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ABSTRACT 
In this work we solve numerically the conjugated heat transfer 

problem of a non-Newtonian fluid and solid walls in a 

microchannel under the influence of pressure and electro-

osmotic forces. The velocity field is determined taking into 

account a hydrodynamically fully-developed flow and a 

constitutive relation based in a viscoelastic rheological model 

with a simplified Phan-Thien Tanner fluid. The numerical 

process results in solid and fluid temperature distributions. Is 

shown the influence of nondimensional parameters involved in 

the analysis on the conjugated heat transfer problem: an 

indicator of viscoelastic behavior, the Peclet number, a 

normalized power generation term being the ratio of heat flow 

from the external wall to the Joule heating, a conjugation term 

which determines the basic heat transfer regimes between fluid 

and solid sections in the microchannel. For the flow field: the 

ratio of pressure forces to the electro-osmotic forces acts on 

flow as a drag reducer and drag increaser under favorable and 

adverse pressure gradients, respectively, moreover, for 

increasing values of the viscoelastic parameter, the velocity of 

the fluid increases with respect the Newtonian fluid flow case. 

These velocity perturbations resulting in cross-sectional 

variations of temperature. 

 

Keywords –– Electro-osmotic, Phan Thien Tanner fluid, 

conjugate heat transfer, microchannel. 

 

INTRODUCTION 
The microfluidic devices are used in the handling of biomedical 

and chemical analysis. Thus, electrokinetic transport is widely 

used to control flow and for manipulate sample solutes, include 

injection, separation, mixing, dilution/concentration, and 

reaction. Originally, the electrokinetic transport operates a 

combination of two mechanisms drivers: electrophoresis and 

electro-osmosis. Electrophoresis is the migration of charged 

solutes (e.g. ions, macromolecules of DNA) in an electrolyte 

under an applied electric field. The electro-osmosis gives the 

movement of a volume of an aqueous solution adjacent to a 

solid charged surface when an external electric field is applied 

tangentially along the surface [1]. Due to the rapid development 

of "Lab-on-a-Chip” technologies during recent years, electro-

osmosis is being used extensively as a driving force for 

manipulating fluid flows for transport and control samples in 

nano volumes of fluids to biological, chemical and medical 

diagnostics. Advances in microfluidic devices make possible a 

complete analysis of fluids in the biochemistry area in a single 

fabricated chip; therefore, is fundamental understand the 

characteristics of fluids flow in microchannels to have an 

optimum design and precise control of microfluidics devices 

[2]. 
 

The physics of electrokinetic phenomena and specifically in the 

electro-osmotic and electrophoretic flow has been reviewed 

extensively in the literature. The fundamental hydrodynamic of 

electro-osmotic and electrophoretic flow is detailed by 

Masliyah, Karniadaski and Li [3-5]. The heat transfer 

phenomena in microchannels has been studied by Xuan, [6, 7], 

and Tang [1, 8, 9], they analyze the coupled cases with 

temperature and conjugates problems in electro-osmotic flow, 

and is emphasized the inevitable effect of Joule heating in the 

flow.  
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The separation of samples species by electrophoretic flow 

based only over the solvent fluid in microchannels is treated by 

Tang [1, 9, 10] and Xuan [11]. Such works in this paragraph 

are under consideration of Newtonian fluids, its only considers 

the part of the solvent in the flow, and some are in transient 

state. 

