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ABSTRACT
The flow field in a disk micropump is investigated using

CFD. The results are validated with experimental data, showing
good agreement. Flow field details are presented for different
pump parameters. In order to better understand the influence
of the pump geometry and fluid properties on the pump perfor-
mance, an analytical model for the pump head has been derived.
Since the pumping mechanism is mainly due to viscous forces, a
typical turbomachinery approach, which is based on the effect of
centrifugal forces, is not appropriate. The proposed analytical
model, which is general and can also be used for scale up
purposes, shows that the non-dimensional results of CFD and
measurements matches very well.

NOMENCLATURE
Q Massflow
η Dynamic viscosity
n Rotation speed
B Width of slit
ω Angular velocity
w Fluid velocity (absolute value)
ρ Fluid density
Re Reynold’s number
r Radial coordinate
P Power
D, b Characteristic lengths (for dimensionless exposition)

F Force
M Torque
Y Specific Work
H f Head
g Gravitational constant near earth surface
CH , CH,g Dimensionless Head coefficient (g: including geom-

etry)
CQ, CQ,g Dimensionless massflow coefficient (g: including ge-

ometry)
R1, R2 Inner and outer Radius of the slit

Introduction
Micropumps are widely used for biomedical applications

for a range of tasks (see for example [1], [2]). In this paper
a disc micropump is analyzed. The disc pump is due to its
linear and pulsation free behavior well suited for dosing appli-
cations. Diaphragm-, peristaltic-, gearwheel-pumps and even
syringe pumps which are typically applied in dosing applica-
tions inherently always deal with a certain degree of a pulsating
flow rate. In addition, since it can deal with comparatively high
impeller-speeds, it requires a smaller pump chamber and as it
hence also works without gear reduction, a gear-box is superflu-
ous. Thus, the disc pump allows a small pump size for a given
flow rate.
In the works of Blanchard Ligrani and Gale ( [3], [4]), this
type of micropump has been investigated both experimentally
and analytically. In order to assess the pump performance and
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for scaling-up/down purposes, it is important to characterize the
pump with dimensionless coefficients. For a good choice of such
coefficients, the behavior should be independent of the pump
characteristic parameters, such as dimensions, rotational speed
and used fluid. The presented set of coefficients satisfies this
condition.
The article is organized as follows: In the first section the geome-
try and the functionality of the pump are explained. In the second
section some remarks about the numerical modeling are made. In
the third section, the flow results of the simulation of the pump
are explained in detail. In the forth section the derivation of the
scaling laws is presented.

1 Geometry and Functionality of the Pump
1.1 Geometry

The basic part of the minipump is a rotor mounted in a hous-
ing. The rotor consists of a circumferential slit in which the fluid
can enter, move around and leave again. A wiper extends in
the slit, to guide the fluid out of the pump. For a picture of the
minipump see Figure 1 and for a front view (in the direction of
the rotation axis) confer Figure 2.

FIGURE 1. The minipump.

1.2 Fluid Domain of the Simplified Model
For simplification purposes only the slit was simulated in a

so called simplified model. For a picture of the fluid domain of
the simplified model see Figures 2 and 3.

FIGURE 2. Geometry of the simplified model.

FIGURE 3. Fluid domain of the simplified model. A pinch at the
outlet is attached at the outlet so as to produce realistic boundary condi-
tions.

2 Numerical Modeling
2.1 Geometry and Mesh

The geometry of the numerically investigated disk pump has
been simplified at the inlet and the outlet compared to the proto-
type. These two regions are not modeled as a reservoir like in
reality but as frictionless extensions of the gap between the disks
(see Figures 3 and 2). This simplifies the modeling procedure
significantly but does not affect the results. In addition the out-
let had to be pinched, in order to avoid backflow at the boundary,
which would negatively affect the convergence. The meshes used

2 Copyright c© 2010 by ASME



for the computations where generated with ICEM-CFD Hexa, al-
lowing for high quality grids (cells angle and aspect ratio) and
good resolution of the flow. The computational domain was re-
solved with 250000 nodes.

2.2 Software and Boundary Conditions
The computations were performed with ANSYS CFX V11,

a commercial finite volume CFD code (confer [5]). The flow
is laminar. The pump characteristic was computed for different
rotor speeds and fluids (mainly change in viscosity), with at least
6 operating points on each speed line. At the inlet the velocity is
prescribed and at the outlet the pressure.

