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ABSTRACT 
While many microscale systems are subject to both 

rarefaction and fluid-structure-interaction (FSI) effects, most 
commercial algorithms cannot model both, if either, of these 
for general applications. This study modifies the momentum 
and thermal energy exchange models of an existing, continuum 
based, multifield, compressible, unsteady, Eulerian-Lagrangian 
FSI algorithm, such that the equivalent of first-order slip 
velocity and temperature jump boundary conditions are 
achieved at fluid-solid surfaces, which may move with time. 
Following the development and implementation of the slip flow 
momentum and energy exchange models, several basic 
configurations are considered and compared to established data 
to verify the resulting algorithm’s capabilities.  

 
NOMENCLATURE 
A cell fluid-solid surface area 
Ac fin cross sectional area 
C Stokes drag coefficient, 2ReCD     
CD drag coefficient, ( ) LDuFD

221 ∞∞ρ     
cp specific heat at constant pressure 
cυ specific heat at constant volume 
D diameter or characteristic length  
e internal energy per unit mass 
E Young’s modulus of elasticity, ( )KGGK 39 +      
f force per unit volume 
FD drag force 
G shear modulus of elasticity 

rsH    thermal energy exchange coefficient 
slip
rsH  slip flow thermal energy exchange coefficient 

h heat transfer coefficient or channel height 
I moment of inertia 
K bulk modulus of elasticity 

rsK    momentum exchange coefficient 

slip
rsK    slip flow momentum exchange coefficient 

k thermal conductivity 
Kn Knudsen number, Dλ      
L length 
Ma Mach number, ( )πγ2KnRe      
N number of materials 
Nu Nusselt number, khD      
P pressure 
Q rotation matrix 
q thermal energy exchange rate per unit volume 
q’’ heat flux 
R gas constant 
Re Reynolds number, µρuD      
T temperature 
t time 
Tb fin base temperature 
u velocity vector 
V cell volume 
x, y, z Cartesian coordinate directions 
x', y', z' surface coordinate directions 
  
Greek symbols  
βt first-order temperature jump coefficient, 
 ( )[ ] ( )[ ] ( )[ ]µγγσσ ptt ck+− 122    
βν first-order velocity slip coefficient, ( ) νν σσ−2  
γ ratio of specific heats, υcc p      
δ fin deflection 
θ volume fraction 
Θ nondimensional temperature, ( ) ( )∞∞ −− TTTT b     

λ mean free path, πρµ RT2      
µ dynamic viscosity 
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ρ density 
σ stress 
σt thermal accommodation coefficient 
σν momentum accommodation coefficient 
τ shear stress 
υ specific volume 
φ   rotation angle about the z-axis 
ψ   rotation angle about the y-axis 
 
Subscripts/Superscripts  
- before exchange contribution 
+ after exchange contribution 
0 initial value 
∞ freestream value 
i inlet value 
m mean value   
o outlet value 
r material index 
s material index 
w wall value 
x, y, z Cartesian coordinate directions 
 
BACKGROUND 

Both rarefaction and fluid-structure-interaction (FSI) 
effects are significant for many microscale systems. Examples 
include micro valves, pumps, actuators, particulate flows, 
porous flows, two-phase flows, micro-air-vehicles, combustion, 
and heat exchangers. Rarefaction, typically quantified by the 
Knudsen number, Kn, which is the ratio of the fluid’s mean free 
path to the characteristic length of the system, becomes 
significant for gaseous systems at the microscale. Rarefaction 
results in discontinuities of the velocity and temperature at 
fluid-solid boundaries, which, for the slip flow regime, 
0.01 ≤ Kn ≤ 0.1, are typically modeled with first-order slip 
velocity [1] and temperature jump [2] boundary conditions 
applied to the continuum based conservation of momentum and 
energy equations, respectively. FSI effects are significant for 
any system in which the thermal-fluid and structural dynamics 
are coupled, and consequently cannot be considered 
independently. As listed previously, there are already many 
microsystems that operate with FSI effects. However, while 
there are many microscale systems that are subject to both 
rarefaction and FSI effects, currently available computational 
algorithms do not, typically, have the ability or versatility 
required to accurately model these effects for a generic 
microsystem. As a result, there are few studies which have 
considered FSI for microsystems, and no widely available 
studies that have numerically considered both FSI and 
rarefaction in a microsystem.  

