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ABSTRACT 
Dissipative particle dynamics (DPD) is an emerging 

method for simulating problems at mesoscopic time and length 

scales. In this paper, we present a new algorithm to describe the 

hydrodynamics of a perfect conductive fluid in the presence of 

an electric field. The model is based on solving the electrostatic 

equations in each DPD time step for determining the charge 

distribution at the fluid interface and, therefore, corresponding 

electrical forces exerted by the electric field to the particles 

near the interface. The method is applied to a perfect 

conductive pendant drop which is immersed in a perfect 

dielectric and hydrodynamically inactive ambient. We have 

shown that when the applied voltage is sufficiently high, the 

drop shape is changed to a cone with an apex angle which is 

near to the Taylor analytical estimation of 98.6°. Our results 

reveal that the presented algorithm gives new capabilities to the 

conventional DPD method for simulating nanoscale problems 

in the presence of an electric field. 
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I. INTRODUCTION 
Recently, computational methods are becoming a rival for 

the experimental methods to probe complex phenomena in fluid 

dynamics. With the aid of these methods, many details that 

cannot readily be captured by the experiment in a problem can 

be simulated. This becomes more significant when the problem 

length scales are reduced to micro or nano scales and therefore, 

the experiment expenses or limitations are raised drastically.  

There are a variety of computational methods; each appropriate 

for simulating problems with a specific range of time or length 

scales. Dissipative particle dynamics (DPD) is a new 

computational method which has been devised to simulate 

phenomena that their length scales lay in between continuum 

and atomistic level, i.e. mesoscopic length scales. This can 

happen in problems such as polymer adsorption [1], colloidal 

suspension [2, 3], binary immiscible fluids [4] or molecular 

biology [5]. 

Flexibility of DPD provides the possibility of studying the 

interest of hydrodynamics simulation in two-phase systems [6-

8]. Clark et al. [6] studied the breakup and coalescence of 

droplets in an emulsion during processing with DPD method 

and showed that the method is capable of simulating the correct 

dynamics in multi-component, two-phase system. Also the 

simulation of free surface flows was included in DPD by 

tacking advantages of Many-bodies DPD (MDPD) [7-9]. 

 In many multi-phase problems, electrostatic interactions 

can play a key role in the hydrodynamics behavior of the 

system. For example, the shape of drops can be changed in the 
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presence of an electric field which is important in processes 

like elector-spraying or electro-spinning. For simulating these 

systems with DPD, it is necessary to find a procedure to include 

long-range electric forces to the other DPD interactions. The 

aim of this paper is to explore a new algorithm for calculating 

forces applied by an electric field to the DPD particles of a 

perfect conductive fluid. The paper organized as follow: in 

section II we briefly review the DPD and MDPD formulation. 

In section III the electric field equations are explained. The 

algorithm for calculating the electrostatic forces of each DPD 

particles is presented in section IV. In section V some 

illustrative examples are given to validate the presented 

algorithm. Finally we conclude by a summary and conclusion. 

II. MATHEMATICAL FORMULATION 
 

Dissipative Particle Dynamics 

DPD is a particle-based method in which each particle 

represents a cluster of atoms or molecules. The governing 

equation on the motion of these particles is Newton second’s 

law: 
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The total force acting on each DPD particle, if
�

 is a 

combination of three pair-wise forces: Conservative, 
Dissipative and Random forces [13]:  
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where sum runs over all neighbor particles. Neighbor particles 
refer to the particles that are placed in a certain distance, called 

cutoff radius, from a particle. If cutoff radius is denoted by
cR , 

then: 
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 and ij
θ is a random 

number drawn from a Gaussian statistics and has zero mean 

and unit variance. ij
a , ij

γ and ij
σ determine the strength of the 

conservative, dissipative and random forces, respectively. The 

weight functions are given by: 
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Español and Warren [10] through the fluctuation-dissipation 

theorem showed, for thermal equilibrium, ij
γ  and ij

σ  should 

obey: 
2 2

B
k Tσ γ= , where T is the system temperature and 

Bk is the Boltzmann constant. 

 

Many-bodies DPD  

The basic MDPD formulation is very similar to the 

standard DPD; the difference comes from the shape of  

conservative force where it is composed of attraction and 

repulsion parts; this force depends on the local density [8]: 
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where the first term is the attraction and the second term is the 

repulsion part of conservative force. Here 
iρ  is the 

instantaneous local density defined as: 
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where sum runs over all neighbor particles. 

