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ABSTRACT 
In this study, we simulate the motion and reformation of 

polymer chain in the nanoscale fluid flow motion of the DPD 
(Dissipative Particle Dynamics) solvent. The behavior of 
polymer chain through DPD solvent is studied for 2D and 3D 
considerations. We implement two body forces of Poiseuille 
flow and electroosmotic flow to the DPD fluid particles. In 
case of the electroosmotic flow force, we show that the 
movement of polymer chain via the electroosmotic 
phenomenon provides less dispersion than that of the Poiseuille 
flow for the same polymer chain movement.  

 
1.    INTRODUCTION 

Dissipative particle dynamics (DPD) is a mesoscopic 
method that can potentially bridge the gap between atomistic 
and continuum descriptions in fluids [1, 2]. In biological 
sciences, there is a growing interest to understand the complex 
behavior of polymer chain motion in nanochannel. Kong, et al. 
[3] used the DPD method to simulate polymer beads located in 
the DPD solvent particles. However, the movement of polymer 
can be caused in different manners. One of the most important 
methods, which produces less dispersion, is the electroosmotic 
flow one. Duong-Hong, et al. [4] used the DPD method to 
simulate electroosmotic flow in nanochannel for pure DPD 
particles. They showed that their computational costs are more 
reasonable comparing with that of the molecular dynamics 
(MD) method. In this paper, we simulate the motion of polymer 
chain through Poiseuille flow and electroosmotic flow and 
show that the electroosmotic flow causes less dispersion for the 
driven polymer chain. 

2.    Summary of Electroosmotic Flow (EOF) Theory 
The Electroosmotic phenomena can be occurred due to 

imposing an external electrical field and benefiting from the 
interaction of ionized solution with the static charges on 
dielectric surfaces [5]. Consequently, an electric double layer 
(EDL) is formed close to the solid wall and the interaction of 
electric field with EDL causes the bulk liquid movement 
through the microchannels and nanochannels. The EDL 
influence can be approximately predicted by the Debye length 
(k-1), which is defined as the distance from the wall. This 
thickness can be obtained from [6] 

       
1 2 2 1/ 2( / 2 )Bk k T e z nε−

∞=                                       (1)                  

where kB is the Boltzmann constant, T is the absolute 
temperature, e is the fundamental charge, z is the valance, n∞  is 
the bulk number concentration, h is one-half of the channel 
height, and ε is the total dielectric constant. 

The interaction of the applied electrical field with the 
positive ions of fluid in the electric double layer generates the 
electroosmotic flow force. Assuming that the EOF force acts 
only in the x- direction, we can write 

     0x eF E ρ=                                                                     (2)                 
where E0 is the electrical field and ρe is the net charge density in 
EDL. Using the Poisson equation, the net charge density can be 
calculated from 

2

2 e

d
dy
ψ
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where Ψ is the electrical potential. Assuming the Boltzmann 
distribution and considering small zeta-potential magnitudes, 
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the electrical potential profile can be obtained from the 
linearized Poisson–Boltzmann equation. It is given by               
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d
k

dy
ψ

ψ=
   

                                                                (4) 

The distribution of electrical potential can be obtained by 
implementing the required boundary conditions for the 
nanochannel case.  For the power-law fluid, the viscosity is 
calculated from                                                                                                                

1
0 ( )nxdv

dy
µ µ −= −                                                               (5)                                                                                                                                  

where µ0 is the viscosity of newotonian fluid and n is the flow 
behavior index. In case of n = 1, the viscous stress becomes a 
linear function of the rate of strain tensor (newtonian fluid). If  
n becomes greater than unity, the fluid viscosity increases with 
the rate of shear stress and if n becomes less than unity (also 
termed as pseudo plastic), the fluid viscosity decreases as the 
rate of shear increases.  
 
