03 84.56 

19 5.00 800 6 56.66 13.39 35.09 

 

The influence of the number of circumferential waves n on 

the non-linear frequency-amplitude relation is illustrated in Fig. 

7 where the frequency-amplitude relations for fluid-filled shells 

with the same number of circumferential waves are compared. 

Based on these results, one can conclude that shells with the 

same R/h ratio and the same circumferential wave number n but 

different L/R ratios have very similar nonlinear behavior up to 

very large deflections. This means that the degree of non-

linearity of the shell is a function of R/h and n. 
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(d) L/R=2.50 
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(f) L/R=4.00 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

ω/ωο

0.0

5.0

10.0

15.0

20.0

25.0

ξ
1

,1

R/h = 800

 
(g) L/R=5.00 

Figure 5: Frequency amplitude relations for fluid filled 
shells for geometries with same L/R ratios and 

different values of R/h. A) L/R = 1.75, b) L/R = 2.00, c) 
L/R = 2.25, d) L/R = 2.50, e) L/R = 3.00, f) L/R = 4.00, g) 

L/R = 5.00. 
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Figure 6: Level curves of the initial curvature of the 

frequency-amplitude relation as a function of L/R and 
R/h. 
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(a) n = 9 
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(b) n = 8 
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(c) n = 7 
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(d) n = 6 
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(e) n = 5 

Figure 7: Frequency amplitude relations for fluid filled 
shells for geometries with same number of 

circumferential waves. a) n = 9, b) n = 8, c) n = 7, 
d) n = 6, e) n = 5. 

 

To observe how the frequency-amplitude relation governs 

the non-linear behavior of the shell, Fig. 8 depicts the 

normalized bifurcation diagrams for varying fluid flow velocity, 

considering Cases 4, 11 and 18. These shells have different L/R 

and R/h ratios but same number of circumferential waves. As 

the fluid flow velocity increases, the shell response is trivial up 

to a critical value at which the trivial response becomes 

unstable, displaying a softening behavior (sub-critical 

bifurcation). Again, as observed in Fig. 6(e), the degree of the 

softening is related to the geometric ratios. Shells with a low 

R/h ratios (Case 4) display a higher non-linearity than shells 

with high R/h ratios (Case 18). 

The influence of the shell geometric parameters on the 

frequency-amplitude relation for an empty shell is similar to the 

behavior observed here for a fluid-filled shell. However, as 

already shown in [9], independent of the shell geometry the 

softening behavior of the shell increases with the consideration 

of an internal fluid. 

Finally a static compressive pre-stress state due to the 

lateral and axial load, as observed in Eq. (8), decreases the 

lowest natural frequency. They also increase the softening 

behavior of the cylindrical shell. 
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Figure 8: Bifurcation diagrams for fluid flow variation 

4. CONCLUSION 
In this work, the influence of geometric characteristics on 

the natural frequencies and on the non-linear frequency-

amplitude relations of simply supported cylindrical shell 

subjected to both axial and lateral pressure loads is analyzed. To 

model the shell, the Donnell shallow shell theory is used 

together with an expansion of eight degrees of freedom to 

describe the lateral displacements of the shell. As observed, the 

non-linear frequency-amplitude relation of the shell is basically 

governed by the L/R and R/h ratios and shells with same L/R 

and R/h ratios display similar non-linear behavior. Also, shells 

with the R/h ration and same wave numbers, but different L/R 

ratios display similar non-linear behavior. All geometries 

analyzed in the paper display a softening behavior. The 

softening of the initial frequency-amplitude relation increases as 

the R/h and L/R ratios decrease. The softening characteristics 

also increase with the consideration of an internal fluid and of a 

compressive stress state. The knowledge of the non-linear 

frequency-amplitude relation is rather important since it governs 

the bifurcations and instabilities of the shell under external 

forcing. These results could serve as a design basis for 

engineers interested in choosing optimal geometries of 

cylindrical shells. 
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