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ABSTRACT
This paper describes two accurate Flow-Induced Vibration
(FIV) methods used to analyze the induced vibrations caused
by the laminar fluid flows in uniform annular geometries. In
both methods, the uniform annuli which are composed of two
concentric cylinders are considered. The outer cylinder is set
on translational oscillation without or with a predetermined
mode of vibration and with a known initial velocity. In the
first method, the small amplitude motion of the outer cylinder
is used to analyze the problem considered by using the direct
coupling of the fluid and structure through the accurate
simultaneous solution of the Navier-Stokes and structural
equations. In the computational domain, the problem has been
solved using an accurate time-integration method based on a
finite-difference formulation and primitive variables. In this
method, the real-time discretization of the Navier-Stokes
equations for unsteady incompressible flows is based on a
three-time-level implicit scheme. A pseudo-time integration
with artificial compressibility is then introduced to advance
the solution to a new real-time level. An implicit Euler scheme
is used for the pseudo-time discretization, and the finite-
difference spatial discretization is based on a stretched
staggered grid. In the second method, the Reynolds-averaged
Navier-Stokes equations are used to represent the unsteady
flow in a nonlinear time-accurate fashion. In this case, the
structural model is based on a linear modal model. The fluid
mesh is moved at each time-step according to the structural
motion, so that the changes in fluid-dynamic damping and
flow unsteadiness can be accommodated. Based on the second
approach, a code named SURF was generated to handle the
solution from the steady state solution till the unsteady one
which is in the form of vibratory motion of the outer cylinder.
In this way the stability analyses can be performed for the
structure by using several modes of vibration of the structure
vis-à-vis to the first method in which only translational motion
of the outer cylinder is taken into account. The stability of the
outer  cylinder  assessed  by  two  methods  in  terms  of  the

damped oscillation of the cylinder represents the decay in the
amplitudes of vibration due to the fluid added damping. The
results of this research can be used for the FIV and FSI
analyses of the annular flows which could be found in many
industries.

INTRODUCTION
Cylindrical structures subjected to either internal, external or
annular flows are found in many engineering constructions,
particularly in most of the chemical industries in the form of
piping of all kinds, marine risers, chimneys, fuel pins and
control rods in nuclear reactors, heat exchanger tube arrays,
thin walled shrouds and flow-containment shells in nuclear
reactors, aircraft engines, and jet pumps; to name but a few
most familiar such systems. A review of the work done in this
field is given in references (Paidoussis 1998, 2003).
     The instabilities associated with internal and external axial
flows are of limited practical concern for conventional
engineering systems. This is not the case with instabilities
associated with annular flows. Cylindrical structures subjected
to annular flow were found to develop very severe flow-
induced vibrations and instabilities in many engineering
applications. As a result, increasing effort has recently been
devoted to the study of flow-induced vibrations of these
systems in narrow annular flows (Mateescu et al. 1985 -1988,
Parking et al. 1984).
      By using a simplified unsteady viscous analysis in laminar
annular flows past oscillating cylinders, it was found
(Mateecsu et al. 1987) that the unsteady viscous effects have
an increased influence on the system stability when the
annular gap becomes narrower, which is the case in many
engineering applications. However, in many other engineering
applications the annular flow is turbulent, and hence an
unsteady turbulent flow analysis is required to be used in the
study of flow-induced vibrations of such systems, a case
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which is considered as an extension to the present
investigation  and  will  be  presented  in  the  future  work  using
the second approach.
      To solve the laminar flow cases, two computational
methods have recently been developed for the accurate
integration of the Navier-Stokes equations, applicable to
unsteady flows with oscillating boundaries in more realistic
and complex geometric configurations: (i) a time-integration
method based on a finite-difference formulation and artificial
compressibility (Mateescu et  al  . 1991, 1994a, b, c) used for
small amplitude oscillations, and (ii) a method based on the
time-dependent coordinate transformation (TDCT) which is
more accurate for larger amplitude oscillations practically
found in the real applications (Mekanik et al. 1993, 2007).
     In many cases, the amplitudes of vibration are not small
with respect to the annular gap, and hence the effect of
nonlinearities on the unsteady pressures and on the unsteady
fluid-dynamic forces cannot be ignored. Moreover, the
nonlinear unsteady fluid forces depend on both the
displacement and the velocity of the oscillating structural
boundary, in agreement with physical reality, but in contrast
with the linear ones calculated based on the small amplitude
assumption, which are only velocity-dependent. As a result of
nonlinear effects, the fluid-added mass and viscous damping
(which are proportional to the real and imaginary components
of the unsteady fluid forces) may substantially change, thus
modifying considerably the dynamic behaviour of the system
in terms of changes in coupled (fluid-structure) damping and
frequency of oscillation.
      An accurate nonlinear solution for the unsteady flows in
the case of larger amplitudes of oscillation is also important
for the study of the dynamics of fluidelastic systems beyond
the first loss of stability, which is not only of academic, but
also of practical interest. Hence, there is need to find more
accurate nonlinear solution capable of handling large
amplitude oscillations as well as considering the turbulent
cases, which are required for solving unsteady flow problems
encountered in engineering applications .
      In response to this need, this paper presents (i) the new
formulation for unsteady annular flows based on mean
position analysis, capable of solving accurately the problem in
the case of small-amplitude oscillations of the solid
boundaries, (ii) using the SURF Code to obtain the
comparable results with the results of case (i), and (iii)  using
the same Code to investigate the case of much higher
amplitudes of oscillation as well as investigating the cases of
turbulent flows. This last objective will be the future extension
of the present work.
     In the fixed-boundary computational domain obtained as a
result of mean position analysis, the boundary conditions on
the oscillating walls are rigorously implemented. In this
computational domain, the problem has been solved using an
accurate time-integration method based on a finite-difference
formulation and primitive variables (Mekanik 1993). In
subsequent sections, the mean position method (MP) is
explained followed by the method used by the SURF Code.

