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ABSTRACT

A non linear mathematical model addressing the passive
mechanism of the cochlea is proposed in this work. In this re-
spect, the interaction between the basilar membrane seen as an
elastic solid and fluids in both scala vestibuli and tympani is de-
veloped. Via the fluid/solid interface, a full fluid/solid interac-
tion is taking into account. Furthermore a significant improve-
ment of the existing models has been made in both fluid flow
modelling and solid modelling. In the present paper, the flow is
three dimensional and the solid is non homogeneous two dimen-
sional membrane where the material parameters depend only on
the axial distance. The problem formulation leads to a system
of non linear partial differential equations. Solution of the lin-
earized system of partial differential equations of the proposed
approach is presented. The numerical results obvious a lower
and upper limits of the cochlea resonance frequency versus the
material parameters of the basilar membrane. It is shown that
a monochromatic acoustic wave energises only a portion of the
basilar membrane and the location of the excited portion depends
on the frequency of the incident acoustic wave. Those results ex-
plain the ability of the cochlea in deciphering the frequency of
sound with high resolution in striking similarity with the known
experimental results. The mathematical model shows that the ex-
cited strip of the basilar membrane by a monochromatic acoustic
wave is very small when a transverse wave exists in the basilar
membrane. Thus, a transverse wave improves highly the reso-
lution of the cochlea in deciphering the high frequency of the
incident acoustic wave.

1 Introduction
The ear is an advanced and very sensitive organ of the human

body. One of the major tasks of the ear is to detect and analyze
noises by transduction. The human auditive system is divided
into three different parts as it is shown in figure1, namely, the
outer-, middle- and inner- ear. The sound vibrations are propa-
gated in the external auditory canal and put the tympanic mem-
brane in vibration. The vibration of this membrane is propagated
through the middle ear by putting moving the ossicles until at the
oval window of the cochlea, entry of inner ear. The movement
of this window puts in vibration cochlear fluids which stimulate
sensory cells. Our study concerns to the mechanical behavior of
the inner ear, and more precisely, the passive mechanism of the
cochlea.

The cochlea is a spiraled, hollow, conical chamber of bone,
divided into three parts. First, the scala vestibuli (containing fluid
named perilymph) lies superior to the cochlea duct and abuts
the oval window. Secondly, the scala tympani (containing fluid
named perilymph) lies inferior to the scala media and terminates
at the round window. Finally, the scala media (containing fluid
named endolymph) is the membraneous cochlea duct containing
another structure called the organ of Corti. These three parts are
separated by two membranes. The Reissner’s membrane sep-
arates the scala vestibuli from the scala media and the basilar
membrane separates the scala media from the scala tympani. The
location where the scala tympani and the scala vestibuli merge is
called the helicotrema. About the organ of Corti, it’s a cellular
layer sitting on top of the basilar membrane. It is lined with hair
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FIGURE 1. Ear anatomy

cells sensory cells topped with hair-like structures called stere-
ocilia. The cilia of the hair cells tied up to another membrane
called the tectorial membrane. When the hair cells are excited
by vibration, a nerve impulse is generated in the auditory nerve.
These impulses are then sent to the brain. Some experimental
and theoretical evidences support the fact that the hair cells might
amplify some frequency and compress others. Nonetheless the
present work aims to understand the passive mechanism of the
cochlea, first because it is not fully understood, and secondly, to
emphasize that its contribution is significant on the amplification
phenomena. Indeed, following Sheraet al. [1], form, amplifica-
tion and speed propagation of the traveling wave in the cochlea,
generated by stapes motion, are not yet understood. An unclosed
debate questionnes : does the basilar membrane amplify actively
the propagating wave in the cochlea ? Or is the observed am-
plification right one of the unknown characteristic of the cochlea
mechanism ? As the system is subjected to external forces, ex-
amining the stability of the passive mechanism could give insight
on a possible energy gain or loss of the system, without any work
supposed to be done by the basilar membrane.

In order to predict the form of traveling wave in the cochlea
by experimental technique, a similarity hypothesis is often
needed to convert the local response of the basilar membrane
versus time to a global basilar membrane response (that is, am-
plitude and phase of the basilar membrane velocity (or displace-
ment) versus the cochlea’s axis). All these informations could be
provided easily by a mathematical model, once it has been val-

idated using published experimental data. Starting from experi-
mental measurements reported by Shera [2], in particular figure
2 in his paper, a qualitative comparisons will be established be-
tween experimental and our numerical simulations.

Up to now, different studies have been performed to account
for passive mechanism of cochlea.

T. Lin and J. J. Guinan (2004) have used joint time-
frequency distribution to analysis click response of cat single
auditory-nerve fibers and published measurements of chinchilla
basilar-membrane motion. At a single location of the basilar
membrane, the energy was found to be distributed over a range
of frequencies around the characteristic frequency. To explain
the waxing and waning features of the click response of single
auditory-nerve fibers, they supposed (i) the existence of more
than one resonance frequency representing waves having differ-
ent wave speeds at a single cochlear location, or, (ii) the exis-
tence of reflected wave. The present paper gives strong support
to the former hypothesis. Indeed, the proposed model shows that,
at a single cochlear location, there are eigenvectors representing
waves having different velocity group. Thus the revealed glide
experimental irregularities could be explained by the existence
of several resonance frequencies at given cochlea’s cross section.