 

So, with the advent of electrokinetics for the transport of 

biological fluids through biochips, is necessary to 

mathematically characterize the transport mechanisms 

associated with the process for efficient design of microfluidic 

systems. Strategies for characterization are based on electro-

osmotic transport of Newtonian fluids, however, that 

consideration may be somewhat inappropriate for these 

applications.  It´s clear that a model such as Newton's law of 

viscosity may be insufficient to fully describe the constitutive 

behavior of biological fluids complex. Although in the 

literature there are several models proposed to analyze the 

behavior of non Newtonian fluids, at present, still appear 

relevant implications on the transport of electrokinetic flows 

that have not been completely resolved by the scientific 

community [12]. Studies by Zhao, Berli and Tang [13-15] in 

this regard consider the power law for non Newtonian fluids 

and solve only the hydrodynamics of electro-osmotic flow; Das 

[12] also uses the power law to solve analytically the 

distribution of velocity, temperature and concentration on 

electro-osmotic flows of non Newtonian biological fluids; Park 

[16] presents a hydrodynamics investigation for electro-osmotic 

flow of viscoelastic fluids as blood and DNA through 

microchannels, where is adapted the concept of the Helmholtz-

Smoluchowski velocity for viscoelastic fluids. An analytical 

solution has been presented by Alfonso [17] for the flow of 

viscoelastic fluids in steady state and fully developed flow in 

microchannels of parallel plates and pipes under the influence 

of pressure and electrokinetic forces using the Debye-Hückel 

approximation, this work shows the combined effects of the 

rheology of the fluid and the gradients of electro-osmotic and 

pressure forces on the velocity distribution; the viscoelastic 

fluids employees describe the constitutive Phan-Thien Thaner 

model, and is an approximation of studies of fluids such as 

blood, saliva, synovial and other biofluids. The studies 

mentioned above are developed in a steady state. 
 

METHODOLOGY  
A. Physical model 
The Figure 1 shows a squematic view of the physical model, 

the fluid flow is through of a microchannel formed by two 

parallel flat plates of height 2H , length L , and width w , the 

wall thickness is 
w

H . / 1L H , / 1
w

L H , / 1w H ,

/ 1
w

w H . We considered a viscoelastic fluid with a 

simplified Phan-Thien Tanner model. The driving forces are 

provided by an electric field xE  and a pressure gradient xp  in 

the axial direction between inlet and outlet of microchannel. 

For analysis, properties are considered constant with the 

temperature, the heat transfer is in steady state and flow 

hydrodynamically developed. The fluid enters at a temperature 

eT
 
in 0x  . The wall has adiabatic conditions in 0x   and 

x L . To 0 x L   there is a constant heat flux 0q  in the 

external wall. 

 

B.  Energy equations  
The energy equation in the fluid is given by 
 

                 

2 2
2

2 2pf f f x

T T T
C u k k E

x x y
 

  
  

  
            (1) 

 

where  ,
pfC ,T ,

f
k ,  and u  are the density, the specific 

heat, the temperature, the thermal conductivity, the electrical 

conductivity and the axial velocity component of the fluid 

respectively; x , y
 
are the axial and the transversal coordinate. 

The boundary conditions associated with equation (1) are 
 

0 : ex T T 
 

: 0x L T x   
 

0 : 0,y T y   
 

   : ;w w w f
y H T T k T y k T y                    (2) 

 

where wT , and wk  are the temperature and the thermal 

conductivity in the wall respectively. 

 

The energy equation in the solid is given by 
 

2 2

2 2
0w wT T

x y

 
 

 
               (3) 

 

and the boundary conditions associated with equation (3) are 
 

0 : 0
w

x T x     

: 0
w

x L T x     

  0
w

w w y H H
k T y q

 
     

   : ;w w w f
y H T T k T y k T y        

          
(4) 

 

Defining the following dimensionless variables 
 

x L 
 

y H 
 

HS
u u u

 

  2 2
e xf

k T T E H  

 
  2 2

w w e xf
k T T E H  

 

         

  wZ y H H 

              

(5)
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FIG. 1  SCHEMATIC OF MIXED ELECTRO-OSMOTIC AND PRESSURE DRIVEN FLOW BETWEEN  
TWO PARALLEL FLAT PLATES. 