FIRST METHOD: MEAN POSITION ANALYSIS
FORMULATION
For the configuration shown in Fig. 1, the incompressible
time-dependent Navier–Stokes and continuity equations in
3-D cylindrical coordinates can be expressed in
nondimensional conservation-law form with respect to a
reference velocity ௢ܷ  and annular gap ℎ width as

܄߲
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where T],,[ wvu=V is the nondimensional velocity vector,
and the vector ), pQ(V , which includes the convective
derivative, pressure and viscous terms, has for example
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in which 2/ReRe Ho hU == n , where HRe represents
the  Reynolds  number  based  on  the  hydraulic  diameter  of  the
annular passage, hDH 2= (for nomenclatures see Fig. 1).
     These governing equations are subjected to the following
boundary conditions:

ݑ = ݒ       ,0 = ݁̇cosݓ         ,ߠ = −݁̇sin(3)                                  ,ߠ

where ,ݑ and  ݒ are in ݓ ,ݔ andݎ .directions respectively ߠ

      At  the  inlet  of  the  fixed  annular  passage  ( 0lx -= ), the
inflow boundary conditions are defined by the nondimensional
velocity components of fully developed laminar flow.
     When the amplitude of oscillation is small compared to the
annular space, the momentum equation in Eqs. (1)  is written
as

௡ାଵ܄3 − ௡܄4 + ௡ିଵ܄

ݐ∆2 + ௡ାଵۿ = ૙,                                          (4)

in which a three-point backward implicit scheme for the real
time discretization is used. The solution at time level 1+nt  has
to be obtained from the equations

௡ାଵ܄ + ௡ାଵۿߙ = ۴௡,        ∇ ∙ ௡ାଵ܄ = 0,                                (5,6)

where )4(, 1
3
1

3
2 --=D= nnnt VVFa  and is the ݐ∆

physical time step.

     The solution of Eqs. (5) and (6) is obtained by using an
iterative pseudo-time relaxation method with artificial
compressibility (Soh and Goodrich, 1988).
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     An implicit Euler scheme is used to semi-discretize in
pseudo-time the resulting equations. The final form of the
momentum and continuity equations is obtained as

(۷ + ܄∆(߬∆ + ۿ∆߬∆ߙ = ∆߬൫۴௡ − ෙ௩܄ − ෙ௩൯,                      (7)ۿߙ

݌∆ +
∆߬
ߜ ∇ ∙ (܄∆) = −

∆߬
ߜ ∇ ∙ ෙ௩܄ ,                                                (8)

where T],,[ wvu DDD=DV , ∆߬ is the pseudo-time
increment, is the artificial compressibility   and ߜ

T],,[ wvu QQQ DDD=DQ in which vu QQ DD , and wQD
are expressed, using lagged nonlinearities.

A factored ADI scheme (Soh, 1987) is used in this analysis
to separate the numerical integration of Eqs. (7) and (8) in

rx ,  and q  sweeps, which leads

(۷ + ۲௫)(۷߬∆ߙ + ۲௥)(۷߬∆ߙ + ܎∆(۲ఏ߬∆ߙ = (9)                ,܀߬∆

where T],,,[ pwvu DDDD=Df , and I represents the unit
matrix.