3 Flow Results
3.1 Comparison between Simulation and Measure-

ment
In Figure 4 the results from simulations and from measure-

ments are plotted. The rotation speed is n = 200001/min and
the medium is water. The geometry corresponds to the reference
configuration (B = 0.13mm, R2 = 3mm).

FIGURE 4. Comparison between simulation and measurement (n =

200001/min, B = 0.13mm, R2 = 3mm, the medium is water). The
straight lines correspond to linear interpolations.

The slightly higher pressure rise in the simulations com-
pared to the measurements can be explained by the fact that the
leakage between the rotor and the housing was not part of the
simulations. Another reason for the smaller pressure rise in the

measurements is the pressure loss over the inlet and outlet chan-
nels, since in the measurements the pressure taps were placed
further away from the rotor. The comparison shows as expected
that the leakage is less important for smaller pressure rises.

3.2 CFD Results
The CFD results are presented for two different liquids, wa-

ter and a 100 times more viscous fluid. The flow field for the two
liquids shows quite different patterns, even if in both cases the
flow is laminar. Only one operating point has been chosen.
Water: Re, based on gap width, of O(100). In the case of water
the isobars are curved, showing a mix between pressure increases
along the radius, as it can be expected for a swirling flow, and
along the flow path, due to the energy transfer from the rotor. A
secondary flow in the channel cross section was detected, typical
for enclosed disk flow, like it can be found in macroscopic de-
vices as gas turbines (confer for example [6]). Along the rotating
walls the flow moves outwards due to the centrifugal forces and
in the center towards smaller radii. This can be clearly seen in
the streamline plot in the midplane, where the flow moves toward
the center. A back flow zone has been detected close to the rotor
inner wall. For these fluid particles the pressure increase along
the flow path is too strong, even if delayed compared to that at
larger radii, thus leading to backflow. The momentum given by
the inner cylindrical part of the rotor is not enough to compensate
the pressure gradient.
High viscosity fluid: Re, based on gap width, of O(1). In this
fluid the isobars are straight and radially oriented. In contrary to
water, no secondary flow was detected. This is mainly due to the
fact that at this Re number the viscous forces are dominating the
flow, thus inhibiting any sort of cross flow. All the fluid between
the disks is moving in the same way, similarly to a solid. There-
fore the pressure increase is not governed by centrifugal forces
but only by the work input of the rotor along the path, thus lead-
ing to the observed pressure distribution. The streamlines in the
midplane are nearly concentric, i.e. the radial component of the
velocity is zero.
It is interesting to note, that at this high viscosity the inlet re-
gion into the disk presents a recirculation zone. According to
the above explanation, the fluid between the disks moves ”in one
piece”, thus leading to a blockage as soon as enough fluid has
been sucked in the pump, depending on the specified operating
point Looking carefully at all the pictures of the high viscosity
fluid, where the Re based on the gap width is approximately 1,
a symmetry along the vertical axis can be observed. It is almost
not possible to say in which direction the flow is moving. This
behavior is similar to that observed for other very low Re num-
ber flows, like the flow past immersed bodies (confer for exam-
ple [7]). Also in this case a backflow region was detected close
to the rotor inner wall. The radial extension is similar to that with
water, indicating that basically the same mechanism is at the ori-
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gin.
The features detected in the flow field are similar and in agree-
ment with the description found in [3] which is based on mea-
surements and flow visualization.

FIGURE 5. CH,g, water.

4 Dimensionless Analysis of the Results
Analysis and comparison of different pumps and in general

turbomachines is usually performed using non-dimensional co-
efficients (as for example in [8]). For the present pump a typical
turbomachinery approach was not successful, so that a new set
of dimensionless coefficients for the mass flow and the hydraulic
head has been derived.

4.1 Dimensionless Coefficients without including dif-
ferent Scaling in Radial and Axial Direction

4.1.1 Dimensionless Massflow In the following
derivation D is a characteristic length (for example the diame-
ter of the rotor).

Q ∝ ρwD2
∝ ρD3n, (1)

FIGURE 6. Circumferential velocity, water.

FIGURE 7. Streamlines water.

where w ∝ nD. One now defines the dimensionless massflow
coefficient (in analogy to turbomachinery) as

CQ :=
Q

nD3ρ
(2)
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FIGURE 8. Backflow, water.

FIGURE 9. CH,g, η = 100mPas.

4.1.2 Dimensionless Hydraulic Head For laminar
flow between two parallel plates, (Couette flow, see for example
[9]), the following expressions for the force, torque and power

FIGURE 10. Circumferential velocity, η = 100mPas.