In another way, De Boeret al. [3,4] have modeled the pas-
sive mechanism of the cochlea using a linearized two dimen-
sional Euler equation. In this model, domain of channels was
supposed to be unbounded in the cochlea axial direction. In this
way, introducing an unknown impedance, the fluid motion has
been taking into account to give away the basilar membrane re-
sponse. Resting on this approach, different drawbacks appear.
First, no equation has been formulated for the impedance. Sec-
ondly, the problem remains open. And finally, though the inverse
problem formulation is very useful, it is inadequate for the pre-
diction of cochlea’s passive mechanism features. On the con-
trary, the proposed model in this article is able to take notice of
(i) the three dimensional flow, (ii) a full coupling between the
membrane and the flow and (iii) the bounded domain in the axial
direction.

The passive dynamics of the cochlea was described by No-
bili et al. [6, 7] using an integral equation. In this study, a
qualitative agreement with experimental measurement has been
obtained. Moreover, they shown that the model predicts some
working cochlea properties providing a force term that accounts
for hair cell motility. In this model, the basilar membrane dis-
placement is supposed to be constant in the cochlea’s cross sec-
tion and a spring-like structure is used to describe the membrane
motion. A more realistic description of the cochlea behavior
needs to take into account the basilar membrane’s transversal
displacement. This is performed with the proposed model in this
article. Furthermore, this proposed model predicts mechanical
features of the cochlea without including a force term.

Another spring-like structure model has been used for the
basilar membrane in Zweinget al. [8]. In their approach, the
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pressure difference across the scala media and the volume ve-
locity of the fluid flow down the cochlea is assumed to satisfy
a transmission-line equation. The model yields one dimension
wave equation with varying mechanical properties. The WKB
method1 as well as finite difference method are used to solve the
obtained wave equation. A transfer function, defined as the ratio
of the basilar membrane velocity and the round window velocity,
was shown to be in good agreement with its counter part obtained
by experimental measurements.

In the present paper, in order to simplify the mathematical
description of the cochlea mechanical behavior, it was consid-
ered as a strait stretched chamber rather than conical one. How-
ever, the proposed formulation is independent of the cross section
form, as well as of its lumen. Moreover, a decreasing lumen to-
ward the apex could be considered. We neglect also the variation
of the cochlea’s cross section, this is of course a severe approxi-
mation, nevertheless we think that such approximation is need in
order to have an insight on the cochlea mechanism without tack-
ling a cumbersome equations. The basilar membrane, Reissner’s
membrane, the scala media and the organ of Corti are considered
as a single elastic membrane. The fluid in both scala vestibuli and
tympani channels are non viscous and we assume an irrotational
flow. Although the numerical treatment of non linear equations
could be attemped, the aim of the present work is the analysis of
linearized equations. As it will be presented, this analysis gives
interesting informations for the understood of the cochlea’s pas-
sive mechanism. The main hypothesis of the proposed model
rests on the axial flow velocity : it is supposed constant in the
cochlea’s cross section. This hypothesis is justified because the
boundary layer has no time to grow and pervade the section.

The paper is divided in five sections: the first and second
ones are devoted to the mechanical formulation of the problem
and the flow modelling. The third part focuses on the linear
model. The fourth one proposes an asymptotic analysis. Finally,
numerical results and qualitative comparison with experimental
data are presented. In the last part, conclusions are discussed.

2 Formulation of the cochlear problem
Hereafter, our approach is presented. First, assumptions of

the cochlear mechanical model are listed. Then the fluid mod-
elling and the solid one are described. Finally the proposed
methodology to solve the problem including a full fluid/structure
coupling is detailled.

2.1 Assumptions of the cochlear mechanical model.
In order to simplify and eliminate technical complications

on the mathematical description of the cochlea mechanical be-
havior, we make several simplifying assumptions.

1Wentzel, Kramers, and Brillouin method

First, we work with simplest geometry, considering the
cochlea as a plan rather than spiral chamber though the present
formulation remains valid for an arbitrary cochlea’s cross section
shape. We assume also incompressible and non viscous scala flu-
ids (vestibuli and tympani), and irrotational flow. A same fluid is
considered for the differents channels which implies that the fluid
mass density in the vestibuli and tympani channels are the same,
writtenρ f . Reissner and basilar membranes, the scala media and
the organ of Corti are considered as a single elastic membrane,
that shall be called afterwards the basilar membrane (BM). That
is, we consider two channels of lengthL, separated by a partition
as it is shown in figure.

Except at the two windows (oval and round), we assume that
the box is surrounded by rigid bone so that no fluid enters or
leaves the cochlea. The fluid’s volume is displaced by the two
windows; windows’s displacement are therefore equal and oppo-
site in direction.

The partition is composed with a rigid part and a moving
one, representing corticoi bone and BM respectively. Thex axis
extends longitudinally from the base (atx = 0) to the apex (at
x = L), and thez axis is oriented perpendicular to the BM, which,
when the BM at rest, is located in thexy plane. The BM width is
r(x).

About the helicotrema, we assume its location atx = L. A
single point is considered to be representative of the exchange
between the vestibular and tympani channels. Then,L is also the
BM length and specific boundary conditions in this point will
be described. In particular, velocity is null in both vestibuli and
tympani channels. The continuity of the velocity througth the
BM at x = L is reinforced, that is, the BM atx = L is at rest.