The primary objective of this study is to modify the 
momentum and energy exchange models of an existing FSI 
algorithm, such that the equivalent of first-order slip velocity 
and temperature jump boundary conditions are achieved at 
fluid-solid boundaries, which may move and deform arbitrarily 
with time. The FSI algorithm that is utilized is a three-

dimensional, unsteady, continuum based Eulerian-Lagrangian 
methodology in which fluids, modeled using ICE (implicit, 
continuous fluid, Eulerian) and solid materials, modeled with 
MPM (the material-point-method), may be modeled either 
independently or simultaneously. ICE is a finite volume, cell-
centered, multimaterial, compressible, computational fluid 
dynamics (CFD) algorithm that originated at Los Alamos 
National Laboratory [3]. And, MPM is a particle based method 
for solid mechanics simulations [4]. The development and 
documentation of the MPM-ICE implementation currently 
utilized is given in [5, 6]. The MPM-ICE FSI algorithm utilizes 
a statistically averaged, or ‘multifield,’ approach, where, each 
material is continuously defined (ρ, u, e, T, υ, θ, σ, P), with 
some probability, over the entire computational domain. This 
approach differs from the, perhaps more common, separate 
domain methodology, in which, fluid and solid materials are 
defined separately, with only one material at each point, and 
interaction only occuring at material boundaries. The multifield 
approach is advantageous for the current application, because it 
tightly couples fluid-structure-interactions through the 
conservation equations, rather than explicitly though specified 
boundary conditions, which allows arbitrary distortion of 
material and material surfaces without explicit surface tracking, 
passing of boundary conditions, and excessive stability and 
convergence issues. Use of the MPM-ICE algorithm to evaluate 
rarefaction with FSI is further merited, as rarefaction effects 
have already been successfully studied utilizing the 
independent CFD portion of the algorithm, with slip boundary 
conditions implemented at the computational domain 
boundaries [7-9].  

The multimaterial governing conservation equations 
employed by the MPM-ICE algorithm, are given in Eqs. 
(1) - (3) [6].  
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Equations (1) - (3) are the ensemble average, r material, 
conservation of mass, momentum, and energy equations 
respectively, where there are N materials, θr is the r material 
volume fraction, and and  are models for the 
momentum and energy exchange between materials. Equations 
(1) - (3), along with individual material constitutive or 
equation-of-state models, and models for  and 
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N

s 1 rsf ∑ =

N

s rsq
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s 1 rsf
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∑ =

N

s rsq
1

, form a complete system of equations. The detailed 
numerical solution strategy utilized by the MPM-ICE algorithm 
to solve this system of equations is presented in [6], and 
consequently will not be duplicated here.  

The momentum and energy exchange models currently 
employed by the MPM-ICE algorithm to model FSI for 
standard continuum conditions (Kn ≈ 0), are given in Eqs. (4) 
and (5). 
 

( )∑∑ ==
−=

N

s rssrrs
N

s rs K
11

uuf θθ   (4) 
 

( )∑∑ ==
−=

N

s rssrrs
N

s rs TTHq
11

θθ   (5) 
 

Eq. (4) models frs, the force per unit volume on material r, due 
to interaction with material s, as a function of the scalar 
momentum exchange coefficient, Krs, the material volume 
fractions, and the relative velocity between the two materials. 
Similarly, Eq. (5) models qrs, the thermal energy exchange rate 
per unit volume for material r, due to interaction with material 
s, as a function of the scalar energy exchange coefficient, Hrs, 
the material volume fractions, and the temperature difference 
between the two materials. To avoid stability and convergence 
restrictions, the momentum and thermal energy exchange 
between materials is calculated within each cell implicitly, for 
each timestep, as shown in Eqs. (6) and (7). 

 
( )∑ =

++−+ −+=
N

s rssrrsrrrr θθK∆tρρ
1

uuuu   (6) 
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N

s rssrrsr,rrr,rr TTθθH∆tTcρTcρ
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The ‘-’ and ‘+’ superscripts in Eqs. (6) and (7) indicate values 
before and after the momentum and thermal energy exchange 
between materials, respectively, at the point in the timestep that 
the exchange contributions are calculated. It is assumed with 
the calculation of Eqs. (6) and (7) that the material masses, 
volume fractions, and specific heats are not modified by the 
momentum and energy exchange between materials. It is also 
necessary with the implementation of Eqs. (6) and (7) to 
specify momentum and energy exchange coefficients for all 
possible material pairs. However, Krs must equal Ksr, and Hrs 
must equal Hsr, since the force, and heat transferred, from 
material r due to material s is equal and opposite the force, and 
heat transferred, from material s due to material r. And, 
Krr = Hrr = 0, since the stress and heat flux within the same 
material are already accounted for with other terms of the 
momentum and energy conservation equations. A very large 
momentum transfer rate between materials r and s, specified by 
a large Krs value, forces the relative velocity of the two 
materials to zero, consistent with a no-slip velocity boundary 
condition. Similarly, a large Hrs value produces a large thermal 
energy transfer rate between materials r and s, resulting in the 
equivalent of a thermal equilibrium boundary condition. In the 