 

where  and   are the dimensionless axial and the transversal 

coordinates respectively; u , , w  and Z are the velocity, the 

temperature in the fluid, the temperature in the solid and the 

transversal coordinate to analyze the solid wall, dimensionless, 

respectively. 
0HS x

u E     [17] is the electro-osmotic 

reference Helmholtz - Smoluchowski velocity;  ,  ,
0

 are the 

dielectric constant, the Zeta potential in the shear plane of the 

double electric layer (EDL) and the apparent viscosity of the 

fluid, respectively. By introduce the dimensionless variables 

from equation (5) in equations (1-2) is obtained the 

dimensionless energy equation to the fluid region into 

microchannel  
 

        

2 2
2

2 2
1Peu

  
 

  

  
  

  
                 (6) 

 

and their boundary conditions 

 
0: 0    

1: 0       

0: 0       

                          
1: w   

                
(7) 

 

in addition to equation (7) was considered the next boundary 

condition in the internal interface of microchannel 

 

       

2

2

0 1

w

Z
Z



 


 
 

 


                 
(8) 

 

The energy equation in the fluid and their boundary conditions 

leaves the following dimensionless parameters 

             
H L 

               
 

            
wH L 

 
             

 

           
pf HS f

Pe C u H k
              

 

 
   w wf
k k H L H L 

             
(9) 

 

where   and   are the aspect ratios in the fluid and solid 

region, respectively; Pe  and   are the Peclet number and the 

conjugation term which determines the basic heat transfer 

regimes between fluid and solid sections in the microchannel. 

 

Equation (6) implies the viscoelastic properties of the fluid in 

the dimensionless model of velocity, taking into account the 

rheological simplified Phan-Thien Tanner model with the 

electrokinetic and pressure forces in the fluid flow [17]. So, the 

dimensionless model of velocity is given by  
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    
         

    

   

 

          (10) 

where 
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1 HS
De u  

 
H   

21 cosh ( )D 

 tanh( )M 

 cosh( ) cosh( )F  
 

         
sinh( ) sinh( )R  

                        
(11) 

 

where  , De
,  ,  ,

1
  and 

 
are the ratio of pressure forces 

on electro-osmotic forces, the Deborah number, the coefficient 

of elongacional viscosity of the fluid, the inverse Debye length, 

the relaxation time, and electrokinetic parameter, respectively; 

D, M, F,  and R are parameters to simplify. 

 

From equation (5) and (9) in equations (3-4) is obtained the 

dimensionless energy equation to the solid region in the 

microchannel  

 

       

2

2 2 2
0w w

Z

 


 

 
 

                          
(12) 

 

and their boundary conditions 

 

0 : 0
w

     
 

1: 0
w

       

         
0w en Z  

                          

(13) 

 
In addition to equation (13) was considered the next boundary 

condition in the external interface of microchannel 

 

       

2

1

w

Z
Z

 





  

                                 

(14) 

 

where 

 
2

0 x
q E H 

                          

(15) 

 

 is the normalized power generation term being the ratio of 

heat flux from the external wall to the Joule heating. In addition 

to equation (13) was considered the boundary condition marked 

by the equation (8) in the internal interface of the microchannel 

wall. 

 

C. Numerical solution 
The previous mathematical model was discretized in central 

finite differences and solved by the iterative method 

Successive-Over-Relaxation (SOR) [18]. In the SOR method, 

the temperature is evaluated in successive iterations by 

 

  
1 1

, , ,
k k k
i j i j i j                           (16) 

where i , j  are the nodal positions in axial and transversal 

direction; k ,   and 1
,
k
i j   are the iteration number, the 

relaxation factor in the SOR method and the dimensionless 

temperature variation per iteration and node of the discretized 

mesh, respectively. Equation (16) is applicable for the solid and 

fluid regions. 

 

Fluid region: 1
,
k
i j   is analyzed for the fluid region as follows. 

