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ABSTRACT 
In this paper a summary is presented concerning several 
experiences in predicting and measuring the structural 
response under turbulent boundary layer excitations. The 
theoretical, numerical and experimental evaluations involved 
both wind tunnel and towing tank (water) tests in which a flow 
wetted a plane plate over one face. A critical review of all these 
sets is presented together with the possibility to adopt a 
dimensionless representation for the response. This is done in 
order to tentatively compare measurement sets and/or 
predictive results obtained in nominally different conditions. 
Specifically, the attention is devoted to the definition of the 
possible normalisation of the required axes: the excitation 
frequency and the response metric. To this aim relations 
suggested by the dimensional analysis are applied to four 
distinct data sets finding the best choice of dimensionless 
parameters that allow the collapse of the different curves in a 
single one. The functional relations between these parameters 
are discussed and an analytical expression for the 
dimensionless plate response is obtained.  

 
INTRODUCTION 
Turbulent boundary layer induced vibrations of elastic 
structures is one of the major noise source in naval, aerospace, 
and automotive engineering.  

It is well known that the computational cost associated to 
the solution of the coupled problem is often unfeasible for most 
of the real applications.  

The literature regarding this kind of problems is devoted 
mainly to 

(i) the analytical characterization of the pressure field, 
based on experimental data,  

(ii) the definition of scaling laws for the power spectral 
density [1,2,3] and  

(iii) the predictive models [3,4,5,6] for the cross spectral 
density, being these quantities the input for the 
structural analysis.  

These latter empirical representations of the pressure load 
avoid the use of heavy direct numerical simulations (DNS) to 
solve the Poisson equations governing the pressure field 
generated by the turbulent boundary layer. It is well known that 
the actual limit for DNS are Reynolds number values of the 
order of 1000. 

On the other side, the numerical solution of the structural 
equations especially when dealing with complex and huge 
structures such as an aircraft fuselage or a ship hull deserves 
some attention. When the structural wavelengths are small if 
compared to the typical dimension of the problem, i.e. at high 
frequency, the number of degrees of freedom necessary to 
calculate accurately the structural response increases rapidly.  

Moreover, even at low frequency the computational cost 
can be considerably high since, when the flow wavelengths are 
smaller than the structural ones:  the discretization of the 
structural domain is dominated by the aero-fluid dynamic scale.  
This is the typical situation occurring in naval problems and in 
aeronautical applications above the coincidence frequency. 

The energy methods such as the Statistical Energy 
Analysis, [7], can be invoked at high excitation frequencies i.e. 
for high values of the modal overlap factor, but they cannot 
fruitfully used in the low-mid frequency range. Furthermore, 
the definition of the input power starting from a general model 
for the pressure cross spectral density not using the separation 
of variables can be very complicated and time consuming.  

 
A chance to drastically reduce the computational time can 

be the identification of suitable scaling laws for the structural 
response able to determine, at least for a certain class of 
problems, the collapse of different data sets in a unique curve.  

To this aim, in the present work, four different 
experimental set-ups are considered and compared.  
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Test conditions refer for all cases to a stationary turbulent 
boundary layer in an incompressible, zero pressure gradient 
flow over a thin, flat elastic plate with no pre-stresses.  

Dimensional analysis is used to recover the dimensionless 
parameters that govern the response of the plate to the 
fluctuating pressure load and an analytical expression for the 
dimensionless plate response is found.  

NOMENCLATURE 
       a    stream-wise plate length 

b    cross-wise plate length 
f     frequency 
E   Young’s modulus 

        h    plate thickness 
U    free stream velocity 
Uc   convection velocity 
uτ   friction velocity 
Sw   spectral density of the plate displacement 
Sp   spectral density of wall pressure fluctuations 
Xpp Cross spectral density of wall pressure fluctuations 
δ    turbulent boundary layer thickness 
δ*   displacement thickness 
η  cross-wise spatial separation 
ξ    stream-wise spatial separation  
ρf   fluid density 
ρs   material density 
ω   radian frequency 

 
DESCRIPTION OF THE EXPERIMENTAL SETUP 
The four data sets considered for this analysis regard 
incompressible and stationary turbulent boundary layers in 
almost zero pressure gradient flow acting on thin and flat 
plates.  

Among the large amount of data available in the literature 
on wall pressure and induced structural vibration, these 
experimental setup are the only ones able to provide 
information on pressure fluctuations and on structural 
deformation acquired in the same facility and in the same 
nominal conditions. As it will be clear in the next section this 
fact is fundamental for the validation of the proposed scaling 
procedure.  