current algorithm, Krs and Hrs values are typically specified as 
arbitrarily large, constant, scalar quantities (~ ), which 
result in momentum and thermal energy transfer rates that are 
not directional relative to the fluid-solid surface, but produce 
the intended effect of conventional no-slip velocity and thermal 
equilibrium boundary conditions.  

15101×

The objective of this study, is to modify the momentum 
and energy exchange models in the FSI algorithm, such that the 
equivalent of first-order slip velocity and temperature jump 
boundary conditions are achieved at fluid-solid surfaces for a 
rarified gas in the slip flow regime. To accomplish this, 
momentum and energy exchange models, which result in 
tangential slip velocity and temperature jump values that 
correspond to values predicted by the standard first-order slip 
boundary conditions [1, 2], are derived as a function of the 
level of rarefaction. Following the development and 
implementation of the slip flow momentum and energy 
exchange models, several basic configurations are considered 
and compared to established data to verify the resulting 
algorithm’s capabilities. These verifications include: 1) velocity 
profiles of a rarified gas between parallel plates; 2) temperature 
profiles of a rarified gas between parallel plates; 3) drag 
coefficients, CD, and Nusselt numbers, Nu, for low Reynolds 
number rarified flow around an infinite cylinder; and, 4) the 
transient, thermal/structural response of a damped-oscillatory 
three-dimensional finite cylinder subject to an impulsively 
started uniform, rarified flow.  

 
SLIP FLOW MODIFICATIONS 

Several modifications to the momentum and energy 
exchange models in the MPM-ICE FSI algorithm must be 
implemented to correctly model the momentum and energy 
exchange between a rarified gas and a moving, deforming solid 
surface. First, slip flow momentum and energy exchange 
coefficients must be derived, then the slip flow momentum and 
thermal energy exchange models must be applied at fluid-solid 
surfaces.  

 
Slip flow momentum and thermal energy exchange coefficients 

The tangential momentum exchange between a rarified 
gas, denoted as material r, and a solid material, material s, is 
described by the first-order slip velocity boundary condition, 
Eq. (8) [1]. To obtain the force per unit volume on the rarified 
gas due to interaction with the solid, frs, the shear stress on the 
gas, -τ from Eq. (8), is multiplied by the fluid-solid surface area 
in the cell, A, as well as the gas volume fraction, θr, and then 
divided by the cell volume, V, as shown in Eq. (9). For frs in 
Eq. (9) to be equivalent to the momentum exchange model 
utilized by the algorithm, Eq. (4), the slip flow tangential 
momentum exchange coefficient, , must be that given by 
Eq. (10).  

slip
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In a similar fashion, using the first-order temperature jump 
boundary condition, Eq. (11) [2], and the energy exchange 
model, Eq. (5), the slip flow energy exchange coefficient is 
obtained in Eqs. (12) - (13).  
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slip
rsK , Eq. (10), and , Eq. (13), are functions of the 

rarified gas viscosity, µr, thermal conductivity, kr, and mean 
free path, λr; the solid material volume fraction, θs; the first-
order slip velocity and temperature jump coefficients, βν and βt, 
respectively; and, the individual cell fluid-solid surface area, A, 
and volume, V. The cell fluid-solid surface area, A, is 
approximated according to Eq. (14), where ∆x, ∆y, and ∆z are 
the cell dimensions in each coordinate direction, and y’x, y’y, 
and y’z are components of the solid surface unit density 
gradient vector, as will be discussed further in the next section. 
Eq. (14) is not exact, but results in good estimates globally, as 
well as locally, if the surface is approximately parallel to any of 
the coordinate directions.  
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Values for µr, kr, θs, and V are available within the unmodified 
algorithm, and values for βν, βt, and λr are calculated according 
to Eqs. (15) – (17), respectively [1, 2].   
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The momentum accommodation coefficient, σν in Eq. (15), and 
the thermal accommodation coefficient, σt in Eq. (16), must be 
measured experimentally. Values for σν and σt range from zero 
to one, where σν = 0 represents completely specular reflection, 
σν = 1 represents completely diffuse reflection, and σt = 1 
corresponds to a perfect energy exchange. Experimentally 
measured values for σν and σt are, however, typically near 
unity, and consequently, are approximated as such for all 
calculations presented within this study. The rarified gas mean 
free path, λr, Eq. (17), is calculated for each cell of the 
computational domain, at the beginning of each timestep, as a 
function of µr, ρr, cυ,r, γr, and Tr. 