FIGURE 11. Streamlines, η = 100mPas.

can be derived:

F ∝
w
D

ηD2 = wηD. (3)
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FIGURE 12. Backflow, η = 100mPas.

M ∝ FD ∝ wηD2. (4)

P ∝ Mω ∝ wηnD2. (5)

The specific work is then given as

Y =
P
Q

∝
wηnD2

wρD2 ∝
ηn
ρ

(6)

Now one defines the dimensionless Head coefficient as

CH :=
Y ρ

ηn
=

∆ptotρ

ρηn
=

∆ptot

ηn
=

gH f ρ

ηn
, (7)

where ∆ptot = H f gρ and Y = gH f .

4.2 Dimensionless Coefficients including different
Scaling in Radial and Axial Direction, heuristic
Approach

In this section a set of new dimensionless coefficients is de-
fined in a more general way, taking into account all the charac-
teristic dimensions of the pump.

4.2.1 Dimensionless Massflow In the following
derivation D is a characteristic length in the radial direction and

b is a characteristic length in the axial direction (gap direction).

Q ∝ ρwDb ∝ ρD2bn, (8)

where w ∝ nD (assumption of circumferential flow). One now
defines the dimensionless massflow coefficient as

CQ,g :=
Q

nD2bρ
(9)

4.2.2 Hydraulic Head For laminar flow between two
parallel plates, (Couette flow, see for example [9]), it holds that

F ∝
w
b

ηD2
∝ wη

D2

b
, (10)

where it is assumed that the velocity is always in the circumfer-
ential direction. Therefore, the gradient of the velocity which
scales as the characteristic length in the radial direction leads
only to forces that act on the fluid to deflect it from a linear tra-
jectory to a circular one. Calculating the torque gives

M ∝ FD ∝ wη
D3

b
. (11)

Therefore the power and the specific work are given as

P ∝ Mω ∝ wηn
D3

b
. (12)

Y =
P
Q

∝
wηn
wρ

D2

b2 ∝
ηn
ρ

(
D
b

)2

(13)

Now one defines the dimensionless Head coefficient including
all the characteristic lengths as

CH,g : =
Y ρ

ηn

(
b
D

)2

=
∆ptotρ

ρηn

(
b
D

)2

(14)

=
∆ptot

ηn

(
b
D

)2

=
gH f ρ

ηn

(
b
D

)2

, (15)

where ∆ptot = H f gρ and Y = gH f .
The dimensionless results using the coefficients CQ,g and

CH,g are presented in Figure 13.
In the work of Blanchard, Ligrani and Gale [4], they derive an
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equation relating the pump head and the massflow (eq. 10),
which reflects the behavior of their pump very well. The dimen-
sionless coefficients derived in this article show similar depen-
dencies.
The operating points of Blanchard Ligrani and Gale are included
in Figure 13. The slope given by these two points is clearly less
than the one of the here investigated micropump. The main rea-
sons for this difference should be the path angle along the pump
(in our case close to 180 degrees, in Blanchard about 90 degrees)
and the wiper shape.

4.3 Dimensionless Coefficients including different
Scaling in Radial and Axial Direction, rigorous
Approach

The axis of rotation is chosen to be the z axis to meet the
standard notation used when working in cylindrical coordinates.
The components of the stress tensor in cylindrical coordinates
are given as follows (confer [10])

σrr = −p+2η
∂vr

∂ r
(16)

σφφ = −p+2η

(
1
r

∂vφ

∂φ
+

vr

r

)
(17)

σzz = −p+2η
∂vz

∂ z
(18)

σφr = η

(
1
r

∂vr

∂φ
+

∂vφ

∂ r
−

vφ

r

)
(19)

σφz = η

(
∂vφ

∂ z
+

1
r

∂vz

∂φ

)
(20)

σzr = η

(
∂vz

∂ r
+

∂vr

∂ z

)
(21)

The first assumption on the flow field is that the velocity is always
directed in the circumferential direction. Therefore

vr ≡ 0 and vz ≡ 0. (22)

The second assumption on the flow field is that the circumferen-
tial velocity does not depend on the angle

vφ = vφ (r,z). (23)

These two assumptions already simplify the first three compo-
nents of the fluid tensor to

σrr = σzz = σφφ =−p. (24)