 
The first two sets of data are extracted from a database 

containing measurements of wall pressure fluctuations and 
structural response acquired in the INSEAN towing tank. The 
first one is relative to an experimental campaign performed on 
a 1:15 model of a catamaran hull (Figure 1). A Plexiglas plate 
was inserted in the bottom of the hull in correspondence of the 
stern region, pressure and acceleration measurements were 
performed for model speed of 3.3 m/s and 5.3 m/s respectively. 
A complete description of this experimental campaign can be 
found in [3]. 

 
The second set of data belongs to an experimental setup 

designed to measure wall pressure fluctuations and the response 

of elastic portions of a 1:8 scaled bulbous model (see figure 2). 
The considered data regards the stern measuring section where 
the flow has reached stationary conditions and where pressure 
gradient effects due both to water surface deformation and to 
structural curvature can be neglected.  

The elastic element inserted in the model is a Plexiglas thin 
plate, the model velocity in this case ranged between 2.72 m/s 
and 6.36 m/s. A complete description of this experimental 
campaign can be found in [8]. 

 

 
 

Figure 1 Catamaran model 
 

 
 

Figure 2 Scaled model (1:8) of a bulbous 
 
The last two sets of data are obtained from measurements 

performed in aerodynamic tunnels. The former was designed by 
Finnveden et al. [9] in the frame of ENABLE project. It 
consists of an aluminum plate exposed to flow velocities of 80, 
100 and 120 m/s respectively.  

The latter is part of the experimental campaign performed 
by Totaro et al. [10] on four different plates. The data 
considered for this analysis regard the PVC plate for a flow 
velocity equal to 50 m/s.  

 

Test section 
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Table 1 presents the principal characteristics of the four 
plates. Table 2 lists the principal mean flow TBL parameters of 
the four experimental set-ups. 

 
Table 1 Plates dimensions and material properties 

 
 Plate 1 Plate 2 Plate 3 Plate 4 

material PVC PVC Aluminum PVC 
density [Kg/m3] 1190 1190 2700 1400 

Young’s 
modulus 3.2E+9 3.2E+9 7.1E+10 4.5E+9

thickness [mm] 3 3.3 1.6 1 
length [m] 0.6 0.242 0.768 0.6 
width [m] 0.2 0.144 0.328 0.3 

 
Table 2 TBL mean flow parameters 

 
Plate Fluid U 

[m/s] 
δ  

[mm] 
uτ 

[m/s] 
3.30 120.0 0.110 1 5.30 113.0 0.163 

2.720 55.2 0.091 
3.64 51.0 0.102 
5.45 49.7 0.147 2 

 Water 
  
 

6.36 48.0 0.171 
80.00 50.0 2.600 

100.00 50.0 3.100 3 
120.00 53.0 3.700 

4 

 Air 
  
 

50.00 85.0 1.960 
 
 
DIMENSIONAL ANALYSIS 
The power spectral density of the plate velocity Sv was 
represented by the so called metric response R [9] defined as: 
 

R =
ω 2Sv ρsh( )2

Sp

                              (1) 

 
With this dimensionless representation the structural 

response was made independent of the power spectral density 
of wall pressure fluctuations however, the spatial characteristics 
of the fluid-structure interaction were not taken into account 
neither in the response axis nor in the frequency one. As it will 
be shown in the next section this representation does not lead to 
a collapse of spectra. 

In order to find other dimensionless representation for the 
structural response an approach based on dimensional analysis 
is used: within the present approach, the power spectral density 
of the plate displacement is considered as the output variable. 

 Furthermore, the cross spectral density of wall pressure 
fluctuations can be written as the product of the single point 
spectral density Sp ω( )  and of a function F that depends on the 

spatial coordinates, on frequency and on flow parameters 
[4,5,6] as: 

 
( ) ( )ωδηξω ,,,, cppp UFSX =  

 
where ξ, η represent the distance between different points 

of the plate in stream-wise and cross-wise direction 
respectively.  

In the previous expression, according to [4,5] the 
convection velocity was chosen as the only representative 
velocity of the phenomenon assuming that, in the case of 
stationary turbulent boundary layer over a flat plate, it is 
possible to find general relations between the free stream 
velocity U and the convection velocity Uc typically assumed 
constant and equal to 0.7-0.8U.  

Moreover, more sophisticated models [6,3] stated the 
dependence of the cross spectral density on the friction velocity 
uτ however, under the above mentioned conditions, a simple 
relation with U [11] and thus with Uc exists. Similarly as the 
representative length for the fluid domain the boundary layer 
thickness was chosen being well known its relation with the 
other two typical lengths of the TBL i.e. the displacement and 
the momentum thickness.  