 
Slip flow momentum and thermal energy exchange models 

The original slip velocity and temperature jump boundary 
conditions given in Eqs. (8) and (11) [1, 2], were derived with 
the assumption that a rarified gas flow within the slip flow 
regime may be accurately approximated as a continuum 
everywhere except at the fluid-solid boundaries. To accurately 
model a flow within the slip flow regime the numerical 
algorithm must, likewise, produce continuous velocity and 
temperature fields everywhere except at the fluid-solid 
boundaries. Because each material is continuously defined in 
the MPM-ICE algorithm, this means that approximately 
equivalent temperatures for each material within the same cell 
must be obtained, and approximately equivalent velocities for 
each material within the same cell must be obtained, 
everywhere except at the fluid-solid boundaries, where 
discontinuities between the fluid and solid materials may occur. 
Therefore, the unmodified  and , i.e. the arbitrary large, 
constant, scalar values that result in negligible velocity and 
temperature differences between materials within the same cell, 
are applied in the usual manner everywhere except at the fluid-
solid surface. At the fluid-solid surface, slip flow momentum 
and energy exchange coefficients,  and , 
respectively, must be applied. In the MPM algorithm, solid 
materials are modeled with material particles, typically eight 
particles per cell. As such, a surface is identified as a cell that 
has material particles of the specified solid material, but with 
less than eight particles. Because the surface may be in motion, 
and surfaces are not explicitly tracked, it is necessary with this 
approach to test each cell of the computational domain, with 
each timestep, to determine if it is a surface cell. If a surface 
cell is identified,  and , as defined in Eqs. (10) and 
(13), are then calculated for that cell.  

rsK rsH

slip
rsK slip

rsH

slip
rsK slip

rsH

Temperature is a scalar quantity, and consequently, once a 
surface cell is identified and  is calculated, calculation of 
the thermal energy exchange between materials in that cell may 
precede using the usual algorithm, that is, the numerical 
implementation of Eq. (7), with  rather than . 
Velocity, however, is a vector quantity, and the momentum 
exchanged between materials must take place with respect to 
the coordinate system in which the velocity components are 
defined. In the unmodified algorithm, does not change with 

slip
rsH

slip
rsH rsH

rsK
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direction, and so, the exchange of momentum between 
materials may be executed in the arbitrary global Cartesian 
coordinate system, ( , in which, the velocities are 
originally defined. However, because  is only applicable 
in the fluid-solid surface tangential direction, while the 
standard no-slip  must be applied in the fluid-solid surface 
normal direction, the momentum exchange between materials 
for slip flow must be executed in a coordinate system defined 
by the fluid-solid surface. The surface coordinate system 

, as illustrated by a hypothetical surface in Fig. 1, is 
defined by rotating  by 

)

)

zyx ,,
slip
rsK

rsK

( ',',' zyx
( )zyx ,, φ  about z, and then ψ  about y, 

such that y' is the outward unit normal direction of the solid 
surface. y’ is calculated using the density gradient of the solid 
material particles within the surface cell, as shown in Eq. (18).  

  
ss' ρρ ∇∇−=y   (18) 

 
The material velocities in terms of (  are obtained by 
applying the rotation matrix Q, given in Eq. (19), to u as shown 
in Eq. (20). By definition, Q is a real, orthogonal, special 
matrix (QT = Q-1, det(Q) = 1), in which the rows represent the 

 unit vectors as defined in the original 
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system. Once the velocities are defined in terms of the   
coordinates, the  momentum exchange between 
materials is calculated for each surface coordinate direction, 
utilizing the numerical implementation of Eq. (6), with  in 
the x' and z' directions, and the no-slip  in the y' direction.  
Following the exchange of momentum between materials in the 

 system, the material velocities are then returned to 
the  description utilizing QT as shown in Eq. (21). 
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Fig. 1. Global and surface coordinate systems. 