      Equation (9) are factorized and further spatially discretized
by central differencing, as mentioned before, on a stretched
staggered grid based on hyperbolic stretching functions to
concentrate more points near the oscillating and fixed
boundaries. The final computational results at each real time
step are wvu DDD ,,   and pD  from which the values of
unsteady wvu ,, and p at time 1+n are obtained via

௡ାଵݑ = ௡ݑ + ,ݑ∆ ௡ାଵݒ = ௡ݒ + ,ݒ∆

௡ାଵݓ = ௡ݓ + ௡ାଵ݌     ,ݓ∆ = ௡݌ + ;݌∆

they are the output of the numerical computation. It should be
mentioned that the values obtained for these quantities are
steady plus complex unsteady values. First, by using a sort of
FFT program (Cooley et al., 1969), the amplitude and phase
angle of each variable are determined and then the steady part
is subtracted from the calculated value to obtain the unsteady
part. For more details refer to Mekanik and Paidoussis, 2007.

FORCES ACTING ON THE CYLINDER AND
STRUCTURAL EQUATION OF MOTION
The steady and unsteady forces are obtained by integrating the
pressure  and  skin  friction  around  the  cylinder.  Thus,  the
unsteady forces acting on the outer cylinder per unit length
due to its oscillatory motion can be obtained as:

(ݐ)ܨ = න ൫�߬௥௥|௥ୀ௥೚c − �߬௥ఏ|௥ୀ௥೚sinߠ൯ݎ௢sinߠ݀ߠ
ଶగ

଴
,               (10)

in which ߬௥௥  and ߬௥ఏ  are shear stresses.

    The forces obtained from Eq. (10) are used in the equation
of motion of the structure to analyze the dynamics and
stability of the system. Hence, for translational motion of the
outer cylinder one can write

ݕ̈ܯ + ݕ̇ܥ + ݕܭ = (11)                                                             ,(ݐ)ܨ

where ,,CM and K  are mass, damping and stiffness of the
moving cylinder respectively and is the displacement of the ݕ
cylinder after interaction with the fluid. Equation (11) is also
nondimensionalized with respect to the annular gap h  and the
characteristic velocity U . The fluid force )(tF  is a function
of )(),( tt ee & , and )(te&& , as seen in Fig. 1, through the added
stiffness, added damping and added mass effects, respectively.
    To integrate Eq. (11) it is assumed at the beginning that the
time level nt has been reached, where all the quantities
necessary to describe the structural motion are known: the
displacement e , and the velocity e& , of the structure, and the
fluid forces acting on it, nnn FF ≡),( ee & . These quantities

are known at all previous time levels nkt k £, , and the

solution is advanced to 1+nt . For structural motion analysis,
this is done using a second-order Runge-Kutta scheme in
which a predictor step followed by a corrector step calculates
the displacement as well as velocity and acceleration of the
outer cylinder as a function of time. For more details refer to
Mekanik 1993. It should be noted that all quantities in this
method are nondimensionalized with respect to a reference
velocity ௢ܷ  and annular gap ℎ.

SECOND METHOD

THE FLOW MODEL
The unsteady, compressible, Navier-Stokes equations   for  a
3-D flow can be cast in terms of absolute velocity u but solved
in a relative non-Newtonian reference frame. This system of
equations, written in an arbitrary Eulerian Lagrangian (ALE)
conservative form for a control volume Ω with boundary Г,
takes the form

d
dݐ

න dΩ܃ + ර ൬ࡲ −
1

R݁ ۵൰
డஐ

∙
ஐ

dГ࢔ = 0,                             (12)

n represents the outward unit vector of the control volume
boundary Г. The viscous term G on  the  left-hand side  of  Eq.
(12) has been scaled by the reference Reynolds number for
nondimensionalization purposes. The solution vector of
conservative variables U is given by

܃ = ൥
ߩ

uߩ
݁ߩ

൩,                                                                                     (13)

The inviscid flux vector F has the following components:
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൩ ,                                                                        (14)

where ௜௝ߜ represents the Kronecker delta function, ௝ݑ  is the
components of absolute velocity and v is  the  velocity  in  the
relative frame of reference. The pressure p and the total
enthalpy h are related to density absolute velocity ,ߩ u and
internal energy e by two perfect gas equations:

݌ = ߛ) − ݁]ߩ(1 − ଶ/2],      ℎ|ܝ| = ݁ + ݌) ⁄,(ߩ

where γ is the constant specific heat ratio. The viscous flux
vector G has the following components:
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where ௜ݔ  are the coordinates.
     The viscous stress tensor ௜௝ is expressed using the eddyߪ
viscosity concept which assumes that, in analogy with viscous
stresses in laminar flows, the turbulent stresses are
proportional to the mean velocity gradients:

௜௝ߪ = ߤ ቆ
௜ݑ߲

௝ݔ߲
+

௝ݑ߲

௜ݔ߲
ቇ ,                                                                 (16)

ߤ represents the molecular viscosity given by the Sutherland's
formula. The laminar Prandtl number, Pr௟,  is  taken as  0.7  for
air.

NUMERICAL METHODOLOGY
The three-dimensional spatial domain is discretized using
unstructured grids which, in principle, can contain cells with
any number of boundary faces. The solution vector is stored at
the vertices of the cells.
      The present work uses semi-structured grids for their
computational efficiency, although the solver is written for
general hybrid unstructured grids. To achieve further
computational efficiency, the mesh is represented using an
edge base data structure. In this approach, the grid is presented
to  the  solver  as  a  set  of  node  pairs  connected  by  edges.  The
edge weights representing the inter-cell boundaries are
computed in a separate pre-processor stage. Consequently, the
solver has a unified data structure for which the nature of the
hybrid mesh is concealed from the main calculation loops.
   The flow model will now be explained in more detail. For
clarity, the numerical discretization of the flow equations will
be illustrated on a 2-D mesh. However, the resulting
formulation is equally applicable to 3-D cells. Using an edge-
based scheme, the typical 2-D mesh of Figure 2 can be
discretized by connecting the median dual of the cells

surrounding an internal node. For internal node I, the semi-
discrete form can be written as

d(Ωூ܃ூ)
dݐ + ෍

1
2

หߟூ௃ೞห൫ℱூ௃ೞ − ࣡ூ௃ೞ൯ + ௜ܤ =
௡ೞ

௦ୀଵ

0,                      (17)

where Ωூ is the area of the control  volume (shaded area in
Fig. 2), ூ is the solution vector at node܃ I, ݊௦ is the number of
sides connected to node I, ℱூ௃ೞ  and ࣡ூ௃ೞ  are the numerical
inviscid and viscous fluxes along side IJs, and ௜ is theܤ
boundary integral. The side weight ூ௃ೞ isߟ  given  by  the
summation  of  the  two  dual  median  lengths  around  the  side
times their normals. For example, the weight of the side
connecting nodes I and ଵ is given byܬ

ூ௃భߟ = ௃భூߟ− = ሬሬሬሬሬ⃗ܤܣ + ሬሬሬሬሬ⃗ܥܤ .                                                         (18)

      The resulting numerical scheme is second-order-accurate
in space for tetrahedral meshes. For prismatic and hexahedral
cells, the scheme is still second-order-accurate for regular cells
with right angles. In the worst case of a highly skewed cell, the
scheme will reduce to first-order accuracy (Essers et al. 1995).

NUMERICAL SOLUTION
Equation (17) can be expressed in the form

d(Ωூ܃ூ)
dݐ = (19)                                                                         .(܃)܀

      A second-order  implicit  backward time  integration of
Eq. (19) can be expressed as

3(Ω܃)ூ
௡ାଵ − 4(Ω܃)ூ

௡ + (Ω܃)ூ
௡ିଵ

ݐ∆2 = (20)                     ,(௡ାଵ܃)܀

      From now on the same approach used in the first method is
followed which results in
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where ௠܃ the mth approximation to ௡ାଵ and܃

۳ூ
௡ =

4(Ω܃)ூ
௡ − (Ω܃)ூ

௡ିଵ

ݐ∆2
  .                                                      (23)
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    The left-hand side of Eq. (22) contains a portion of the
physical-time derivative in order to reduce the pseudo-time-
step in regions of the flow where the ratio pseudo/physical
time-step, ∆߬ ⁄ݐ∆ , becomes large (Melson et al. 1993).
      Equation (22) is solved iteratively until the term ூ is܃∆
driven to a specified small tolerance. Within this iteration
level, a Jacobi sub-iteration procedure is performed to solve
the linearized system of equations described by Eq. (22). Time
accuracy is guaranteed by the outer iteration level where the
time-step is fixed throughout the solution domain, while the
inner iteration procedure can be performed using traditional
acceleration techniques such as local time-stepping and
residual smoothing (Sayma et al., 2000).