With these statements the plate response to the pressure 
field induced by a turbulent boundary layer can be represented 
as a generic function g depending on the following dimensional 
fluid dynamic and structural variables: 

 

g Sw , Sp,ω,δ,Uc, ρs, E, h, a,b,ξ,η( ) = 0          (2) 
 
In Eq.(2) appear N=12 dimensional parameters thus, 

according to the Buckingham theorem [12], there are 9 
dimensionless parameters governing the problem. The 
identification of these last is not unique but one set is given by:  

 

SwUc

h 3 ; ρs
Uc

3h
Sp

; E h
SpUc

; 
cU
hω ;  

h
a ; 

h
b ; 

h
δ ;

h
ξ ;

h
η  

Thus, the power spectral density of the plate displacement 
can be rewritten in the following form: 

 

Sw =
h 3

Uc

  g ρs
Uc

3h
Sp

, E h
SpUc

, ω h
Uc

, a
h

, b
h

, δ
h

, ξ
h

, η
h

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟  

 
From the analysis of these parameters it is straightforward 

to define a dimensionless frequency: ω* =
ω h
Uc

.  

At this stage a critical analysis of the identified parameters 
is fundamental.  
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Dimensionless ratios 
h
a  and 

h
b  are strictly related to the 

structural model used to describe the plate motion. In the 
present analysis only thin plates (i.e. governed by the Kirchoff 
equation) [13] thus, the value of these two parameters can be 
considered definitely large and their influence on the plate 
response as negligible.  

The dimensionless parameter 
h
δ  gives the fluid-structure 

degree of coupling. In particular, it is a measure of the influence 
of the structural deformation on the flow field.  

From previous considerations h is small but comparing 
values of h given in Table 1 with values of δ provided in Table 

2, it can be concluded that is always δ
h

>> 1 large; then, the 

fluid domain is not affected by the structural deformation.  
Furthermore, if it is assumed that the major contribution to 

the plate response is due to diagonal terms of the cross spectral 
density matrix, it follows that ξ=0 and η=0. Under this 

condition 
h
ξ and 

h
η  can be neglected too.  

The only two dimensionless parameters that seem 
important for the present problem are those involving the 
pressure power spectral density.  

Without any other considerations on the physics of the 
problem, the plate response can be dependent on one of them or 
on a combination of the two. Nevertheless, in order to make the 
plate response independent of the input it seems convenient to 

consider the ratio Sw

Sp

 as done already in [9].  

With this position, the three possible functional 
dependences are: 

 

( )*

2
3

ωg
US
hE

U
hS

cpc
w

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=                    (3) 

( )*

2
33

ωρ g
S

hU
U
hS

p

c
s

c
w

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=                   (4) 

( )*

1
33

ωρ g
S

hU
US
hE

U
hS

p

c

cp
s

c
w

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=          (5) 

 
 

In this way it is possible to accordingly define 
dimensionless displacement functions of the dimensionless 
frequency ω* only i.e.: 

 
Sw

Sp

E
h

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

= g ω*( )                              (6) 

Sw

Sp

ρs

h
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

Uc
4 = g ω*( )                            (7) 

Sw

Sp

Uc

h

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

ρsE = g ω*( )                           (8) 

 
It can be observed that in the case of weak structural-fluid 
coupling the ratio between the power spectral density of the 
output and the power spectral density of the input must be 
independent of flow parameters and in particular of the flow 
velocity.  

This means that the structural mass, stiffness and damping 
matrices are not affected by the flow speed thus, Eqs. 7 and 8 
can be considered of minor importance. This hypothesis is 
consistent with the experimental and numerical studies 
performed on the considered and on similar systems [3,14]. 

 In conclusion the only relation that is considered 
significant for the present analysis is that provided by Eq. (6). 
The functional dependence on the dimensionless frequency can 
be investigated from the direct analysis of experimental data.  

DATA  ANALYSES 
The proposed dimensionless forms of the structural response, 
Eqs.1 and 6, are applied to the data sets previously described.  

The power spectral densities of the plate responses are 
represented by their mean response over  

 
o 8 points for plate 1,  
o 3 points for plate 2 and  
o 5 points for plate 3.  

 
Data for plate 4 are directly derived in terms of metric 

response eq (1) from Figure 18 of reference [11]. In the same 
paper it is stated that the plate velocity response acquired with a 
laser vibrometer was averaged over 75 points.  

The reference power spectral densities of wall pressure 
fluctuations are represented by their average over  

 
o 10 points for plates 1 and 2 and  
o 19 points for plate 3.  

 
Values for the convection velocity are usually obtained 

from time domain cross-correlation analyses or from the phase 
of the cross spectral densities. According to the results reported 
in [3,8,9,10], the values of Uc used for the present analysis are: 

 
o 0.7   U for plate 1 
o 0.65 U for plate 2 
o 0.75 U for plate 3 
o 0.62 U for plate 4  

 
In Figure 3 the dimensional acceleration power spectral 

densities are shown for plates 1, 2 and 3. Data for plate 4 are 
not available in this form. Due to the difference between test 
conditions of the three data sets in terms of both fluid dynamic 
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and structural parameters but with particular reference to flow 
velocity values, the dimensional acceleration responses 
exhibited different amplitudes especially if looking to the low-
mid frequency range. In this region the sensible gap in the 
response level is related to the different values assumed by the 
ratio between the structural and the aero/fluid-dynamic 
wavenumbers.  