 
NUMERICAL RESULTS 

To verify the methodology and implementation of the 
modifications described for the slip flow momentum and 
energy exchange models, several basic configurations, as 
outlined previously, are evaluated. For each configuration, the 
numerical results are substantiated with grid convergence and 
order-of-accuracy studies, as well as comparisons to previously 
established data.  

 
Pressure driven flow between parallel plates 

A pressure driven, fully developed, steady state, 
Newtonian, rarified ideal gas flow between parallel plates with 
constant properties and negligible inertial forces, as specified in 
Fig. 2(a), is modeled to verify the accuracy and implementation 
of the slip flow momentum exchange modifications in the 
MPM-ICE algorithm.  The analytic velocity solution used to 
verify the numerical data, Eq. (22), is obtained by integrating 
the momentum equation, ( ) dxdPyu =∂∂ 22µ , twice, and 
applying the slip velocity boundary condition at the wall, 

( ) 00 ==
∂∂= yvy
yuβu λ , and symmetry at the midplane, 

( ) 02 =∂∂ =hyyu , and then normalizing by the resulting mean 
velocity, um.  

 
( ) ( )

Kn
Knhyhy

u
hyu

m ν

ν

β
β

121
26 22

+
+−

=   (22) 

 
The pressure driven flow configuration is evaluated for 

Knm = 0.0000, 0.0564, and 0.1128, and grid resolutions of 
∆x = ∆y = h/10, h/20, and h/40. The numerical data for 
∆x = h/40 are compared to Eq. (22), as well as the Boltzmann 
equation solution presented by [10] for comparable conditions, 
at steady-state (t = 0.1µs) in Figs. 2(b) and 2(c), for 
Knm = 0.0564 and 0.1128, respectively. The numerical results 
obtained, not all of which are presented here, indicate that the 
modified slip flow momentum exchange model accurately 
represents slip velocity boundary conditions compared to first-
order boundary conditions, converges with the same order-of-
accuracy as the original algorithm (~1.0), and conserves the 
exchanged momentum. 
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Fig. 2. Steady state (t = 0.1µs) pressure driven flow between 
parallel plates: (a) problem specification, (b) velocity profile, 
Knm = 0.0564, (c) velocity profile, Knm = 0.1128. 
 
Thermal conduction between parallel plates 

The steady state thermal conduction of a stationary, 
constant property, rarified ideal gas between two parallel plates 
of different temperatures, as specified in Fig. 3(a), is modeled 
with the MPM-ICE algorithm to verify the accuracy and 
implementation of the slip flow thermal energy exchange 
modifications. The analytic temperature profile used to verify 
the numerical data, Eq. (23), is derived by integrating the 
energy equation, 022 =∂∂ yT , twice, and applying temperature 

jump boundary conditions at each wall, +−=
=

TTT wy
∆

0
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∂∂−+= λβ∆
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. 
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Kn
hy

T
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w

β∆ 41
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+
+−

=
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The thermal conduction configuration is evaluated for 

Knm = 0.0000, 0.0564, and 0.1128, and grid resolutions of 
∆x = ∆y = h/10, h/20, and h/40. The numerical data for 
∆x = ∆y = h/40 are compared to Eq. (23) at steady-state 
(t = 0.1µs) in Fig. 3(b) for the parameters specified. The 
numerical results obtained, not all of which are presented here, 
indicate that the modified slip flow energy exchange model 
accurately represents temperature jump when compared to first-
order temperature jump boundary conditions, converges with 
the same order-of-accuracy as the original algorithm, ~0.8, and 
conserves the exchanged energy. 
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Eq. (23)
Knm = 0.0000
Knm = 0.0564
Knm = 0.1128

numeric
Knm = 0.0000
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βt = 1.667
(b)

 

Fig. 3. Steady state (t = 0.1µs) thermal conduction between 
parallel plates: (a) problem specification, (b) temperature 
profiles, Knm = 0.0000, Knm = 0.0564, Knm = 0.1128. 
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Low Reynolds number, infinite cylinder CD and Nu 
To verify that the MPM-ICE algorithm, with the slip flow 

momentum and energy exchange modifications, accurately 
represents a rarified gas flow for a more complex geometry 
than the two previous configurations, flow around an infinite 
circular cylinder is evaluated. CD and Nu are evaluated at very 
low Re in this study for several reasons. Most significantly, 
typical microfluidic system Re are very small, due to the small 
length scales. Additionally, the symmetry present at low Re 
may be utilized to reduce the computational problem size. Also, 
without flow separation, effects due to rarefaction only should 
be more evident. And, furthermore, some slip flow CD and Nu 
data are available for comparison to numerical results at low 
Re, while none exists at higher Re.  

