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ABSTRACT 
In this paper, a transient numerical model is presented to 
investigate the mixing phenomena in passive T-shaped barrier 
embedded micro-mixer (BEM) with rectangular cross-sections. 
The simulations are performed for two non-reactive miscible 
gases (i.e. oxygen and methanol). The compressibility and slip 
effects of the flow in the micro-channel are neglected. The 
model presented in this paper is used to numerically solve 
physical governing equations namely the continuity, momentum 
and specious transport equations. The equations are discritized 
using control volume numerical techniques. The distribution of 
the specious concentration within the domain is calculated. The 
Intensity factor is used as a criterion for mixing length. Also, 
the effects of the baffles’ height and span on mixing efficiency 
and reducing the mixing length are studied. Having baffles in 
the channel can substantially decrease the mixing length. 
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NOMENCLATURE 
     fluid velocity 
     Pressure 
     density  
     gravitational acceleration 
   body force    

     stress tensor 
     mass diffusivity  
      specious concentration 
      gas                 

   normal unit vector  
     tangential unit vector  

      Baffles span 
     Baffles height 

 
INTRODUCTION 

Mixing is a transport process for species, temperature, and 
phases to reduce in homogeneity. Micro mixing has recently 
drawn great attention because of low production cost, reduced 
reaction time, portability, the multiplicity of design [1-2], 
smaller reagent volumes, and shorter analysis time [3-4]. 
Mixers have diverse applications in chemical processing, 
polymer production, biotechnology, food engineering, 
pharmaceutical products [5], micro heat exchangers, micro 
reactors, lab-on-a-chips, medical applications [6] and micro 
total analysis systems [7]. 
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The extremely large surface-to-volume ratio and short 
transport path in micro-mixers enhance heat and mass transfer 
dramatically [8]. In order to increase the mixing efficiency and 
reduce diffusion distance in micro-mixers, the contact surface 
between different fluids should be increased by controlling 
fluid flows within the channel. In addition, as the flow regime 
in micro channel is laminar, a mechanism which is called the 
“chaotic advection” is used to increase the mixing efficiency. 
Chaotic advection refers to the phenomenon which a simple 
Eulerian velocity field creates a chaotic response in the 
distribution of a Lagrangian marker [10].  

Various numerical and experimental models have been 
proposed to study the chaotic mixing in micro channels. Lin et 
al. [9] analyzed the transient three-dimensional flow field and 
distribution of concentration within a planar serpentine channel. 
Kang et al. [10] investigated the effect of periodic and aperiodic 
sequences of mixing protocols on mixing performance in a 
barrier embedded micro-mixer.  A staggered herringbone mixer 
was studied by Kee et al. [11] in which they used the particle 
tracking methods and numerical simulations to estimated the 
mixing length. Jeon et al. [12] simulated and analyzed a passive 
mixer in which they investigated the effect of various 
geometries on the mixing. Nguyen et al. [13] designed a Y-
junction type micro-mixer with a square obstacle on the square-
wave flow channel in order to enhance the mixing ability using 
the chaotic advection. 

Numerous investigations have been proposed in order to 
study T-shape micro-mixers [14, 16-18]. Le and Hassan [19] 
simulated gas mixing in a T-shape micro-mixer numerically 
using the direct simulation Monte Carlo (DSMC) method. 
Soleymania et al. [20] proposed a dimensionless number to 
identify the flow regimes in liquid phase inside a T-shaped 
micro-mixer. They reported that the flow regimes in a T-shaped 
micro-mixer depend strongly on both the volume flow rates and 
the geometrical parameters of the mixer. Adeosun and Lawal 
[21] investigated the mixing performance in a 
multilaminated/elongational flow mixer and a T-junction 
micro-mixer in order to obtain concentration and the residence-
time distribution.  

Su et al. [22] investigated mass transfer characteristics of 
H2S absorption from gaseous mixture into 
methyldiethanolamine solution in a T-junction micro channel 
experimentally. The performance of most micro chemical 
devices strongly depends on the efficiency of mixing, 
especially when dealing with fast reactions, therefore is needed 
to enhance the efficiency of mixing.    

Although the T-shapedd barrier embedded micro-mixer has 
a simple geometry, but its efficiency of mixing is significant as 
it uses the main concepts of mixing to generate the chaotic 

advection using stretching, folding and breaking the laminar 
flow.   

In the present study, the mixing process for gaseous flow in 
T-shaped barrier embedded micro-mixer has been investigated 
in order to study the effect of baffles’ height and span on the 
mixing efficiency, mixing length and time. The gases which are 
applied in this study are considered to be incompressible and 
miscible and the slip effect is negligible. 
 