Therefore, there are only pressure forces acting in the three nor-
mal directions on a fluid element. Pressure forces are not relevant
for the transport of the fluid when it moves in the slit, only for
the transport of the fluid into the slit and out of it at the entrance
and the exit of the slit (see also [3]).
The assumptions also force the last component of the fluid tensor
to vanish

σzr ≡ 0. (25)

The third assumption on the flow field is that the velocity profile
in the slit can be written in the following form

vφ = f̃ (α,β )nr, (26)

where

α :=
r

R2
and β :=

z
b

(27)

are normalized radial and axial coordinates and f̃ (α,β ) is a nor-
malized function that describes the velocity profile in the slit just
geometrically. It is defined by

f̃ (α,β ) := f (αR2,βb) = f (r,z), (28)

where f (r,z) describes the actual velocity profile. It is assumed
that the geometric shape of the velocity profile is independent of
the actual dimensions of the slit and this is expressed by the form
in equation 26. Since

r ∈ [0,R2] and z ∈ [0,b] (29)

it follows that

α ∈ [0,1] and β ∈ [0,1]. (30)

The properties of the normalized function f̃ (α,β ) can be
imagined as follows: (For simplicity, the explanations at this
point correspond only to a function of one variable, for example
z. Nevertheless, the situation can be extended to two variables
easily). Let a velocity profile be given. Using equation 26, this
velocity profile corresponds to a function f (z), where z∈ [0,b] (b
is the width of the slit). To keep now exactly the same geometric
shape when the geometry is scaled one normalizes the function
as follows

f̃ (β ) := f (βb) = f (z). (31)
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If now b is changed then the shape of the velocity profile is kept
since the argument of the function f̃ is always in [0,1].

With this assumption, the fourth component of the fluid ten-
sor is given as

σφr = η

(
1
r

∂vr

∂φ
+

∂vφ

∂ r
−

vφ

r

)
(32)

= η

(
∂ f̃ (α,β )

∂ r
nr+ f̃ (α,β )n− f̃ (α,β )nr

r

)
(33)

= ηn
(

∂ f̃ (α,β )

∂α

∂α

∂ r

)
r (34)

= ηn
(

∂ f̃ (α,β )

∂α

)
r

R2
, (35)

where the factor 1/R2 is due to the chain rule. The fifth compo-
nent of the fluid tensor is given as

σφz = η

(
∂vφ

∂ z
+

1
r

∂vz

∂φ

)
(36)

= ηn
(

∂ f̃ (α,β )

∂ z

)
r (37)

= ηn
(

∂ f̃ (α,β )

∂β

)
r
b
, (38)

where the factor 1/b is also due to the chain rule.
Since r� b and since the terms in the brackets in the equa-

tion 35 and 38 are assumed to be of the same order (they also
don’t scale because of the normalization of the function f̃ ), one
concludes that σφz� σφr (it is also used that R2 and r are of the
same order).

The fourth and the fifth component of the fluid tensor give
a contribution to the force in the circumferential direction. This
force leads then to a torque and so forth.

The force responsible for the torque is therefore given as

Fφ ∝ σφzD2
∝ ηn

D3

b
, (39)

where D is a characteristic length of the system in the radial di-
rection (r, R1 and R2 scale as D). Following the same procedure
as in the previous section leads to the following identities for the
torque, power, massflow and specific work.

M ∝ Fφ D ∝ ηn
D4

b
. (40)

P ∝ Mω ∝ ηn2 D4

b
. (41)

Q ∝ ρbDvφ ∝ ρbD2n, (42)

Y ∝
P
Q

∝
ηn
ρ

(
D
b

)2

. (43)

Reformulating this in form of the rise of the total pressure
∆ptot = ρY gives

∆ptot

ηn

(
b
D

)2

∝ const. (44)

One therefore defines the dimensionless Head coefficient that in-
cludes the geometry by

CH,g :=
∆ptot

ηn

(
b
D

)2

(45)

The relative importance of the two terms σφz and σφr that
give a contribution to the force in circumferential direction can be
seen by keeping both terms in the analysis for the force (instead
of just σφz as in equation 39). With Fφz as the force resulting
from σφz and Fφr as the force resulting from σφr one has

Fφz ∝ ηn
D3

b
Fφr ∝ σφrDb ∝ ηnDb, (46)

where for the force Fφr it was used that R2 and r are subjected to
the same scaling (confer equation 35) and that the surface in the
φ -r-direction scales as Db. In terms of the fraction (b/D) this
can be written as

Fφz ∝ ηnD2
(

b
D

)−1

Fφr ∝ ηnD2
(

b
D

)
. (47)

The total force Fφ in circumferential direction is the sum of Fφz
and Fφr. Since one only has a description of the forces in terms
of proportionalities, two additional constants appear in the sum.
Those constants shall be called α and β .