The temperature variation of the interiors nodes that not 

correspond to boundary nodes was determined by  

 

 

 

2 2
1, , 1

1 2 2 2 2
, 1, , 1

2 2 2
,

2

2
2

2

j
i j i j

jk
i j i j i j

i j

Peu

Peu


  


    

  

 


 

   
     

  
   

         
  

 
    

  

       

(17)

 

 

where       is the aspect ratio of the discretized mesh 

for the fluid region;  and  are the increments in the axial 

and transversal direction respectively. For the dimensionless 

velocity ju  in the equation (10),   is replaced by

 

.j j     

 

The specified temperature in the inlet of microchannel, as 

boundary condition is from equation (7) is 

 

   
 , 0, for 0, 0 toi j i j jmax   

                   

(18) 

 

where jmax , is the maximum number of nodes in the 

transversal coordinate.  

 

The boundary conditions in the fluid region which are not 

specified temperature were adapted to the SOR method as 

follows; for the boundary condition at the outlet of 

microchannel gives 

 

   

2 2 2
, 1 1, , 1

1 2 2 2 2 2
, ,

2
2

2

2 2

2
2

i j i j i j

k
i j i j

j
x

Peu
F

   

    


 

  



 
 

    
 

          
 

  
   

  

                 

(19)

 

 

where  2 1
0xF


 


    ; for ; 1 toi imax j jmax -1. 

 

imax is the maximum number of nodes in the axial coordinate.
 

 

The boundary condition at the center of microchannel gives 
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 

 

2 2
1, , 1

1 2 2 2
, 1,

2 2 2 2
, 1

2
2

2
2

2 2

j
i j i j

jk
i j i j

i j y

Peu

Peu

F


  


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   

 




   
     

  
   

       
  

 
       

  

       

(20) 

 

where  1 0
0yF


 


    , for 0; 1 toj i imax -1.   

 

The specified temperature in the internal interface of 

microchannel as boundary condition is from equation (7) is 

 

            
   , , , for , 0 towi j i j j jmax i imax.   

         

(21) 

 

In addition, to the boundary condition at the internal interface 

of microchannel requires an equation to solve the boundary 

nodes, from equation (8) is obtained 
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 

2 2
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, 1,
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2
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2
2
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j
i j i j
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i j y i j

Peu
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F


  


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   

 




   
     

  
   

       
  

 
       

  

    

(22)

 

 

where
2

, ,

2( , ) 2

0

w i j

y i j

Z

F
Z











for , 1toj jmax i imax -1.   

 

The boundary conditions in the corner nodes , 0i imax j   

and ,i imax j jmax 
 

are respectly adapted to the SOR 

method. 

 

Solid region: 1
,
k
i j   is analyzed for the solid region as follows. 

The temperature variation of the interiors nodes that not 

correspond to boundary nodes was determined by  

 

2
, 1, , , 1 , 1,2 2

1
, , 2 2

2
, , 1 , ,2 2

2 1

2 1
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k
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 
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 
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



 
    

  
                 

       

(23)

 

 

where Z    , is the aspect ratio of the discretized mesh 

for the solid region; Z  is the increment in the transverse 

direction. 

 

Boundary conditions in the solid region which are not specified 

temperature were adapted to the SOR method as follows; the 

boundary condition at the left side of the microchannel wall 

gives 
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wxF
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(24)

 

 

where  1 0
0wx wF


 


    , for 0; 1 toi j jmax -1. 

 

 

In the same way, the boundary condition at the right side of the 

microchannel wall gives 

 

2
, 1, , , 12

2 2
1 2

, , , , 1 , ,2 2 2

2

2

2 1 2 1

2

w i j w i j

k
w i j w i j w i j

wxF


 




    

  

 

 




 
   

 
      

             
    

 
 
  

       

(25)

 

 

where  2 1
0wx wF


 


    , for ; 1toi imax j jmax -1. 

 

 

The specified temperature in the internal interface of the 

microchannel wall as boundary condition from equation (13) is 

 

                 
   , , , for 0, 0 tow i j i j j i imax   

         

(26) 

 

In addition to equation (13) was considered the condition 

marked by the equation (8) in the internal interface of the 

microchannel wall, with help from equation (26) is evaluated 

the following 

 

      

, , , , 1 , , ,

2 2

0 1

w i j w i j w i j i j

Z
Z Z



    

  



 

   
  

       

(27) 

 

The previous equation is necessary to evaluate 2( , )y i jF  in the 

equation (22) for the fluid region. 