 

III. ELECTROSTATICS EQUATIONS  
When a conductive fluid which can form a free surface or 

an interface with another fluid is subjected to an electric field, 

charges will be distributed at the fluid interface in order to 

create an equipotential surface and vanish the internal electric 

field. The presence of this interfacial charge will result in 

additional interfacial stress that opposes with the surface 
tension. In this case, the charges movement timescale in the 

fluid is determined by the electrical relaxation time defined as 

[11]: 

 

e
k

ε
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where ε  is the permittivity and k  is the conductivity of the 

fluid. On the other hand, the fluid movement timescale is 

governed by the hydrodynamic relaxation time
hτ . In the case 

of a perfect conductive fluid, the conductivity of fluid goes to 

infinity and therefore,
eτ becomes negligible. Thus the electrical 

relaxation time is much smaller than the hydrodynamic 

relaxation time and the charges are screened instantly from the 

fluid by the external electrical field which can be calculated 

from the gradient of a scalar potential [11]: 

 

E V= −∇
�

 (10) 

 

V is the electric potential outside the fluid. In cases where the 

charge density is absent in the ambient region, the governing 
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equation for the electric potential is reduced to the Laplace’s 

equation: 

 
2 0V∇ =  

(11) 

Also the charge distribution 
sρ  on the fluid surface is given by 

the Gauss’s law [11]:  

 

0s nEρ ε= −  
(12) 

where 
0ε  is the permittivity of ambient, and 

nE  is the normal 

component of the electrical field at the interface given by: 
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Finally, the electrical force acting on the surface charges can be 

found from the Coulomb’s law as [11]: 
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where dA
�

 is outward normal to the interface. 

 

IV. ADDING ELECTRICAL FORCES TO DPD FORCES 
For a perfect conductive fluid, in each DPD time step, we 

can assume that the electrical field is in a quasi-static state since 

the electrical relaxation time is much smaller than the DPD 

time step. In the present work, the strategy used to include the 

electrical effects to the MDPD method consists of four basic 

steps: 
 Step 1: In each DPD time step, first we need to find the 

position of the fluid interface from the particles distribution. A 

common practice for finding the fluid interface profile is to 

divide the simulation domain into a finite number of cells and 

calculate the fluid density in each cell by considering the 

number of particles exist in each cell [6]. But this approach will 

not work properly during a single integration time step since it 

is very likely to lead to a cell with zero density within the fluid 

region when the cell size becomes smaller than the cutoff 

radius. Therefore, a different approach is adopted here in which 

the simulation domain is covered by a grid of finite nodes and 
the effects of particles are considered at each node with a 

weight function. This approach is very similar to the procedure 

used for the calculation of local density whereas the effects of 

neighbor particles are saved on a grid point instead of a 

particle. Therefore, the standard DPD weight function, which is 

used for calculating local density, can also be used for this 

purpose: 
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where ij
r is the distance between particle i  and  node j , and 

effr is the effective radius. The criterion of deciding whether a 

node is located inside a fluid region or not, is the average local 

density node

ave
ρ . If one node has a local density greater than the 

average local density, then that node belongs to a fluid region. 

Here node

ave
ρ  is defined as: 
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where N is the number of nodes and α  is the relaxation 

parameter. We have found 0.5α =  result in a smooth profile 

for the fluid interface. 

Step 2: Laplace’s equation must be solved on the same 

domain (but only for the nodes located outside the fluid region) 

by appropriate boundary conditions. The electrical field and the 

charge density then can be calculated from Eq. (10) and (12), 

respectively. 

Step 3: Knowing the charge density at the interface, 

electrical forces can be calculated from Eq. (14) for a cell. 

Therefore, it is necessary to redistribute this force over the DPD 

particles near the interface using an appropriate weight 

function. However, the weight function must prevent particles 

from collapsing on top of each others as reported by Groot. One 

possibility for the weight function which was  previously used 

for the charge distribution is [12]: 
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where 
eR is the electrical cutoff radius and 

ir is the particle 

distance from the interface. The distributed forces must be 

normalized such that the sum of all particles electrical forces 

leads to the same value of the cell electrical force: 
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The electrical force on each DPD particle 
e

i
F must be added to 

the other DPD forces as: 
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Step 4: At the final step, equation of motion integrated with 

the new forces. The velocity verlet (VV) algorithm is used for 

this purpose. The details about VV algorithm could be found 

elsewhere [13, 14]. 
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Figure 1:Algorithem for electrical force calculation 
 

The above procedures are schematically shown in Fig. 1. In the 

following section the Taylor cone formation is simulated to 

validate the capabilities of the proposed algorithm. 