Fφ = Fφz +Fφr = ηnD2

(
α

(
b
D

)−1

+β

(
b
D

))
. (48)

According to this, it can be seen that in a regime where b� D,
the first term clearly dominates. But for a growing fraction b/D,
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this term becomes negligible and the second term dominates.
Therefore, the scaling law derived above is a good approxima-
tion only in a certain geometric regime. For the simulations, the
following fractions b/D are present

b
D
∈ {0.0144,0.0217,0.05,0.087}. (49)

The dimensionless results of the simulations are presented in
Figure 13 where it was set b = B and D = R2 in the equations
for the coefficients. Remark: In the geometric regime where b is
of the same order as D, equation 48 yields the same coefficients
as in section 4.1.

FIGURE 13. Dimensionless exposition of the results for different pa-
rameters. Where CQ,g is defined in equation 9 and CH,g is defined in
equation 15. Here for the characteristic length in the axial direction R2 is
used and for the characteristic length in the axial direction B is used. The
reference configuration corresponds to: B0 = 0.13mm, R2,0 = 3mm,
η0 = 100mPas and n0 = 200001/min.

4.4 Explanation of the different Slopes and y-
Intercepts in Figure 13

One now has two different pairs of coefficients for two dif-
ferent geometric regimes. The first regime is the regime where
b� D which is also the regime where disk pumps work. In this

regime one has the two dimensionless coefficients

CQ,g :=
Q

nD2bρ
and CH,g :=

∆ptot

ηn

(
b
D

)2

. (50)

In order to understand the slope change in the characteristic, the
analysis is extended to a second hypothetical regime, given when
b and D are of the same order. In this regime one has the follow-
ing pair of coefficients

C̃Q,g :=
Q

nD2bρ
and C̃H,g :=

∆ptot

ηn
. (51)

One now assumes, that for both geometric regimes one has a lin-
ear correspondence between the head coefficient and the mass-
flow coefficient (this assumption is clearly met in the first regime
(confer Figure 13)). Therefore one has two linear equations
which are satisfied in the corresponding regime

CH,g = γ CQ,g +δ for b� D (52)

C̃H,g = γ̃ C̃Q,g + δ̃ for b,D of the same order. (53)

One now wants to know what happens if one is in the regime
where b and D are of the same order, but one still wants to use
the description from the regime where b� D. One knows that
(confer the equations 50 and 51)

C̃H,g =

(
D
b

)2

CH,g. (54)

Therefore

CH,g =

(
b
D

)2

C̃H,g =

(
b
D

)2(
γ̃ CQ,g + δ̃

)
= γ CQ,g +δ , (55)

where for the second equality the fact is used that one is in the
regime where b and D are of the same order and therefore can
make use of the linear equation 53. For the third equality one
defines

γ :=
(

b
D

)2

γ̃ and δ :=
(

b
D

)2

δ̃ (56)

to meet the linear form as desired.
Now it follows, that if one is in the regime where b is of

the same order as D but one expresses the relation between the
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head coefficient and the massflow coefficient in the form of the
other regime, then for a larger fraction b/D, the slope γ of the
description is larger and the y-intercept δ of the description is
also larger.

With this idea, the different slopes and y-intercepts in Fig-
ure 13 can be explained properly. For the four different ratios
b/D (confer equation 49), the linearly interpolated results are
presented in Figure 14. For a larger b at a constant D, the b/D ra-
tio grows. Therefore, the description used in Figure 13 becomes
more and more inappropriate and leads to larger and larger slopes
and y-intercepts. The different slopes corresponding to the dif-
ferent ratios b/D are illustrated in Figure 14

FIGURE 14. Linear interpolated exposition of the dimensionless re-
sults for the four different ratios b/D ∈ {0.087,0.05,0.0217,0.0144}.

5 Conclusions
The paper presents a detailed flow field analysis of a disk

micropump.
Even if for the investigated fluids the flow is always laminar, im-
portant differences in the flow field were detected. In order to
characterize the pump performance, a dimensionless set of coef-
ficients has been derived. The application of these coefficients
for different pump configurations, where parameters as fluid and
geometry were varied, shows the good results of the new corre-
lation. This is well suited for scale up purposes.
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