STRUCTURAL MODEL
For a linear structure, the dynamic analysis can easily be
achieved by uncoupling the structural equations of motion by a
coordinate transformation via the mode shape matrix. For the
linear part of the system, the reduced modal equations can be
solved by time- marching, with the modal matrix providing the
link between the principal coordinates in the equation of
motion (EOM) and the physical coordinates of the structure.
The mode shape vectors can then be interpolated onto the
aerodynamic grid points at the start of the calculation.
Although no further interpolation is required, the mesh is still
moved at each time-step to accommodate the aeroelastic
motion. Assuming, for the time being, that the structure is
linear, the aeroelastic EOM can be written as

{̈࢞}[ۻ] + {̇࢞}[۱] + {࢞}[۹] = (24)                                   ,{࢔(ݐ)݌}

where ࢔ is the normal unit vector on the cylinder surface.
     The free vibration problem can be solved to yield natural
frequencies, ߱௜, and the mass-normalized mode shape matrix
The required coordinate transformation is .[ࢶ]

{࢞} = (25)                                                                               ,{ࢗ}[ࢶ]

where .is the vector of the principal or modal coordinates ࢗ
Using Eqs. (24) and (25) and pre-multiplying by ୘ yields[ࢶ]

{̈ࢗ}[ࢶ][ۻ]୘[ࢶ] + {̇ࢗ}[ࢶ]୘[۱][ࢶ] + {ࢗ}[ࢶ]୘[۹][ࢶ]
= (26)                                           .{࢔(ݐ)݌}୘[ࢶ]

      The structural equations of motion can be reduced further
by removing both the coordinates and modes that are of no
interest in the flutter calculations. Assuming proportional
damping (without loss of generality) and using the
orthogonality properties of the system matrices with respect to
the mode shape matrix, one obtains

ே{̈ࢗ} + [diag(2ߞ௜߱௜)]ே×ே{̇ࢗ}ே + [diag(߱௜
ଶ)]ே×ே{ࢗ}ே

= ୘[ࢶ]
௠×ே{(ݐ)݌}௠ = ே[(ݐ)∏] ,              (27)

where ߱௜ and ௜ are the natural frequency and modal dampingߞ
for mode i, N is the number of structural coordinates and m is

the number of modes. The right-hand-side vector of modal
forces is formed as follows:

(ݐ)∏ = {࢔(ݐ)݌}୘[ࢶ] = ቐቌ෍ ௜∅௜,௥݌

௡ೌ

௜ୀଵ

ቍ . ௜ቑ࢔

௥ୀଵ,௠

,             (28)

where ݊௔ is the number of aerodynamic nodes on the structure
surface.
      In this form, the equations of motion can be solved by any
standard numerical integration scheme and the self-starting,
second-order-accurate and unconditionally stable Newmark
discretization (Newmark 1959) was used in the current work.

MESH MOVEMENT
When undertaking a forced response aeroelasticity analysis, it
is  desirable  to  move  the  fluid  mesh  according  to  the
instantaneous position of body under consideration so that the
structure vibration can be included in the calculations. This
requirement is met by using an algorithm which considers the
mesh as a network of springs whose extension/compression is
prescribed by the mode shape at the structure surface and
becomes  zero  at  the  far  field.  At  each  node,  the  spring
stiffnesses are allocated values that are inversely proportional
to  the  length  of  the  shared  edge  lengths.  The  CFD algorithm
used in SURF takes full account of the unsteady fluxes which
arise due to cell volume changes at each time-step.

SURF PACKAGE
In the second method a Code called SURF based on the above
formulations is used to analyze the problem at hand.
     The  SURF  Code  is  a  suit  of  unsteady  flow  and
aeroelasticity programs in which a typical analysis procedure
involves five steps: mesh generation, pre-processing, mode
shape interpolation, aeroelasticity computation and post-
processing [SURF, V1.0, User Guide, Oct. 2007]. Each step
can be performed by a single program or by a combination of
programs incorporated in SURF. The mesh generated by
SURF-Mesh is mostly used for turbomachinery analyses, but
the meshes generated using most known commercial tools
such  as  GAMBIT  can  be  converted  to  SURF  format  using  a
functionality built in SURF-Toolbox. In the problem described
in this paper, the general structured meshes are imported from
grid generator GAMBIT.