LetW (x,z,t) be the BM’s displacement inz direction andV0

the velocity of the membrane of the oval window. We assume
that the BM’s displacement inx and y directions are small in
comparison withW (x,y,t).

Let now present the basic equations of the cochlear mechan-
ical problem.

2.2 Basic equations of the cochlear mechanical prob-
lem.

Because of irrotational flow assumption, the velocities in
the two channels are the gradient of two scalar functions,ΦV

andΦT , respectively for vestibuli and tympani channels, which
satisfy the following Laplace equations :

∆ΦV = 0; ∆ΦT = 0 (1)

VV = ∇ΦV ; V T = ∇ΦT (2)
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subjected to suitable boundary conditions, namely,∇ΦV = 0 at
rigid part of the cochlea and∇ΦV equals the velocity of the mov-
ing part of the cochlea and a similar boundary condition should
be imposed onΦT .

Taking account of our assumptions, we can establish the
boundary conditions associated with precedent Laplace equa-
tions (1) for the two channels. Since the scalae walls are assumed
rigid, the corresponding normal component of the fluid velocity
must vanish. Just above the cochlear partition, the fluid velocity
must equal the velocity of the MB, i.e.VFluid = VBM,

∂ΦV

∂ z
=

∂W
∂ t

;
∂ΦT

∂ z
=

∂W
∂ t

(3)

Just inside the oval window, thex component of the fluid velocity
must equal the velocity of the stapes.

At the end of the cochlea, we assume that the velocity is
null in both vestibuli and tympani channels and that continuity
is ensure througth the BM (at the helicotrema location). Finally,
through the partition’s bone, the velocity is null. Pressures in
vestibuli and tympani channels,pV andpT respectively, could be
obtained by generalised Bernoulli theory [11], thus they verify
the following relations :

pV = −ρ f
∂ΦV

∂ t
− ρ f

2
(∇ΦV )2 +C(t)

pT = −ρ f
∂ΦT

∂ t
− ρ f

2
(∇ΦT )2 +C(t) (4)

where∇ stands for the gradient operator,ρ f denotes the fluid
mass density (volumic) in the vestibuli and tympani channels,
andC(t) is an arbitrary constant value. Then, the force applied
onto the BM by the pressure by surface unity is

q = (pT − pV ) = ρ f
∂ (ΦV −ΦT )

∂ t

+ρ f
1
2
[(∇ΦV )2− (∇ΦT )2] (5)

Taking account of our assumptions, the BM is assimilated to
a two dimensional membrane where the displacement of the ma-
terial point located atW (x,z,t) satisfies the following equation
:

ρs
∂ 2W
∂ t2 − ∂

∂x

(

Tx
∂W
∂x

)

− ∂
∂y

(

Ty
∂W
∂y

)

= +q. (6)

In the precedent equation,ρs stands for the surface mean mass
density of the Reissner’s membrane, basilar membrane, the scala

media and the organ of Corti. The coefficientsTx andTy are axial
and transversal tensions of the membrane. They are supposed
to be dependent on the axial distancex. The force termq is the
pressure applied by the flow in the scala vestibuli and the scala
tympani on the BM which will be estimated in the next section.

The problem is now to solve equation (1) for the two scalar
functions,ΦV andΦT , subject to the prescribed boundary con-
ditions in order to determine the passive mechanical behavior of
the cochlea. As we can see, the boundary conditions involve the
BM’s displacement. Then, the unknows are not only the scalar
functions,ΦV andΦT describing what occur in fluids, but also
W (x,y,t) the BM’s displacement, along time and space. Note
that others authors have been interested by this problem. Sheraet
al. [10] have proposed a 1D- and a 2D- models, but their solving
was achieved by considering the average pressure on each scala.
This point of view reduce the problem to one dimension. In this
paper, the proposed approach, presented in the next section, does
not need to consider the average pressure.

2.3 Flow modelling
In order to solve the BM’s displacement using the system of

equations described in the precedent section, it necessary to in-
verse Laplace operator in a domain with moving boundary. This
is a challenging task because the computation grid need to be up
dated at each time step in order to take account of the BM’s dis-
placement. In this section, we present a simplified formulation
permitting to avoid up dating the computation grid and leading to
a tractable model, removing the need to inverse Laplace operator.
It’s simplified because based on the main hypothesis detailled
previously in section2.1, that the axial velocity component,V T

x
andVV

x , are constant in the cross section of the vestibuli and tym-
pani channels respectively2. This approximation is valid if the
BM’s displacement is small in comparison with the radius of the
cochlea. In the present approach, there is no need to neglect the
fluid’s velocity component inz direction,Vz, in comparison toVx

andVy. As it shall be seen, increasing the order of the differen-
tial equations governing the BM removes the need to solve for
three dimensional flow, without simplifying assumptions. This
technique leads to a lost of some informations which will appear
later, in the form of some arbitraryness on the boundary condi-
tions used to solve the BM’s equation. The correct treatment
of the boundary conditions is possible but relegated to another
work.