 
Figure 3 Dimensional acceleration power spectral densities. 

 
In particular for the aerodynamic case (plate 3 and 4) 

structural wavenumbers are smaller than flow wavenumbers 
until the so called coincidence frequency. In this case the 
structural response is dominated for a large part of the 
frequency range by the convective components of the pressure 
field and in correspondence of the coincidence frequency reach 
its maximum value.  

On the contrary, for Plate 1 and 2 the coincidence 
frequency is below 1 Hz thus, they receive energy mainly from 
the sub-convective component of the pressure field.  

In this case the spectra amplitude, following the pressure 
PSD behavior, is nearly constant for a large part of the low-mid 
frequency range.  

It is interesting to analyze what happens if the metric 
response of Eq.(1) is adopted as reported in Figure 4.  

It is evident that the gap between different data sets is still 
large and that the proposed dimensionless form does not 
produce a collapse between different curves of the same data 
set either. As said before this dimensionless form for the 
structural response does not contain any information about the 
spatial characteristics of the fluid-structure interaction. 

 
In Figure 5 the same experimental curves are represented 

in terms of power spectral density of the plate displacement. 
The same considerations hold for the contents of Figure 3.  

 
 

 
Figure 4 Metric responses.  

 
Figure 5 Dimensional displacement power spectral densities. 

 
In Figure 6 the dimensionless representation of the plate 

responses provided by Eq.(6) is reported. It is evident an 
excellent collapse of the three curves relative to Plate 3; 
moreover the curve relative to Plate 4 shows the same trend in a 
quite similar non-dimensional frequency range and a complete 
superposition with the previous ones.  

 
Curves relative to Plate 1 and 2 exhibit a good collapse 

with the other ones for values of the dimensionless frequency 
above the convective range. 
 

The functional relation between the dimensionless 
response and the dimensionless frequency is well approximated 
by the simple relations: 
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Sw
* =

6.7 105 ω*( )
−5 ω h

Uc

< 0.2

1.0  106 ω*( )
−3 ω h

Uc

> 0.2

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

                          (9) 

 
also shown for comparison in Figure 6.  

 
Figure 6 Dimensionless plate responses. 

 
It should be evident that Eq.(6) can be used for both local and 
mean response. For all the results herein presented, the 
structural response has been considered a mean one, obtained 
through an average over the acquired locations. The validity of 
the mean response is dominated by the modal overlap factor of 
the system i.e. the product of the excitation frequency, the 
structural damping and the modal density. High values of this 
parameter (greater than unit value) are associated to a complete 
inhibition of the modal response. In principle, the 
dimensionless representation can be used for each acquired 
point, but this aspect was not addressed here. 
As a final point, in order to investigate the validity of the 
assumption made in the previous section of weak fluid-
structural coupling, relations 7 and 8 are used to scale plate 
spectra and the results reported in Figures 7 and 8. From the 
inspection of the figures it appear evident that the introduction 
of the flow speed does not produce a good collapse of the 
spectra. Additionally, if an higher power of Uc is used (eq.7) the 
gap between different curves tends to increase considerably.  

A final note has to be given about the selected parameters 
for the material. Here, having a set of data acquired on plates 
all made by homogenous material, the obvious choice was to 
select the Young’s modulus, E, and the mass density, ρS , as 
material constants.  

In case of generic plates made of composite materials, 
sandwich or any other non-homogenous material or structural 
combination (i.e. sandwich plates), that choice for the elasticity 
has to be read as the elasticity modulus ρSc L

2 ; the adoption of 

the longitudinal wave speed generalizes the present 
development to a generic material or combination of materials. 

 
Figure 7 Dimensionless plate response 

 
Figure 8 Dimensionless plate response 

 

CONCLUDING REMARKS 
In this work on the basis of a simplified dimensional analysis 
and a quite large amount of experimental data, scaling laws for 
the response of an elastic thin plate excited by the turbulent 
boundary layer are defined.  

It was demonstrated that when the power spectral densities 
of the structural displacement can be represented in the plane 

ωh
Uc

; Sw

Sp

E
h

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

 
; all the presented experimental data collapsed 

in a single curve.  
Simple analytical expressions for the dimensionless curve 

are finally provided.  
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The work herein presented is at a very preliminary stage, 
but the approach deserves to be further investigated in view of 
the promising results. 
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