ADAPTING THE METHODOLOGY TO ANNULAR
FLOW PROBLEMS
For the first time the methodology related to the
turbomachinery analysis and mentioned in the previous
sections is used to analyze the annular flow-induced vibration
problems. It is obvious that some of the physical
characteristics of the flow in turbomachinery are not the same
as their counter parts in the annular flows. For example, there
is no reference frame rotating with the cylinders with circular
frequency ߱ in annular flows as compared to the cases of the
blades in turbomachines. Also, in the case of annular flows
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there is no need to use the unstructured grids to solve the fluid
flows. Another simplification made to the above analysis is
that since laminar flows are considered here, the turbulent’s
terms used in the turbumachinery analysis are not used in the
present work.
     The implicit temporal discretization used in the above
analysis is almost the same as the discretization used in the
first method described above and the boundary conditions
used are much more simplified than that used for
turbomachinery (see Sayma et al., 2000). In the structural
model  as  shown  in  Eq.  (24),  only  the  pressure  is  considered
vis-à-vis to  the  first  method,  (Eq.  11),  in  which  the  shear
stresses are also taken into account.

RESULTS OF THE FIRST METHOD
A satisfactory grid generation and grid point distribution are
the major requirements for the numerical solution to be
accomplished successfully in terms of accuracy and stability.
To this end, the numerical computations have been performed
on a non-dimensional mesh for the annulus and pq ££0 ,
with 151289 ´´ grid points in the ,,rx and q  directions,
respectively and also stretched in ݔ and .directions ݎ
     The computation can be done for different Reynolds and
Stokes numbers (also defined as 2ReS

hDw= , which is
related to the vibrational characteristics of the system) always
in the laminar regime. For all of the results obtained in this
work, the time step NTt =D  with 19=N  and  the
compressibility factor d  and pseudo-time step tD were
chosen based on the criteria supplied by Soh and Goodrich
1988 and Chorin 1967. For the Courant-Friedrich-Levy (CFL)
number, an average value between 30 and 40 has been
considered. In all computations, convergence was reached and
the iterations were stopped in pseudo-time when the r.m.s.
values of the numerical residuals of the momentum and
continuity equations were all less than 410- .

RESULTS FOR PRESCIPED OSCILLATORY MOTION
Figure 3(a,b) presents the unsteady pressure amplitude and
phase angle versus the axial length of the cylinder obtained for
3-D solution of an annular passage, at ݎ = 9.965 (close to the
outer cylinder) and ߠ = 7.5௢(azimuthal angle from the vertical
line in Fig. 1). Since for the force calculation as shown in Eq.
(10) we need the shear stresses on the outer cylinder, thus Fig.
4(a,b) presents the circumferential velocity w and its phase
angle obtained at ܺ = 50 (along the cylinder length) and
ߠ = 45௢. Figure 5 shows the displacement of the oscillating
cylinder as a function of Reynolds number, for  a system with

9=ir and 10=or .  From  Fig.  5,  we  see  that  at  very  low

Reynolds number , 4Re =
hD , viscosity dominates the

solution and motion is so highly damped that no oscillations
are possible: the system is overdamped. As the Reynolds
number increases, 200Re =

hD , damped oscillation
develops. As the Reynolds number becomes larger,

2000Re =
hD ,  the  viscous  solution  gets  closer  to  the

potential (inviscid) flow solution (also shown
in  the  figure),  i.e.,  zero  dissipation,  and  hence  zero  fluid
damping (Mateescu and Paidoussis 1985).

SPECIFICATIONS USED FOR SECOND METHOD
For this method, the geometrical specifications used for the
annular geometry shown in Fig. 1 remain the same except that
it is assumed that the outer cylinder is a continuous cylinder
and there are no separated cylinders at the upstream and
downstream  ends  of  it.  The  dimensions  of  the  system  also
remain the same. The mesh was generated using GAMBIT for
this annular geometry and was fed into SURF for further
modification and recognition by using SURF-Toolbox. The
number of grid points used in ,ݎ and ߠ directions are ݖ
10x200x100. We have four boundary conditions; the inlet and
outlet boundaries with specified initial flow variables and the
outer cylinder with specified modes of vibration. The inner
cylinder, the fourth boundary, is assumed to remain stationary
during computations. The fluid used was air with ௜௡݌ =
70002 pa, ௢௨௧݌ = 70000 pa, ௜ܷ௡ = 0.5 m/s, ௢ܷ௨௧ = 0.5 m/
s, ௜ܶ௡ = 285.0௢  K and     ௢ܶ௨௧ = 285.0௢  K all at the beginning
of the steady state computations. First, the steady state solution
was obtained using SURF solver and then the unsteady
solution is obtained by considering the modal motions of the
outer cylinder.  It is assumed that the upstream and
downstream ends of the cylinder are stationary and the middle
section which is 40 cm long is vibrating according to Eq. (29),
(James et al., 1989):