The first point of the proposed approach so as to solve the
problem is to establish the mass balance in the domain included
between two cross sections separated by a gapdx. Let S0

V and

2This assumption does not induces any error as far as the equation of motion
are satisfied which is the case here. However, it leads to a particular solution of
the equation of motion. Important discoveries have been found by this kind of
assumption in fluid mechanics as, for instance, the shocked flow in the De Laval
nozzle
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S0
T be the respective cross section’s area of the vestibuli and tym-

pani channels when the BM is at rest. When the BM moves, the
surfaces of the scala vestibuli and scala tympani at the positionx
become

SV (x,t) = S0
V −

∫ r(x)

−r(x)
W (x,y,t)dy

ST (x,t) = S0
T +

∫ r(x)

−r(x)
W (x,y,t)dy. (7)

Herer(x) corresponds to the BM’s width, varying alongx
axis. Thus, in the scala vestibuli, the difference between two
sections located atx andx + dx are expressed by :

SV (x + dx,t)−SV(x,t) = −
∫ r(x+dx)

−r(x)
W (x + dx,y,t)dy

+

∫ r(x)

−r(x)
W (x,y,t)dy. (8)

Whendx approches zero and assumingr(x) varies slowly along
x axis (i.e. the term involvingdr

dx is neglected), we obtain:

SV (x + dx,t)−SV(x,t) = −dx
∫ r(x)

−r(x)

∂W (x,y,t)
∂x

dy. (9)

A similar relation is established in the scala tympani :

ST (x + dx,t)−ST(x,t) = dx
∫ r(x)

−r(x)

∂W (x,y,t)
∂x

dy. (10)

Starting from these relations, we establish the mass balance in
the domain enclosed by the surfaceS defined by the following
boundaries :SV (x,t), SV (x + dx,t), the partition surface and the
rigid walls. It gives :

∫

S
~V .~ndS = 0 ⇔ −

∫

SV (x,t)
Vx(x)dS

+
∫

SV (x+dx,t)
Vx(x + dx)dS +

∫

∆Slateral
V

~V .~ndS = 0. (11)

As we supposed thatVx(x,t) is constant in the channel’s cross
section, the precedent equation could be simplified by :

−Vx(x)SV (x,t)+Vx(x + dx)SV (x + dx,t)

−
∫ x+dx

x

∫ r(x)

−r(x)

∂W (x,y,t)
∂ t

dydx = 0. (12)

Using equations (8), we obtain

Vx(x + dx)

[

SV (x,t)dx−
∫ r(x)

−r(x)

∂W (x,y,t)
∂x

dy

]

−Vx(x)SV (x,t)−
∫ x+dx

x

∫ r(x)

−r(x)

∂W (x,y,t)
∂ t

dydx = 0 (13)

which can be written

[Vx(x + dx)−Vx(x)]SV (x,t)dx

−Vx(x + dx)
∫ r(x)

−r(x)

∂W (x,y,t)
∂x

dy

−
∫ x+dx

x

∫ r(x)

−r(x)

∂W (x,y,t)
∂ t

dydx = 0. (14)

Whendx approches zero, we obtain

∂Vx

∂x
SV (x,t)−Vx(x)

∫ r(x)

−r(x)

∂W (x,y,t)
∂x

dy

−
∫ r(x)

−r(x)

∂W (x,y,t)
∂ t

dy = 0. (15)

As in this caseVx = ∂ΦV
∂x , the precedent equation becomes

∂ 2ΦV

∂x2 SV (x,t)− ∂ΦV

∂x

∫ r(x)

−r(x)

∂W (x,y,t)
∂x

dy

−
∫ r(x)

−r(x)

∂W (x,y,t)
∂ t

dy = 0. (16)

Using equation (7) and eliminatingSV (x,t) leads to the follow-
ing equation

∂ 2ΦV

∂x2

[

S0
V −

∫ r(x)

−r(x)
W (x,y,t)dy

]

− ∂ΦV

∂x

∫ r(x)

−r(x)

∂W (x,y,t)
∂x

dy −
∫ r(x)

−r(x)

∂W (x,y,t)
∂ t

dy = 0. (17)

In a similar way, the fluid in the scala tympani verifies the fol-
lowing equation

∂ 2ΦT

∂x2

[

S0
T +

∫ r(x)

−r(x)
W (x,y,t)dy

]

+
∂ΦT

∂x

∫ r(x)

−r(x)

∂W (x,y,t)
∂x

dy

+
∫ r(x)

−r(x)

∂W (x,y,t)
∂ t

dy = 0. (18)
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Hereinafter we deal with equations (5), (6), (17), (18) instead
of inversing Laplace operator. Starting from these equations, an
approximate model will be established in next sections. To this
end, we introduce the functionΦ = ΦV −ΦT .