 

Now, the boundary condition at the external interface of the 

microchannel wall gives 

 

2
, 1, , , 1 , 1,2 2

1
, , 2 2

2
, ,2

2

2 1

2 1 2

w i j w i j w i j

k
w i j

w i j Z


  


 


 



  



 
    

  
                  

     

(28)

 

 

for , 1 toj jmax i imax -1.   

 

The boundary conditions in the corner nodes 0,i j jmax   

and ,i imax j jmax 
 

are respectly adapted to the SOR 

method. 
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Equations (17), (19-20), (22), (23-25) and (28) are replaced in 

an iterative process in equation (16) for each node of the 

discretized mesh that is not specified temperature. The SOR 

method ends the process when the temperature converges at 

each node until 
1

,
k
i j tolerance tol    . For the conjugate 

problem, we solved firstly the temperature field in the solid 

region with an arbitrary specified temperature in the internal 

interface to initialize the problem, then the temperature gradient 

in the internal interface of solid wall was calculated by the 

equation (27), and after it was taken to calculate the 

temperature gradient of fluid region in same equation (27); so 

with this, the temperature field in the fluid region was 

calculated. Once that the solid and fluid region are solved, we 

compare the calculated interfacial temperature by 

   
1 0

, , 0.001w Z
i j i j


 

 
  , if the previous condition is not 

satisfied, then the cycle is repeated with the new calculated 

interfacial temperature in the solid
0 0w z z

 
 

 . To implement 

the discretized mathematical model was used the programming 

software Fortran Power Station 4.0 and the following parameter 

values: =0.005, =0.005, =0.005, imax=200, 

jmax=200, tol=10
-8

. 

 

D. Asymptotic solution 
An analytical solution was considering in the limit where the 

parameter   is small, to this form was proposed the following 

expansion to fluid temperature 

 

              
   0 1 , ...       

             

(29) 

 

and for the solid temperature 

 

           
   0 1, , ...w w wZ Z      

               
(30) 

 

Substituting the equation (29) into (6) 
  

2 2 2
20 01 1 1

2 2 2
... ... 1Peu

   
    

    

     
        

        
                                     

          (31) 

 

Comparing in orders of magnitude the diffusive terms with the 

energy generation term in the equation (1), is showed that the 

significant temperature variations occur in the axial coordinate, 

then we can integrate and simplifying the equation (31) in the 

transversal direction 

 

        

1 10 1

0 0

2 2
1 12 20 1 1

2 20 0
1

1

Pe ud Pe ud

d d

 

 

 

 


 
   

 

  
    

 

 

 

 

 


 
 

 

  
  

 

 

 

     (32) 

Now, substituting the expansions from the equation (29) and 

(30) into (8) and simplifying 

 

0 1 1

2

0 0 1

1 w w

Z Z
Z Z



  


 
  

   
  

   
   

(33) 

 

For collecting the zero power of   from equation (33), we get 

 

 0 0 1

2

0 1

1
: w

Z

O
Z



 


 
 

 


 
           

(34) 

 

By considering the limit in 1  and 2 (1)O   the 

temperature gradients in the microchannel wall are a constant 

and    01 0w wZ Z
Z Z 

 
     , in these conditions, 

substituting the equation (14) into (34) is obtained 

 

1

1



 


 
 


                              

(35) 

 

So, by substituting the equation (35) into (32) and collecting 

the zero power of  , we get 

 

  
2

1 10 20 0

20 0
: 1O Pe ud d

 

 

 
    

 

 

 

 
   

 
 

         

(36) 

 

with the corresponding boundary conditions 

 

0
0: 0    

       
0

1: 0     

                            

(37) 

 

The solution in a first approximation to equation (36) is 

 

   

 