,ݖ)ݕ (ݐ = (29)                                                                    ,(ݐ)ݍ(ݖ)߮

in which and ݖ is a function of the spatial coordinate (ݖ)߮
is a function of time (ݐ)ݍ The function .ݐ which shows (ݖ)߮
the  modal  displacement  of  the  cylinder  is  given  by  Eq.  (30)
assuming that the cylinder is treated as an Euler’s beam with
free-free ends:

߮௜(ݖ) = cosh݇௜ݖ + cos݇௜ݖ − ݖ௜(sinh݇௜ߙ + sin݇௜(30)          ,(ݖ

in which ௜ߙ = (cosh݇௜݈ − cos݇௜݈) (sinh݇௜݈ − sin݇௜݈)⁄ , ݅ is the
mode number, is the axial coordinate and  ݖ ݈ is the length of
the vibrating part of the cylinder. As an example, for the first
mode, ݇ଵ݈ = 4.730041 and ଵߙ = 0.982502. It is assumed that
the cylinder is made from aluminum with the mass of ݉ =
10 kg and vibrating frequency given by ݂ = ߱ ⁄ߨ2 =

݈ଶ ߨ2) × 22.373ටாூ
ఊ

)ൗ = 32.15 Hz for  the  first  mode.  We

assume, for the time being, that the structural damping is zero.
The modal motions was mass normalized according to Eq.
(31), (James et al. 1989):

߮୬୭୰୫ୟ୪୧୸ୣୢ =
(ݖ)߮
N. F.  ,                                                                   (31)

with
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N. F. = ඥ݉߮(ݖ௜)ଶ        ݅ = 1, ⋯ 100,                                       (32)

in which ݅ indicates the node number of the outer cylinder’s
mesh along .axis ݖ
     For unsteady solution, in the input file of the mode shape,
the initial velocity for the outer cylinder was assumed to be
0.1 mඥkg/s with its initial displacement and acceleration
equal zero.
     To obtain a converged solution, both for steady and
unsteady cases, the CFL number was assumed to change from
0.5 to 30. The number of time-step for convergence was
chosen to be 4000 with ݐ∆ = 0.01 sec by which the residual of
the continuity equation became of order of 10ିସ

RESULTS OF THE SECOND METHOD
Based on the specifications and formulations mentioned in the
previous sections, and for Re = 175 with ݓ = 0.1941 m/s,
ߩ = 0.855 kg/mଷ, ߤ = 1.9 × 10ିହN − s/mଶ and hydraulic
diameter ுܦ = 2ℎ = 0.02 m, the following results have been
obtained. Figure. 6 shows the mesh generated by GAMBIT
and used in  SURF.  It  is  seen  that  the  mesh is  structured  one
used in this analysis. The outer meshed cylinder is moving
during the vibration analysis with for example the first mode
shape shown in Fig. 7. All the following figures were obtained
at the last time step where the program converged to the final
solution. As shown in Fig. 8, for the points on the central part
of the cylinder which are vibrating, the pressure generated
fluctuates with time for longer time steps. In Fig. 9 the
variation of the force from the fluid imposed on the cylinder is
shown. This force is obtained by integration of the unsteady
pressure (Fig. 8) over the surface of the outer cylinder. Figure
10 presents the displacement of the outer cylinder in x-
direction for the first mode. This figure is a kind of flutter
motion  and  the  effect  of  the  damping  from  the  fluid  on  the
annular system due to the vibration of the outer cylinder is
shown in this figure. By using the logarithmic decrement one
can obtain the damping factor related to the damping
introduced into the system. Figure 11 demonstrates the
behavior of the outer cylinder when the second mode was used
as forcing function in structural equation. As shown in this
figure, the motion of the cylinder is also damping out due to
the added damping introduced into the system by the fluid but
the  rate  is  more  than  that  for  the  first  mode.  Finally,  Fig.  12
shows the response of the structure during the third mode
vibration. It seems that the cylinder diverges after a few
oscillations but finally it flutters with almost constant
amplitudes.