3 Linear model
The linearization of precedent equations leads to the first

step of model formulation. Neglecting the non linear term in
fluid’s equations (5), (17) and (18) the basic equations become :

q = ρ f
∂
∂ t

Φ(x,y,z,t), (19)

∂ 2

∂x2 ΦV (x,y,z,t) =
1

S0
V

∫ r(x)

−r(x)

∂
∂ t

W (x,y,t)dy, (20)

∂ 2

∂x2 ΦT (x,y,z,t) = − 1

S0
T

∫ r(x)

−r(x)

∂
∂ t

W (x,y,t)dy. (21)

Assuming thatTx andTy depend onx only, the BM’s equation (6)
become :

ρs
∂ 2W
∂ t2 − dTx

dx
∂W
∂x

−Tx
∂ 2W
∂x2 −Ty

∂ 2W
∂y2 = ρ f

∂Φ
∂ t

(22)

and using the functionΦ, the two last equations of (20) can be
written differently :

∂ 2

∂x2 Φ(x,y,z,t) =

(

1

S0
V

+
1

S0
T

)

∫ r(x)

−r(x)

∂W (x,y,t)
∂ t

dy. (23)

Note that this equation implies that the second order deriva-
tive of Φ(x,y,z,t) depends only onx and t. However the flow
could be three-dimensional one. In the present approach, we
use this property of the second order derivative ofΦ(x,y,z,t), to
avoid solving for three-dimensional flow. To this end, the second
order partial derivative of the BM’s equation (22) with respect to
x has been carried out :

ρs
∂ 4W

∂x2∂ t2 − ∂ 2

∂x2

(

dTx

dx
∂W
∂x

+ Tx
∂ 2W
∂x2

)

− ∂ 2

∂x2

(

Ty
∂ 2W
∂y2

)

= ρ f
∂ 3

∂x2∂ t
Φ. (24)

Then, to obtain an equation involving onlyW , ∂ 3

∂x2∂ t
Φ needs to be

removed. Thus, by taking the partial time derivative of equation
(23), we obtain:

∂ 3

∂ t∂x2 Φ(x,y,z,t) =

(

1

S0
V

+
1

S0
T

)

∫ r(x)

−r(x)

∂ 2W (x,y,t)
∂ t2 dy. (25)

Finally, the coupled fluid/solid equation is obtained by eliminat-
ing Φ from the two last equations, leading to:

ρs
∂ 4W

∂x2∂ t2 −
∂ 2

∂x2

(

dTx

dx
∂W
∂x

+ Tx
∂ 2W
∂x2

)

− ∂ 2

∂x2

(

Ty
∂ 2W
∂y2

)

=

ρ f

(

1

S0
V

+
1

S0
T

)

∫ r(x)

−r(x)

∂ 2W (x,y,t)
∂ t2 dy.

Moreover, we integrate the precedent equation over the range [-
r(x), r(x)] (for y parameter) to obtain :

∫ r(x)

−r(x)
[ρs

∂ 4W
∂x2∂ t2 −

∂ 2

∂x2 (
dTx

dx
∂W
∂x

+ Tx
∂ 2W
∂x2 )

− ∂ 2

∂x2 (Ty
∂ 2W
∂y2 )]dy =

2r(x)ρ f (
1

S0
V

+
1

S0
T

)

∫ r(x)

−r(x)

∂ 2W (x,y,t)
∂ t2 dy.

A dimensionless coupled fluid/solide equation is considered to
obtain numerical solution. In this way, we use dimensionless
variables: leth andω−1

0 be the distance and time scales. Then,
we define the dimensionless variables as follow :

x∗ =
x
h

; y∗ =
y
h

; t∗ = tω0 (26)

r∗ =
r
h

; S0∗
V/T =

S0
V/T

h2 ; w̃∗ =
w̃
h

(27)

T ∗
x =

Tx

ρsh2ω2
0

; T ∗
y =

Ty

ρsh2ω2
0

; ρ∗ =
hρ f

ρs
(28)

Here and after, we do not keep the star for reading clarity and
writing easiness. Further, the BM’s motion is supposed sinu-
soidal iny direction. That is,

W (x,y,t) = w(x,t)cos

(

nπy
2r(x)

)

;

(x,y,t) ∈ [0,L]× [−r(x),r(x)]× [0,T ]. (29)

The trigonometric function is chosen in order to satisfy the
boundary condition imposed by the lateral tethering of the BM.
More general solution involving more than one Fourier’s com-
ponents iny direction could be sought and doing so is straight
forward. After substitution in the equation (26), we obtain :

∂ 4w
∂x2∂ t2 −

∂ 2

∂x2

(

dTx

dx
∂w
∂x

+ Tx
∂ 2w
∂x2

)

+

(

nπ
2r(x)

)2 ∂ 2

∂x2 (Tyw) = 2r(x)ρ
(

1

S0
V

+
1

S0
T

)

∂ 2w
∂ t2 . (30)
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In order to obtain a simplified equation, terms involving the
derivatives ofr(x)3 are neglected. For the numerical simulation,
we shall consider a harmonic mode forw, in the form :

w(x,t) = w̃(x)eiωt . (31)

Thus,w̃ obeys the following equation :

ω2 d2w̃
dx2 +

d2

dx2

[

dTx

dx
dw̃
dx

+ Tx
d2w̃
dx2

]

−
(

nπ
2r(x)

)2 d2

dx2 [Tyw̃] = 2r(x)ρ
(

1

S0
V

+
1

S0
T

)

ω2 w̃ (32)

associated with the boundary conditions atx = 0 and atx = L

w̃ = 0 ,
∂ w̃
∂x

= constant (33)

Here the constant involved in the boundary condition is arbi-
trary. An exact treatment of the boundary conditions involv-
ing the oval window velocity is possible though is delayed to
an other work.As we solve a linear problem, the amplitude of
the displacement in a given location is proportional to this con-
stant. The value of the constant is chosen in such a way the
membrane displacement never exceeds the width of the cochlea
cross section. The precedent equation shall be solved numeri-
cally. Starting from this, we establish an asymptotic analysis in
the next section.