 

V. TAYLOR CONE FORMATION 
Taylor [15] analytically showed that when a pendant 

conductive liquid drop is subjected to a sufficiently strong 

electrical field, the drop shape is changed to a cone with an 

angle equal to 98.6°, known as Taylor cone. 

As shown in Fig. 2, a system consists of a 3D nano droplet 

hanging from a metallic base is considered. The fluid is a 

conducting viscous liquid which is immersed in a perfect 

dielectric ambient with a known permittivity. The physical 

properties of fluid are given in Table 2. The simulation was 

performed in a 80 80 50× ×  DPD unit, periodic boundary box. 

The initial condition for the drop corresponds to a hemisphere 

with radius 10R =  which is pendant from a cylindrical base 

with the same radius and 1t =  thickness. 

 

 

Figure 2: A liquid drop subjected to electrical 
field 

 

 

 

Table 1: Simulation parameters used in the present 
study(DPD units) 

 MDPD 

density 6.05 

random force amplitude ( σ ) 3.0 

repulsion amplitude ( A ) 40.0 

attraction amplitude ( B ) -25.0 

time step ( tδ ) 0.02 

1H  3.0 

2H  47.0 

Bk T  1.0 

  

Drop protrudes a distance 
1H from the top of the simulation 

box to prevent particle interacting with the top boundary 

because of the periodic boundary conditions. 

 The effects of ambient drag force and the external pressure 

are negligible for this problem and therefore, it is rational to use 

MDPD method as a free surface model. The simulation 

parameters are summarized in Table 1.  

To start the simulation, it is better to use an equilibrium 

distribution for the particles initial position. To achieve this 

goal, at the beginning a 20 20 20× × unit periodic boundary box 

is considered and filled with 48400  randomly positioned DPD 

particles. These particles are allowed to interact with each other 

through MDPD forces. The simulation is run for several 

thousand time steps to ensure equilibrium distribution of the 

particles. Then, a part of these particles are selected as the 

initial drop and the base. For this simulation, the drop and the 

base are made from 12645  fluid particles and 1907  frozen 

particles, respectively. Frozen particles take part in the 

interactions exactly in the same manner as the fluid particles, 

but their positions are retained during the simulation by 

removing them from the integration algorithm.  

The domain boundaries for the potential Laplace’s 

equation are considered to be the same as the simulation box, 

except for the top boundary. This boundary, like the drop was 

protruded a distance 
1H  from the top of the simulation box. 

The boundary conditions for the electrical potential are: 

 

0V V=  On top boundary & drop surface (20) 

0V =  On the bottom boundary (21) 

0
V

n

∂
=

∂
 On the far field boundaries (22) 

 

The far field boundaries must be chosen sufficiently far from 

the drop to prevent influences on the potential distribution near 

the drop. Here, this distance is chosen to be four times of the 

drop radius. 

In order to solve the Laplace’s equation with the mentioned 

boundary conditions, the MUDPAK 5.1 solver [16] is used. 

MUDPAK is a tested and documented solver for solving a 

Yes 

1: Finding the interfacial 

surface 

2: Solving Laplace’s 

equation and finding charge 

4: Solving DPD equations 

with new excess forces 

3: Calculating electrical 

forces and distributing it  

End of 

simulation 
Stop 

Start 

No 
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variety of PDE equations. This solver attempts to compute the 

second and forth order accurate finite difference approximation 

of a 3D linear non-separable elliptic partial differential equation 

over a box domain. The number of meshes required for solving 

Laplace’s equation is studied systematically to obtain the mesh-

independent solution. We have found that if the divisions in the 

x and y directions were 0.833x y∆ = ∆ =  and in the z direction

0.489z∆ = , the solution would become insensitive to the 

further increase in the number of meshes.  

The obtained result for the dimensionless potential field 

0V V is depicted in Fig. 3 for a case where the top boundary is 

held at 
0 80V = in DPD units. As we can see in this figure, the 

potential is approximately uniform near the bottom boundary 

while it curves toward the drop at the proximity of the top 

boundary. 