The numerical problem specification and flow parameters 
utilized to model flow around an infinite cylinder are presented 
in Fig. 4(a). To numerically approximate an unconfined 
cylinder at very low Re, a large computational domain size and 
locally one-dimensional inviscid (LODI) boundary conditions, 
as described in [11], are used. To reduce the size of the 
resulting computational problem a multilevel stationary grid is 
used. Three different grids are considered, ∆x = ∆y = D/4, D/8, 
and D/16 are used immediately around the cylinder; from 2.5D 
to 5D away from the cylinder center, the grid size is double the 
given values; and, from 5D away from the cylinder center to 
the edge of the computational domain, the grid size is four 
times the given value.  

The numerical CD per unit length are obtained utilizing 
the standard definition, ( ) DuFC DD

221 ∞∞= ρ , where (1/2) FD 
is first computed via an integral x-momentum analysis around 
the symmetric cylinder. Similarly, the numerical Nu are 
calculated with the usual definition, ( )∞−= TTkDqNu sr

"
cyl , 

where ( 2Dq"
cyl π ) , one-half of the thermal energy exchange rate 

per unit length due to the cylinder, is first obtained via an 
integral thermal energy analysis around the symmetric cylinder. 
The resulting steady state (t = 180µs) CD and Nu for the highest 
grid resolution are plotted and compared to reference values in 
Figs. 4(b) and 4(c), respectively. 

The numerically determined infinite cylinder CD reported 
in Fig. 4(b) for Kn = 0.0, is within 8.0% of the reference value 
at Re = 1.37, and within 20% of the reference values at Re = 0.1 
[12, 13]. The larger difference at Re = 0.1, is because the 
reference CD values are for an unconfined cylinder, which 
cannot be accurately numerically simulated, particular at low 
Re. The effect of Kn on the numerically determined cylinder CD 
is comparable to, although less than, the analytically predicted 
effect of Kn on sphere CD [14]. The numerically determined 
cylinder CD is roughly 1-2% less for Kn = 0.042, and 2-3% less 
for Kn = 0.076. 

The numerical Nu for Kn = 0.0, are within 8% of the 
correlation values of [17]. The effect of rarefaction on the 
numerically determined Nu at Re ~ 0.1, is roughly a 3% 
decrease at Kn = 0.042, and a 5% decrease at Kn = 0.076, 
which is somewhat less than expected based on the 
experimental values [18]. 
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Fig. 4. Steady state (t = 180µs) low Reynolds number, infinite 
cylinder CD and Nu: (a) problem specification, (b) CD, (c) Nu. 
 
The numerical slip flow Nu at Re ≈ 1 are likely higher than the 
experimental slip flow Nu, due, in part, to the approximation of 
σt = 1. Experimentally measured σt are often near 1, but may be 
any value between 0 and 1, and a value of σt less than 1 would 
result in an increase in the temperature jump at the surface, and 
decrease in Nu. Overall, the agreement between the numerically 
determined CD and Nu with the reference values and trends 
validate that the MPM-ICE algorithm, with the slip flow 
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momentum and energy exchange modifications, adequately 
represents the thermal/hydrodynamic flow behavior of a 
rarified gas around an infinite circular cylinder. The average 
grid resolution order-of-accuracy is ~1.0 for CD and ~0.6 for 
Nu.    
  
Unsteady slip flow fluid-structure-interaction 

To verify that the algorithm is capable of accurately 
predicting unsteady fluid-structure-interaction with a rarified 
flow, the thermal/structural response of a damped-oscillatory 
three-dimensional cylindrical fin, subject to an impulsively 
started uniform, rarified flow, as illustrated in Fig. 5(a), is 
evaluated. This particular configuration is evaluated because 
there are several similar microscale applications, including, 
atomic force microscope measurements, heat exchangers, and 
bio-sensors and actuators. In this evaluation, the fin initially has 
zero displacement, ( ) 00 =,yδ , zero velocity, ( ) 00 =∂∂ t,yδ , 
and a uniform temperature equal to the constant fin base 
temperature,  . The rarified gas initially has 
a uniform velocity, , and a uniform temperature, , that is 
less than the fin base temperature. As the system is set in 
motion, the sudden fluid force on the fin results in its 
displacement and subsequent damped oscillation while it 
simultaneously transfers heat to the fluid. 