4 Asymptotic analysis
In this section we limit the analysis to the short waves. In

this way, we suppose that the rheological and geometrical pa-
rameters of the cochlea vary slowly withx in comparison with
the variation of BM’s displacement. Thus, the analysis is valid
when

| dTx

dx
|<<| ∂w

∂x
| . (34)

A similar relations are hold forTy, Sv, St and r(x). Precedent
hypotheses allows to perform a local analysis. Moreover the de-
pendence onx of axial and transversal tensions, is as follows

Tx = A1 + B1e−Γ1x ;Ty = A2 + B2e−Γ2x ;

r(x) = rL
x
L

+ r0 (35)

3The derivative of the functionr(x) appears via equation29 when uperW
case is eleminated by from equation26 by equation29 and has to be kept when
large variation of the functionr(x) is considered

whereA1, B1, A2, B2, Γ1 andΓ2 are constants. Then, a solution
of the basic equation in the form normal mode has been sought,
namely

w(x,t) = ˜̃weikx+iωt . (36)

Hence the dispersion’s equation associated with equation (30) is
established :

[

k2 +2r(x)ρ
(

1

S0
V

+
1

S0
T

)]

ω2

+

[

−ik
d3Tx

dx3 +3k2d2Tx

dx2 +3ik3 dTx

dx
− k4Tx

]

+

(

nπ
2r(x)

)2[

d2Ty

dx2 +2ik
dTy

dx
− k2Ty

]

= 0. (37)

Using equations (30) and (37), some numerical results in the
form of dimensionless quantities will be presented and com-
mented in the next section.

5 Results
In precedent section, a mathematical model for the cochlea’s

passive mechanism was established with a full interaction be-
tween the flow in the channels and the BM. The flow in both
vestibuli and tympani channels is three dimensional, non viscous
and with small velocity amplitude. Direct description of the three
dimensional flow is avoided by increasing the order of the differ-
ential equation describing the cochlea’s passive mechanism. The
BM, the organ of Corti and the scala media were supposed to
behave as a membrane with varying rheological and geometrical
properties. The formulation led to a non linear forth order partial
differential equation on space and second order on time. Coef-
ficients of this partial differential equation depend on the axial
distance. A linearized version of the dynamic equation was ob-
tained. In the linear version of the model, the dependence on time
was supposed to be in the form of a normal mode, i.e. of the form
eiωt . The displacement in the transversal direction was supposed
to be sinusoidal with arbitrary transversal wave numbern. Then,
a finite difference method, with uniform grid, is used to solve the
resulting dimensionless linear equation, namely equation (30).

Al l the numerical results shown here are obtained with 200
points located in the axial direction and separated by constant
increment. The aim of the numerical computation is to know if
the model could predict the main features of the cochlea’s pas-
sive mechanism, that is, the place to frequency relationship, the
upper and lower hearing limites. In this way, two numerical sim-
ulations have been performed. In the first one,ω is considered
as a real number and in the second one,ω is a complex number.

7 Copyright c© 2010 by ASME



Geometrical parameters used areL = 15, S0
V = 0.5, S0

T = 0.5,
r0 = 0.2 andrL = 1. Material parameters used areA1 = A2 = 10,

B1 = B2 = 0.01,Γ1 = Γ2 = 1 for Tx andTy, andρ =
hρ f
ρs

= 1.

For the first numerical simulation, results are shown in fig-
ures3, 4, 5. In figures3 and4, the BM’s displacement is plotted
versus the dimensionless axial distance of the cochlea for some
chosen dimensionless real frequenciesω

ω0
, ω−1

0 being the time
scale. Subfigures3a, 3b, 3c and4a, 4b, 4c relate to the BM’s
displacement for different transversal wave numbers (n = 1...6).
The curves in each subfigure are obtained for various decreas-
ing values ofω

ω0
. For all transversal wave number, the maximum

of the BM’s displacement shiftes continuously toward the apex
when the stimulus frequency,ωω0

, decreases. On the one hand,
for n = 1 and high frequency stimulus, the BM is fully displaced,
while for low frequency stimulus the displacement concerns only
the downstream portion of the BM. On the other hand, for other
transversal wave numbers (n ≥ 2), a portion of the BM located at
the base remains quiet, the higher the frequency, the longer the
portion and the higher the transversal wave number, the longer
the portion. Note that we did not find a solution outside the range
of the frequency indicated in the figure in surprising agreement
with upper and lower frequency limits ability of the cochlea and
consequently our ability of hearing the very low and very high
frequency. The fact that the BM’s displacement observed in fig-
ures3 and4, involves a large portion of the BM is not what one
could expect in view of the sharp frequency selectivity of the
cochlea and its ability in decoding two close frequencies. Of
course, it is tempting to use a more general approach in which
ω
ω0

could be considered complex number rather than real one in
order to see if a possible more sharp resolution by the cochlea
could be obtained.

In order to elevate the arbitrariness in the choice ofω
ω0

,
we perform an asymptotic analysis (local analysis) determining
eigenvalue of the precedent system of equations. The local anal-
ysis is valid for high wave number (short wave). In this analysis
we suppose that the variation of the rheological and geometrical
cochlea’s parameters are slow in comparison with the variation
of the BM’s displacement with respect to axial distance. Thus, a
solution in the normal mode form could be sought leading to a
second order polynomial equation onω

ω0
.