MATHEMATICAL MODEL 

A schematic of micro-mixing process in a T-shaped channel 
is shown in Fig. 1. The mathematical model in this study is 
based on the following assumptions: 
- The fluid flow is considered to be incompressible  
- Knudsen number is less than 0.001, therefore, the slip effects 
of the gaseous flow in the micro-channel are negligible; 
- The fluids are considered to be Newtonian and their flow to 
be laminar; 
- The effect of surrounding gas is considered; 
  
GOVERNING EQUATIONS 
- Fluid Flow 

The governing equations are the conservation of mass and 
momentum as follows: 

. 0 (1) 

.
1

P
1

. τ g
1

 (2) 

where V is the fluid velocity, P,  are the pressure and density, 
g is the gravitational acceleration, F  is the body force, and τ is 
stress tensor.  
 
- Specious Transport 

In order to predict the mixing efficiency, the specious 
transport equation should be solved as follows: 

. C (3) 

where  is the mass diffusivity and  is the specious 
concentration and it ranges from zero to one.  

In addition, as the model is applied for the multiphase flow, 
the density, viscosity and mass diffusivity within the domain is 
estimated as follows[23]: 
ρ Cρ 1 C ρ  (4) 

μ Cμ 1 C μ  (5) 

D CD 1 C D  (6) 

where the subscript g1 and g2 demonstrate the two distinct 
gases. 
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 (14) 

 (15) 

where ,  and  are the kinematic viscosity, inlet velocity 
and the hydraulic diameter of the channel, respectively. 

The Reynolds number is often low therefore, turbulence is 
not possible in micro-mixers and the flow pattern is dominated 
by viscous effect. The main transport phenomena in micro-
mixers are the convection and molecular diffusion. Convection 
is caused by fluid motion, while the molecular diffusion is 
caused by the motion of the molecules which is characterized 
by the molecular diffusion coefficient. This kind of response is 
called chaotic advection and it takes place in laminar flow 
regime. In addition, the Schmidt number shows the ratio of the 
viscous effect to the molecular diffusion effect. 

In the present study, the Reynolds number is as the order of 
70 therefore is flow regime is laminar and the Schmidt number 
is about 1 which shows that both viscous and molecular 
diffusion effects are dominant. 

Figure 2 depicts a sample transient simulation of a typical 
T-shaped BEM with following parameters: 
Inlet velocity = 2 m/s 
Baffles’ Height = 200 µm 
Baffles’ Span = 400 µm 
Baffles’ Width = 50 µm 

As shown in this figure, the distribution of spacious 
concentration within the domain is calculated where C=1 shows 
the methanol and C=0 corresponds to the oxygen. Both 
convection and diffusion mechanisms exist in this case, 
however, as the velocity increases, the convection effect 
becomes more dominant than the diffusion mechanism. The 
effect of baffles in the channel is to generate the chaotic 
advection using stretching, folding and breaking the laminar 
low.   

Figure 3 depicts the effect of baffles’ span (400, 600 and 
800 µm) on the mixing length. As shown in this figure, in order 
to obtain a proper efficiency, the mixing length increases with 
the baffles’ span. However, the mixing takes place in a longer 
time to become steady as the span increases.  

The effect of the baffles’ height (0, 100 and 200 µm) on the 
mixing length is shown in Fig 4. As seen in the figure, the 
mixing length reduces as the baffles’ height increases. 
However, the steady state duration increases with baffles’ 
height. In case of having no baffle in the mixing channel, a 
good mixing would not take place within the channel. 

The influence of inlet velocity (1, 2 and 3 m/s) on the 
mixing length is studied in Fig 5. The mixing length increases 

as the inlet velocity increases. However, when the velocity is 
low, it takes more time to become the steady state. 

The main effect of the baffles is to create a velocity 
perpendicular to the main flow stream; therefore, the 
convective term (in spacious transport equation) thrives. 

 
CONCLUSIONS 

A transient numerical model is developed to simulate the 
flow pattern and specious concentration in a T-shaped barrier 
embedded micro-mixer. The physical governing equations (i.e. 
continuity, momentum, and specious transport equations) are 
discretized using a control volume scheme. A two step 
projection method is used to solve the fluid flow. The second 
order-upwind numerical scheme is applied to derive the 
convective terms. In order to evaluate the mixing efficiency and 
mixing length, the definition of intensity of segregation is used. 
In the present study, the flow pattern is laminar and the effects 
of advection and molecular diffusion are considered. The 
simulations show that as the baffles’ span increases, the mixing 
length increases, however, the prefect mixing takes place in 
longer time and length which is not favorable. Moreover, as the 
baffles’ height increases the mixing length decreases but it 
takes longer time to become steady. In addition, the mixing 
length increases while the steady state time decrease as the inlet 
velocity increases. 
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Figure 2: A MODEL RESULTS FOR THE DISTRIBUTION OF THE SPECIOUS TRANSPORT DURING THE MIXING PROCESS IN A T-SHAPED 
BARRIER EMBEDDED MICRO-MIXER 
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