( ) ( ) bTt,T,yT == 00

∞u ∞T

To verify the numerical simulation of this system, 
comparisons to analytic solutions are necessary. The governing 
equation for beam vibration, the Euler-Bernoulli equation [19], 
may be solved with the force of the fluid modeled as a Stokes 
drag force, FD(y,t)/L = Cµ(u∞ - ∂δ(y,t)/∂t) , which is accurate for 
very low Re flow. The Stokes drag coefficient, C, is related to 
the typical drag coefficient as CD = 2C/Re. The Euler-Bernoulli 
equation, boundary conditions, initial conditions, and resulting 
analytic fin displacement solution, δ(y,t), as obtain by the 
standard solution methods of separation-of-variables and 
orthogonality, are summarized in Table 1. The governing 
energy equation for the fin, boundary conditions, initial 
conditions, and resulting analytic transient temperature 
distribution, obtained, again, by the standard solution methods 
of separation-of-variables and orthogonality, are summarized in 
Table 2. To derive the unsteady, normalized, analytic 
temperature distribution, Θ(y,t), it is assumed that the transient 
fin temperature varies only axially and that the convective heat 
transfer coefficient, h, is uniform and constant. In reality, 
however, h varies both spatially and temporally, and the fin 
cross sectional temperature will also vary slightly. 
Consequently, the analytic Θ(y,t) solution presented in Table 2, 
is only expected to provide an approximate comparison to the 
numerical data. 

For the configuration illustrated in Fig. 5(a) both 
continuum flow, Kn = 0, and rarified flow, Kn = 0.042, are 
evaluated for both a flexible (E = 5 106 Pa) and rigid fin. This 
results in four evaluation cases: 1) Kn = 0, E = 5

×
× 106; 2) 

Kn = 0.042, E = 5× 106; 3) Kn = 0, rigid; 4) Kn = 0.042, rigid - 
each of which is evaluated at three different grid resolutions,  
∆x = ∆y = ∆z = D/1, D/2, and D/4. The transient numerical 

solution is obtained for 0 < t < 180µs. δ(y,t)/D, for the highest 
grid resolution, is presented and compared to the analytic 
solution in Fig. 5(b). All of the parameters required to calculate 
the analytic δ(y,t)/D (Table 1), are specified in Fig. 5(a), except, 
C (= ReCD/2), which is unknown. Therefore, for cases 1 and 2, 
which are the flexible fins, the CD that results in the smallest L2 
norm error between the analytic and numeric δ(y,t)/D is utilized 
to obtain the analytic solution, as reported in Fig. 5(b). 
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Fig. 5. Unsteady slip flow fluid-structure-interaction: 
(a) problem specification, (b) δ(y,t)/D, (c) Θ(y,t). 
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Table 1. Analytic solution for transient fin displacement. 
 
Governing Equation 
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 ( ) 033 =∂∂ yt,Lδ    

 
Solution 

( ) ( ) ( ) ( ) ( ) ( ) ([∑
∞

=
+−+=

1n
n,dn,dnnn,dnnnnp tsintcostexpAyYyt,y ωωωςωωςδδ )]  

 ( ) ( )( )222 4624 yLyLEIyuCyp +−= ∞µδ  

 ( ) ( ) ( ) ( ) ( )ysinysinhycosycoshyY nnnnnnn βσβσββ +−−=  

 ( ) ( )[ ] ( ) ( )[ ]LcosLcoshLsinLsinh nnnnn ββββσ +−=  

 ( ) ( ) 1−=LcosLcosh nn ββ   

n Lnβ  
EILuC

An

244
∞µ

1 1.8751 -1.5201·100 
2 4.6941 -2.1450·10-2 
3 7.8548 -1.6041·10-3 
4 10.9955 -2.9866·10-4 
5 14.1372 -8.5002·10-5 

 ( ) ( ) ( )dyyYdyyYyA
L

n
L

npn ∫∫−=
0

2
0
δ  

csnn AEI ρβω 2=  

( ) EIAAC csncsn ρβρµς 22=  

21 nnn,d ςωω −=  

 

   

 

 
 
Table 2. Analytic solution for transient fin temperature 
distribution. 
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Because CD is calculated from the fin deflection, no CD is 
obtained, for the rigid cases. The expected CD for an 
unconfined, infinite cylinder, at Re = 0.1 is 58.39 [12]. The 
numerical finite, cylindrical fin CD obtained for cases 1 and 2, 
are larger than this, due to effects of flow around the tip of the 

fin, the course grid resolution, and the proximity of the 
computational boundaries to the fin. CD for Kn = 0.042 are 
approximately 1% less than CD for Kn = 0.0. Although this 
reduction in CD due to rarefaction is slight, it is consistent in 
magnitude with the reduction in CD due to rarefaction for the 
infinite cylinder presented previously. 