Figure 5 shows the unstable mode in (frequency, amplifi-
cation rate)-plane, that is, the amplification rate versus the fre-
quency when the wave number varies. Curves relate to different
axial positions from the base to the apex of the BM. Figure5a il-
lustrates the unstable mode. It differs on by algebraic signe from
the stable one. It was found that : (i) the system is unstable,
(ii) the amplification rate is higher near the base and decreases
when axial distance increases. It reaches its minimum value at
the apex. In figure5b, the group velocity related to the unstable
mode is plotted versus the (axial) wave numberk. Notice that
the group speed of the unstable mode is negative except for a

short range of low wave number, where the analysis is less valid.
Therefore, the unstable mode propagates toward the oval win-
dow. Consequently the well known otoacoustic emission phe-
nomena could be a consequence of this unstable mode. Indeed,
if we suppose that the stable mode is dampened quickly enough,
we could conclude that there’s no reflection coming from the
cochlea’s end, and then, otoacoutic emissions are due to the un-
stable mode’s propagation in upstream direction.

For the second numerical simulation, results are shown in
figures6, 7, 8 . Guided by the eigenvalue obtained by the lo-
cal analysis, we carried out a numerical computation with com-
plex values of ω

ω0
. As suggested by the local analysis, we take

ω
ω0

= Re{ ω
ω0
}(1+ 1

2i), wherei =
√
−1. Then, the linear equa-

tion is solved by finite difference method, for a set of values of
ω
ω0

. Figure6 shows the envelope of the BM’s displacement, for
different transversal wave number. The transversal wave num-
ber n is indicated on the top of each curve. The envelope de-
scribes the maximum value of the BM’s displacement versus

value ofRe
(

ω
ω0

)

. For n = 1, the envelope curve rises sharply

at Re{ ω
ω0
} ≈ 5 and falls sharply atRe{ ω

ω0
} ≈ 40. Outside of

this dimensionless frequency range, namely [5,40], the numeri-
cal method used here gives only a solution of very small BM’s
displacement amplitude. Thus, to move significantly the BM
with a frequency stimulus outside this range, the ear needs a
very loud sound. It could be observed that (i) the BM is ex-
cited with a relatively small frequency range whenn > 1, and,
(ii) this range is shifted to lower frequency whenn increases.
Note that the BM’s displacement obtained by the present analy-
sis bears a striking qualitative agreement with the experimental
displacement showing in figure 2 panel (c) in the paper Sheraet
al. [1].

In subfigures7a, 7b, 7c , the BM’s displacement is plotted
for three different complex frequencies and for the first transver-
sal wave number (n = 1). These plots illustrate that : (i) for high
frequency, the BM’s displacement is located near the base (figure
7a), (ii) for middle frequency , the displacement is located in the
middle of the BM (figure7b), and finally, (iii) for low frequency,
the displacement is near the apex (figure7c). These results point
out the ability of the proposed mathematical model to predict the
place to frequency relationship.

The last figures8 and9, show the BM’s displacement in-
duced by modes with higher transversal wave number,n > 1.
The envelope shown in figure6 is used to select the frequency
for which we compute the BM’s displacement forn > 1. Higher
the transversal wave number, closer the BM’s displacement to
the apex. It worthy to notice that, whenn > 1, the BM’s dis-
placement is very sharp and involves only a small part of its
whole length. this sharp displacement could be at the root of
the cochlea’s ability of distinguish too close frequency
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6 Conclusion
A mathematical model for the cochlea’s passive mechanism

has been established in this article. A full interaction between
the flow in scala channels and the basilar membrane is allowed.
The three dimensional flow in both vestibuli and tympani scalae
are irrotational and fluids are non viscous. The main hypothesis
of the proposed model rests on the axial flow velocity, supposed
to be constant. The scala media, the tectorial membrane, the
organ of Corti and the basilar membrane have been considered
together as a stretched membrane called, for abbreviation, basi-
lar membrane. To avoid solving three dimension Laplace equa-
tion for the determination of the flow potential, a mass balance
was used leading to basic equations describing fluid’s motion.
Then, the potential flow was eliminated by cross derivation. In
this article, in order to simplify the mathematical description of
the cochlea’s mechanical behavior, it was considered as a strait
stretched chamber rather than conical one. However, the pro-
posed formulation is independent of the cross section’s form as
well as of its lumen. An asymptotic analysis of the estabilished
equation was performed for short waves. It was found that the
system has two complex eigenvalues and one of them represent
an unstable mode. Therefore, as the system is subjected to exter-
nal forces, in the circumstance, the incoming acoustic wave, the
energy gain observed in experimental work could be explained
by the instability of the system rather than by a possible work
done by the outer hair cells.

A finite difference method has been used to solve the
founded equations for two different types of dimensionless fre-
quencies. In the first numerical simulation, the underlined fre-
quency is real, while in the second one, the frequency is com-
plex.