CONCLUSIONS
In this paper, two accurate methods have been applied to study
the annular flow-induced instabilities.
     The first method uses the small amplitude motion of the
outer cylinder to analyze the problem considered by using the
direct coupling of the fluid and structure equations. In this
method the time-integration of the incompressible laminar
Navier-Stokes (N-S) and continuity equations was effected by
using the method of artificial compressibility in conjunction

with a three-point backward implicit real-time differencing
scheme.
      The theoretical results obtained predict the behaviour of
the structure (the outer cylinder) when it is set in motion from
rest. The stability of the system was analyzed for three-
dimensional annular flows with uniform annular geometry and
translational oscillation of the outer cylinder. It was shown
that the outer cylinder is more stable when the Reynolds
number is not very large (in the laminar regime), and that as
Re becomes larger the system becomes less stable. The results
obtained for uniform annular viscous flow indicate the
generation of a viscosity-related added damping (which is not
present for potential flow). Therefore the following points
deserve consideration:

(i) The damping forces and pressure distribution
along the annulus can be well predicted if simple
assumptions about the unsteady flow in the
annulus are made.

(ii) The flow-induced damping (velocity-dependent)
and stiffness (displacement-dependent) forces
acting on the oscillatory and non-oscillatory
walls.

(iii) The uniform annulus results demonstrate the
generation of a negative fluid-stiffness force for
the lateral motions in the annulus. If the restoring
(positive) spring stiffness is sufficiently small,
then, for a given flow velocity, the overall
stiffness may vanish, giving rise to static
(divergence) instability.

      In the second method use is made of the SURF Code and
its Tool Boxes, which are developed to analyse the turbo-
machinery problems, for both laminar and turbulent flows. In
this Code, the Navier-Stokes equations are used to represent
the unsteady flow in a nonlinear time-accurate fashion. The
structural model is based on a linear modal model. The fluid
mesh is moved at each time-step according to the structural
motion, so that the changes in aerodynamic damping and flow
unsteadiness can be accommodated. In this way the stability
analyses can be performed for the structure.

       By this approach, in addition to the results which can be
obtained for, density, pressure, velocity, temperature and other
variables  of  the  flow,  one  can  assess  the  stability  of  the
structure through vibrational analysis. Thus, the results
obtained indicate that the annular flow system considered
becomes stable due to the positive damping introduced in the
system  by  the  fluid  for  the  first  and  second   modes  and
unstable for the third mode which may result in flutter motion.

The important features of the second method which can be
used for the future extension of the present work, and also are
not existed in the first method are:

(i) can be used to analyse the stability of the
structure along different direction of the
coordinate axes.

7 Copyright © 2010 by ASME
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(ii) can handle several modes of vibration of the
structure

(iii) can handle the turbulent flows.

(iv) can be used for different geometrical annular
shapes
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Figure 1. Geometric representation of uniform annular passage
with oscillating middle section of the outer cylinder.

Figure 2. Typical 2-D mixed-cell mesh.

Figure 3: The unsteady pressure (a) and phase angle (b) for Re
= 250, ߱ = 0.2, ௜ݎ = 9, ௢ݎ = 10 at ݎ = 9.965, ߠ = 7.5௢and
߳ = 0.1.

Figure 4: (a) The circumferentia1 velocity w and (b) phase
angle with respect to the displacement of the outer cylinder in
annular gap for Re =250, ߱ = 0.2, ௜ݎ = 9, ௢ݎ = 10, and f = 0.1
at ܺ = 50, ߠ = 45௢.

Figure 5. Displacement, e , of the outer cylinder in translational

motion versus time, nnT wp2=  , with 1=nw for a 2-D

annulus -××-××-; , 4Re =
hD

_______; , 200Re =
hD

______; , 2000Re =
hD -×-×-; , potential flow.

Figure 6. Mesh generated for the annulus. 10x200x100 in ,ݎ ߠ
and directions. The-ݖ ௜ݎ = 9, ௢ݎ = 10 and the length of the
cylinder is 100 cm. The middle 40 cm of the outer cylinder is
oscillating.
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Figure 7. The first mode shape for the outer pipe.

Figure 8. Pressure fluctuation at ݔ = −0.1, ݕ = 0.0 and
ݖ = 0.54 due to the oscillation of outer cylinder.

Figure 9. Force acting on the cylinder due to the unsteady
pressure versus time.

Figure 10. Displacement of the outer cylinder in x-direction
versus time, first mode.

Figure 11. Displacement of the outer cylinder in x-direction
versus time, second  mode.

Figure 12. Displacement of the outer cylinder in x-direction
versus time, third  mode.
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