All of the parameters required to calculate the analytic 
Θ(y,t) (Table 2), are specified in Fig. 5(a), except, h (= Nukr/D), 
which is unknown. Consequently, the Nu that results in the 
minimum L2 norm error between the analytic and numeric 
Θ(y,t), is utilized to obtain the analytic solution. The numeric 
and analytic Θ(y,t) for case 1 are compared in Fig. 5(c) for the 
highest grid resolution. Only data for case 1 are presented since 
the data for each of the other three cases are visually very 
similar. Numeric and analytic Θ(y,t) in Fig. 5(c) are 
comparable, but not identical, since h in the simulation is not 
uniform or constant, as assumed in the analytic solution. Re for 
these data are 0.1, the expected steady state Nu for an 
unconfined, infinite cylinder, at Re = 0.1 is 0.45 [17]. Although 
the numerical Nu data are not thermally steady state, the fin is 
finite in length, and confined by computational boundaries, all 
of the numerically computed Nu are comparable. For the four 
cases, rarefaction effects decrease Nu by ~2%, and the effect of 
the flexible fin’s motion increases Nu by ~1%.  

The numerical results, not all of which are presented here, 
indicate that the solution converges with approximately first-
order numerical accuracy. In addition, the algorithm with the 
slip flow modifications, qualitatively predicts the unsteady 
fluid-structure-interaction of a damped-oscillatory three-
dimensional cylindrical fin as compared to the analytically 
predicted displacement and temperature solutions. 
 
SUMMARY 

This study modifies the momentum and thermal energy 
exchange models of an existing, continuum based, multifield, 
compressible, unsteady, Eulerian-Lagrangian FSI algorithm, 
such that, for a rarified gas in the slip flow regime, the 
equivalent of first-order slip velocity and temperature jump 
boundary conditions are achieved at fluid-solid surfaces, which 
may move and deform with time. The momentum and thermal 
energy exchange models are modified by utilizing slip flow 
momentum and energy exchange coefficients that are derived 
as a function of the level of rarefaction from the original first-
order slip velocity and temperature jump boundary conditions. 
The momentum and energy exchange models with the slip flow 
momentum and energy exchange coefficients are then applied 
at fluid-solid surfaces such that momentum is exchanged 
between the rarified gas and the solid material in the fluid-solid 
surface normal and tangential coordinate directions, rather than 
arbitrary global coordinates, and slip flow in the surface 
tangential direction, is realized.  

Following the development and implementation of the slip 
flow momentum and energy exchange modifications, several 
basic configurations are considered to verify the resulting 
algorithm’s capabilities. The configurations include the 
velocity profiles of a rarified gas between parallel plates, 
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temperature profiles of a rarified gas between parallel plates, 
drag coefficients, CD, and Nusselt numbers, Nu, for low 
Reynolds number rarified flow around an infinite cylinder, and 
the transient, thermal/structural response of a damped-
oscillatory three-dimensional finite cylinder subject to an 
impulsively started uniform, rarified flow. For each 
configuration, the numerical results are evaluated with grid 
convergence and order-of-accuracy studies, as well as 
comparison to analytical, experimental, or previously 
established reference data. Results of these evaluations indicate 
that 1) the slip flow momentum and energy exchange models 
conserve exchanged momentum and energy, respectively, and 
2) that with these models, the algorithm is capable of modeling 
steady and unsteady fluid-structure-interaction with rarefaction 
effects, with accuracy approximately equivalent to the first-
order slip velocity and temperature jump boundary conditions.  

There are many microscale systems for which both 
rarefaction and fluid-structure-interaction effects are 
significant. Based on the modifications and verifications 
presented in this study, it is expected that the MPM-ICE 
algorithm, with the slip flow momentum and energy exchange 
modifications, has the unique ability to accurately model and 
evaluate these systems.  
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