1 1

0 0

0 21

0

1 exp 1 exp
Pe ud Pe ud

Pe ud

 

 





 


 





 

 





    
    

        
    
    

 

 



 
1

0

1

Pe ud






 




 


              (38) 

 

In the solid region case was considered the limit 1 , and 
2 (1)O  , then from equation (12) 

 
2

2
0w

Z




                          
(39) 
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with the corresponding boundary conditions  

 

          
0 : wZ   

            

(40) 

 

Therefore the analytical solution in a first approximation to the 

energy equation to solid region is 

 

              
   

2

0 0,w Z Z


   


   
                  

(41) 

 
RESULTS AND DISCUSSIONS  
In this study, we consider the order of magnitude of the 

following characteristic values:
410H m

[1,9], 
510wH m

[7,8,9],
210L m

[6,8]; 100  , based in a 0.001 mM buffer 

solution and symmetrical electrolyte [3];  therefore 0.01  

and 0.001 . Thermal properties of materials were taken as

0.61 0.7 /
f

k W m K  
 

for the fluid, 0.15 0.19wk    

/W m K   for PMMA polymer wall and 1.38 /wk W m K  for 

fused silica wall [6, 9], therefore
6 52.5 10 2.5 10x x   ; 

3 210 10   /S m ; 4 310 10
HS

u   [19], /C m V   , 

210 ,V   4 510 10
x

E  /V m [3] and 
0

3 410 10  


Pa s  [8, 12, 20], 310  
3/kg m , 4180pC  /J kgK  [6]; 

therefore 0.5 1.5Pe 
 
[20]; 1 2.5    [17]; 2 0,1,4De 

[17]; 1,0.75,0.5   [12].  

 

The Figure 2 shows the spatial development of the Joule 

heating induced to the fluid and wall temperature fields in the 

microchannel along y direction in the middle axial position. 

The temperature distributions in the fluid region exhibit a 

parabolic-like pattern while the solid wall exhibits a linear 

behavior [9]. It also shows that the highest temperature occurs 

at the microchannel centerline; for that is clear that the heat 

generated by Joule heating is transferred from the central region 

to wall by convection and conduction in the fluid, and 

dissipated though the microchannel wall by conduction, finally 

the heat is transferred to the exterior by the 0q . For the 

parameters shown in the Figure 2 we can see that for the 

increases of viscoelastic parameter 2De  the velocity also 

increases [17], causing an important decrease in temperature by 

the effect of convection. To 2 0De  the Newtonian case is 

recovered. 
 

For the parameters shown in the Figure 3, the influence of the 

ratio of pressure forces on electro-osmotic forces  is relevant, 

because for negative values of 1    acts a drag increaser on 

the flow, decreasing the temperature profiles of system by the 

increase of the velocity, increasing the convective effects. On 

the other hand, for positive values of 2.5  , its acts a drag 

reducer on the flow therefore causing an increase of 

temperature profiles by the decrease of velocity, decreasing the 

convective effects. Then 0   and 0   correspond to 

Poiseuille electro-osmotic flows with favorable and adverse 

pressure gradients, respectively. For 0 
 
the velocity profiles 

correspond to a pluglike flow, due to the solely action of 

electroosmotic forces [17]. 
 

 
 

FIG. 2 SPATIAL DEVELOPMENT OF TEMPERATURE 
PROFILES IN THE FLUID AND SOLID REGION ALONG 

TRANSVERSAL DIRECTION FOR DIFFERENT VALUES OF 
VISCOELASTIC PARAMETER 

εDe . 
 

 
 

FIG. 3 SPATIAL DEVELOPMENT OF TEMPERATURE 
PROFILES IN THE FLUID AND SOLID REGION ALONG 

TRANSVERSAL DIRECTION FOR DIFFERENT VALUES OF 
THE RATIO OF PRESSURE FORCES ON ELECTRO-

OSMOTIC FORCES  . 
 