For the first one, the BM’s displacement was plotted versus
the axial distance. When the frequency is real, no sharp BM’s
displacement has been found, the displacement concerns all the
basilar membrane instead, particularly for high frequency. Nev-
ertheless, the maximum of the BM’s displacement moves from
the base toward the apex when the frequency decreases. For the
transversal wave number higher than one, a portion of the basilar
membrane near the base remain at rest. The length of this portion
increases when the transversal wave number increases and when
the stimulus frequency decreases.

In the second numerical simulation, we considered a com-
plex frequency. It was found that the BM’s displacement de-
pends strongly on the amplitude of the complex frequency. In
that, only a short portion of the basilar membrane is set in mo-
tion for a given frequency and a given transversal wave number.
For high frequency, the displacement concerns a portion of the
basilar membrane located near the base which moves toward the
apex when the amplitude of the complex frequency decreases.
These results show that the place-to-frequency relation is an in-
trinsic property of the cochlea’s passive mechanism. Moreover,
the obtained displacement shows a qualitative agreement with the

displacement obtained by the experience, Figure 2 pannel C in
the paper of Sheraet al. [1]. It was found that the BM’s displace-
ment is significant only in a range of frequency. Thus, (i) the
BM’s displacement becomes significant only above some criti-
cal lower limit of low frequency, then, (ii) it rises very sharply,
(iii) to finally fall very sharply above some critical upper limit of
high frequency. There’s a striking similarity with the well known
upper and lower frequency’s limits of hearing.

In conclusion, this study is a significant improvement to the
understanding of the cochlea’s passive mechanism, supplying
lower and upper limits of the cochlea’s resonance frequency, ver-
sus the rheological parameters of the basilar membrane. More-
over, the BM’s displacement obtained by the present model
shows a striking similarity with the displacement obtained by ex-
perimental measurements. The next steps will be devoted to im-
prove the present model taking into account (i) new BM’s mod-
els, (ii) the variation of the cochlea’s cross section, (iii) more
correct treatment of boundary conditions and (iv) terms involv-
ing the derivative of the BM width.
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FIGURE 3. The amplitude of basilar membrane displacement,
real(w̃) given by equation31 at y = 0, for different transversal wave
number n and for some values of dimensionless frequenciesω

ω0
: (a)

n = 1, (b) n = 2 and (c)n = 3. For cases (a) and (b) decreasing values
of ω

ω0
equals to{50,45,40,35,30,25,20,15,10,5,1}. For case (c),ωω0

equals to{80,70,60,50,40,30,20,10,1}.
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FIGURE 4. The amplitude of basilar membrane displacement,
real(w̃) given by equation31 at y = 0, for different transversal wave
number n and for some values of dimensionless frequenciesω

ω0
: (a)

n = 4, (b) n = 4 and (c)n = 6. Decreasing values ofωω0
equals to

: (a) {80,70,60,50,40,30,20,10,1}, (b) {60,50,40,30,20,10,1}, (c)
{40,30,20,10,1}.
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FIGURE 5. (a) Real part versus imaginary part of the instable tempo-
ral eigenvalues of the system. It was obtained by the asymptotic analysis
(local analysis) for some values of the wave numberk distributed with a
constant step in the range 4≤ k ≤ 12. The cross section, where the local
analysis has been done, is located at different values ofx. Increasing
values ofx equal to{1.67,3.33,5,6.67,8.33,10,11.67,13.33,15}. (b)
Group velocity related to the eigenvectors of the instable modes ver-
sus the wave number, in some cochlea locations, in the same cross
section. Increasing values ofx (from the top to bottom) equal to
{1.67,3.33,5,6.67,8.33,10,11.67,13.33,15}.
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FIGURE 6. Maximum and minimum of the amplitude of basilar
membrane displacement,real(w̃) given by equation31, versus real part

of the dimensionless frequency, that is,Re
(

ω
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)

for some transversal
wave numbers. The set of envelopes in this figure are obtained with
ω
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= Re
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)

(1+ 1
2 i). The numerical simulation suggests that the so-

lution does not exist outside the envelope nor forn ≥ 7.
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FIGURE 7. The amplitude of basilar membrane displacement,
real(w̃) given by equation31, for three complex frequencies: (a)ω

ω0
=

35(1+ 1
2 i), (b) ω

ω0
= 15(1+ 1

2 i), (c) ω
ω0

= 5(1+ 1
2 i). The BM’s displace-

ment is obtained with transversal wave numbern = 1. Only a portion of
the BM is set in motion: near the base when the frequency is high, in
the middle when the frequency is moderate and near the apex when the
frequency is low.
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FIGURE 8. The amplitude of basilar membrane displacement,
real(w̃) given by equation31, versus the cochlea’s axial dis-
tance, for three wave numbersn and for two complex frequen-
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FIGURE 9. The amplitude of basilar membrane displacement,
real(w̃) given by equation31, for two wave numbersn and for two
complex frequencies: (a)n = 5 and ω

ω0
∈

{

25(1+ 1
2 i) , 20(1+ 1

2 i)
}

,

(b) n = 6 and ω
ω0

∈
{

20(1+ 1
2 i) , 15(1+ 1

2 i)
}

,

14 Copyright c© 2010 by ASME


	Introduction
	Formulation of the cochlear problem
	Assumptions of the cochlear mechanical model.
	Basic equations of the cochlear mechanical problem. 
	Flow modelling

	Linear model
	Asymptotic analysis
	Results
	Conclusion