 

  

 
Figure 3:Dimensionless potential distribution 

 

At the beginning of simulation, electrical field is switched 

off i.e. 
0 0V =  and the simulation is run for several hundred 

steps toward the equilibrium. After that, the upper boundary’s 

voltage changed to initial value i.e. 
0 1V =  and the system is 

allowed to reach a new equilibrium point again. Then, the upper 

boundary’s voltage is increased in small increments while the 

system allows reaching to its new equilibrium state.  In each 

DPD time step, particles at the surface is detected and electric 

force applied to them. These particles are depicted in Fig. 4 at a 

typical time step. As we can see in this figure, the charged 

particles are placed on a thin layer near the drop surface.  

 

 
Figure 4:Charges distributed on a thin layer near the 

surface  

 
Figure 5: Electric field intensify near the cone’s tip  

 

The electrical field also is calculated by a second order 

finite difference approximation of Eq. (10). Fig. 5 depicts the 

electrical field in the z direction, 
zE , when the Taylor cone is 

formed. The maximum absolute value in 
zE corresponds to the 

cone apex where the charge density is maximum.  

As the applied voltage 
0V  is increased, the shape of drop 

deviates from its initial spherical shape and converges to a cone 

to increase the interface curvature and balancing the excessive 

generated electrical stresses at the drop surface. This trend is 

depicted in Fig. 6. As we see in this figure, when the voltage 

becomes high enough, a Taylor cone with an angle of 98.6° is 

formed. After this critical voltage, the cone becomes unstable 

and finally inclines to drive a jet. 

We note that the significant dimensionless numbers in a 

two-phase system are the Reynolds number, Capillary number, 

Weber number and Ohnesorge number. In the case of a 

stationary drop, the Ohnesorge number (Oh ) becomes a 

dominant dimensionless number [17]. This number expresses 

the ratio of viscous force to the surface tension force. 

 

Oh
R

µ

ρ
=

Γ
 (23) 

 

where µ
 
is the drop viscosity, Γ is the surface tension, ρ is the 

density and R is the drop radius. Oh number and the related 

parameters are summarized in Table 2 where DPD parameters 

are selected as Table 1 for water. By matching Oh  number in 

DPD system to its corresponding value in the real physics, the 

radius of the simulated water drop is found to be 221nm . 
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Figure 6: Dynamic response of a static drop 
subjected to the electrical field with different 

strengths  
 

 

Table 2: Fluid properties in DPD and physical 
units 

 MDPD Physics 

Density 6 1000
3/kg m  

W-A* Surface tension 7.53 0.072 N m  

Viscosity 5.33 10-3 .Pa s  

Drop radius 10.0 R 

Ohnesorge number 0.25 
41.178 10 R−×  

*Air 

 

Fig. 7 shows the dimensionless ratio
dL L R= versus the 

electrical Bond number
2 2

e
N V Rε= Γ . L is the length of the 

drop tip with respect to the base and R is the base radius. The 

results of Notz and Basaran [18], are depicted in this figure 

also. They numerically simulated the Taylor cone in the 

macrosclae regime. The results of our simulation are in good 

agreement with their results. The fluctuations appeared in the 

DPD results in Fig. 7 come from the fact that the present 

simulation corresponds to a mesoscale problem in which 

thermal motions is important. 

 

 
Figure 7: dimensionless length ratio as a function of 

electrical Bond number. 
 

VI. CONCLUSION 
In this work, we described a new algorithm for incorporating 

electrical forces into the DPD method for a free surface 

problem. The algorithm is based on the electrostatic assumption 

as the electrical relaxation time is much smaller than the DPD 

time scale for the perfect conductive fluids. In order to find the 

electrical force applied to each DPD particle, surface charge 

density is found by calculating electrical potential gradient at 

the fluid interface. Then the surface force is calculated in a cell 

near the interface and redistributed to the corresponding 
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particles resident in that cell. Finally, the electric forces are 

added to the other DPD forces. The electrostatic field in one 

DPD time step is calculated over a 3D structured uniform mesh 

by solving Laplace equation with a Finite Difference (FD) 

method. 

Formation of a nanoscale Taylor cone was simulated to test the 

accuracy of the algorithm. The results were compared with the 

analytical and numerical simulations and good agreement was 

found for the cone shape and angle. 
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