The Figure 4 shows the spatial development of the temperature 

profiles along transversal direction to the fluid and solid region, 

and to different axial positions. For the parameters shown, there 

is a constant increase of Joule heating toward the outlet of the 

microchannel [21]. The Figure 5 exhibit the influence of the 

thermal properties in the heat transfer phenomena because by 

comparing the material of fused silica solid wall with
52.5 10x 

 
versus PMMA polymer wall with

62.5 10x 
, 
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we can find the thermal conductivity of PMMA is much lower 

than that of silica glass. This mean the heat dissipation trough 

the PMMA wall is more difficult than through the glass wall, 

leaving an important temperature changes in solid region [9]. 

Then for decrease the value of   the temperature gradient in 

the solid region tend to increase by the decrease of conduction 

effect. 

 

 
 

FIG. 4 SPATIAL DEVELOPMENT OF TEMPERATURE 
PROFILES IN THE FLUID AND SOLID REGION ALONG 
TRANSVERSAL DIRECTION FOR DIFFERENT AXIAL 

POSITIONS  . 
 

 
 

FIG. 5 SPATIAL DEVELOPMENT OF TEMPERATURE 
PROFILES IN THE FLUID AND SOLID REGION ALONG 

TRANSVERSAL DIRECTION FOR DIFFERENT  
CONJUGATION TERM  . 

 

The Figure 6 shows that for decrease of Pe number the 

convection effect decrease over conduction effect, increasing 

the temperature profiles significantly. So the Pe number is an 

indicator of the convection velocity in the system.  

 

The Figure 7 depicts the temperature profiles across transversal 

direction of microchannel in the middle axial length for the 

fluid and solid region, for 1,0.75,0.5  . In all cases the value 

of 0q  is considered as an extraction of heat from the channel 

walls. Is important recall here that the temperature rises in 

electro- osmotic flows under constant wall heat flux boundary 

conditions, may attributed to the combined mechanism of Joule 

heating and heat transfer in the walls. For the cases studied in 

the Figure 7, the Joule heating seems to be a dominant 

mechanism behind temperature increments within the system. 

In general, for increase the value of 0q , the transversal 

temperature tends to decrease, to a same contribution of Joule 

heating. So, from the different temperature profiles we can see 

that the lower value of  , higher is the temperature rise at a 

given axial location of the microchannel [12].  
 

 
 

FIG. 6 SPATIAL DEVELOPMENT OF TEMPERATURE 
PROFILES IN THE FLUID AND SOLID REGION ALONG 

TRANSVERSAL DIRECTION FOR DIFFERENT Pe NUMBER. 
 

 
 

FIG. 7 SPATIAL DEVELOPMENT OF TEMPERATURE 
PROFILES IN THE FLUID AND SOLID REGION ALONG 

TRANSVERSAL DIRECTION FOR DIFFERENT RATIO OF 
HEAT FLUX FROM THE EXTERNAL WALL TO THE JOULE 

HEATING  . 
 

In order to validate the numerical solution from the equations 

(6-8), the Figure 8 compares the behavior of the axial 

temperature profile in the fluid region with the asymptotic 
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solution given by equation (38). We can see that, the first 

approximation for the asymptotic solution is near to the 

predictions of the axial temperature profile for the fluid region 

in the numerical solution for three different transversal 

positions 0,0.5,1   along the microchannel. 

  

 
 

FIG. 8 COMPARISON OF THE NUMERICAL AND ANALYTIC 
SOLUTION FOR THE SPATIAL DEVELOPMENT OF 

TEMPERATURE PROFILES IN THE FLUID ALONG AXIAL 
DIRECTION. 

 

The Figure 9 compares the behavior of the transversal 

temperature profile in the solid region given from the equations 

(8, 12-14) with the asymptotic solution given by equations (41). 

We can see the first approximation for the asymptotic solution 

of the temperature profile for the solid region with the 

numerical solution in the middle axial position in the 

microchannel. 
 

 
 

FIG. 9 COMPARISON OF THE NUMERICAL AND ANALYTIC 
SOLUTION FOR THE SPATIAL DEVELOPMENT OF 
TEMPERATURE PROFILES IN THE SOLID ALONG 

TRANSVERSAL DIRECTION. 
 

CONCLUSIONS  
The present work analyzed different transport characteristics of 

mixed electro-osmotic and pressure driven flows of non 

Newtonian fluids, at the same time helps to understand the 

consequences of the interaction between the applied electric 

field within the EDL and the result of temperature increase by 

Joule heating, which has important effects of practical 

significance. Such Joule heating effects can be significant 

consequences in low column separation efficiency, reduction of 

analysis resolution, or even loss of injected samples in 

biomedical applications. So, the present model can act as a tool 

towards understanding of the different interconnected transport 

mechanisms in the efficient design of microfluidic systems. 
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NOMENCLATURE 

p
C  specific heat [J/kg K] 

D  constant simplification 

De  Deborah number based on the thickness of the EDL and the 

Helmholtz-Smoluchowski velocity 

xE  electric field along the axis of the microchannel [V/m] 

F  simplified variable 

1wxF  temperature gradient in the left side of microchannel wall 

2wxF  temperature gradient in the right side of microchannel wall 

2xF  temperature gradient in the outlet of microchannel 

1yF  temperature gradient in the center of microchannel 

2( , )y i jF  temperature gradient in the internal interface of 

microchannel
 

H  half of microchannel [m] 

w
H  wall thickness of the microchannel [m] 

imax maximum numbers of nodes in the axial coordinate 

jmax maximum numbers of nodes in the transversal coordinate 

k  thermal conductivity [W/m-K] 

L  length of microchannel [m] 

M  constant simplification 

xp  pressure gradient in axial direction [N/m2] 

Pe  Peclet number  

0
q  heat flux at the wall in the region 0 ≤ 𝑥 ≤ 𝐿 [W/m2] 

R  simplified variable 

T  temperature [K] 

e
T  microchannel inlet temperature [K] 

u  fluid axial velocity [m/s] 

u  dimensionless fluid axial velocity 

HS
u  reference electro-osmotic velocity [m/s] 

w  depth of the microchannel [m] 

x  axial coordinate [m] 

y  transversal coordinate [m] 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

1

2

3

4

5

6

7

8





 Numeric 

 Numeric 

 Numeric 

 Analytic
 

 











Pe

 2.5x10
-5

De
2




0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0


w



 Analytic

 Numeric



De
2












Pe

2.5x10
-5



 

 



10 Copyright © 2010 by ASME 

 

 

Greek symbols 

  conjugation term 

  aspect ratio of the fluid region 

  ratio of pressure forces on electro-osmotic forces 

  increment in the transversal direction of fluid 
  dimensionless temperature variation in the fluid region 

w
  dimensionless temperature variation in the solid region 

  increment in the axial direction of fluid and solid 

Z  increment in the transversal direction of solid 
  coefficient of elongational viscosity 

  aspect ratio of the solid region  

Z  dimensionless transversal coordinate of the solid wall 

  Zeta potential in the shear plane of the EDL [V] 

  dimensionless transversal coordinate of the fluid region 

0
  apparent viscosity [Pa-s] 

  dimensionless fluid temperature 

w
  dimensionless solid temperature 

  inverse Debye length [m-1] 

  electrokinetic parameter 

  ratio of heat flux from the external wall to the Joule heating 

1
  relaxation time [s] 

  fluid density [kg/m3] 

  electrical conductivity of the fluid [S/m] 

  aspect ratio of the mesh in the solid 

  dimensionless axial coordinate 

  aspect ratio of the mesh in the fluid 

  relaxation factor of SOR method 

Other symbols 

  dielectric constant [C/V-m] 

Subscripts  

f  fluid 

𝑖 nodal position in the axial direction 

𝑗 nodal position in the transversal direction 

w  wall  

superscripts 

k  iteration 
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