3.    The model 

Our model presents the motion of polymer bead through 
the DPD particles fluid in nanochannel. The DPD particles 
fluid describes a system of particles having masses of mi, 
positions of ir , and velocities of iv . The resulting interactions 
are composed of pair wise conservative, dissipative, and 
random forces exerted on particle i by particle j. These 
interactions can be summarized into [7] 

  

 id
dt
r

iv=                             (6a)                                                                                                                              
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= +∑                                                               (6b)                                                                                       

We assume that the mass of particles is normalized to unity. 
Additionally, ir  and iv are the position and velocity vectors. 

eF  is the external force (electroosmotic force) and ij
j i

f
≠
∑  is 

the internal force to the ith particle by jth particle. The latter 
force is calculated from 
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where C
ijF is the conservative force, D

ijF is the dissipative 

force, and R
ijF  is the random force. The conservative force is 

given by                                                                             
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where a
ij

 is the maximum repulsion between particles i and j, 

( )ij i jr r r= − , ijij r=r , and rc is a cut-off radius, which is 

normalized to unity. The dissipating force is given by  
                                                                

( )( )( )d D
ij ij ij ij ijF r v rγω= − ⋅r                                             (9)                  

 The random force is also given by  
( )R R

ij ij ij ijF rσω θ= r                                                           (10)                 

 where γ, and σ  and  are the coefficients of the strengths of the 
dissipative and random forces, respectably. Additionally, ωR 
and ωD

 are two weight functions and θij is a random function 
having zero mean properties and unit variance. The boundary 
conditions at the wall consist of two layers of frozen particles 
and implementing the bounce back condition [8]. The linear 
polymer chain is described as a chain of M monomers 
connected by harmonic bonds, whose potential follows the 
from given by  

2
12Spring i i

kU r r −= −                                              (11) 

If the the spring constant is k = 20. Gyration radius is obtained 
from [9]  

0

1( ) ( )
M

cm i
i

r t r t
M =

= ∑                                                      (12) 

22

0

1 M

g i cm
i

R r r
M =

≡ −∑                                               (13) 

 
4.    Results and Discussion 

In this section, we present the results of our simulation in 
2D and 3D. We simulate the movement of polymer chain 
through a pure electroosmotic flow. Table 1 provides the values 
of constant parameters utilized in the current study. Periodic 
boundary conditions are applied in the x-direction and z-
direction (for 3D) and that an enclose boundary conditions is 
used in the y-direction [8].  

In first step, we verify the DPD solution for Poiseuille 
flow and newtonian and non-newtonian electroosmotic flows. 
Figure 1 illustrates the 2D results for the Poiseuille flow case 
considering constant body force of 0.005. The electroosmotic 
flow considers a zeta potential of -10 mV, kh=16, and an 
electrical field of 250 V/m. We consider both newtonian and 
non-newtonian electroosmotic flow cases with n = 0.8, 1.0, and 
1.5. The current numerical velocity profiles are compared with 
the analytical solution taken from Ref. [6]. To have better 
comparison with the 2D analytical solutions, we do not 
introduce any polymer chain into the fluid.  
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Table 1. The values of constant parameters used in this study 

 
 
 

 
Figure 1.  Velocity profiles for 2D EOF and Poiseuille flow 

and comparing with the theotetical solutions. 
 

Figure 2 shows the gyration radius variations of polymer 
chain attending in the fluid without inserting any body forces. 
The polymer chain is left in Poiseuille flow and also 
newotonian electroosmotic flow. The study is performed for 
polymer chain with 5, 10, 20 2D beads. Repulsions between the 
fluid particles have been chosen 25, between polymer beads 
and fluid particles is 3 and polymer-polymer beads is 25. As is 
seen, we have less dispersion polymer chain for the 2D for the 
case of electroosmotic flow. 

 

 
a) 5 beads  

 
b) 10 beads   

 
c) 20 beads  

 
Figure 2. Gyration radius variations for 2D polymer chain 

through time step advancement. 
 

Unit Magnitude Property 
[nm] 1.0 rc

 

[N/nm] 18.75 aij 
(fluid–fluid) 

[N/nm] 5.0 awij 
(fluid–wall) 

[N/K] 1.0 KbT 
[N/nm] 4.5 γ 

[-] 1.0 z 
[Pa s] 9×10-3 µ0 

[C/Vm] 7× 10-10 ε 
[-] 0.8, 1.5 n 
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We also simulate the 3D beads in which each chain has more 
interaction with the fluid particles.  Figure 3 shows the gyration 
radius variations for the polymer chain without enforcing any 
body force. The polymer movement chain is simulated after 
inserting in the Poiseuille flow and the newotonian 
electroosmotic flow. The chain has 20 beads. Again, the results 
show that the dispersion of polymer chain for the 3D 
electroosmotic flow is less than that of the Poiseuille flow 
without inserting any body forces. 
 

 
Figure 3. Gyration radius variation for 3D polymer chain  

through time steps. 
 

Figure 4 shows the changes in 2D of polymer chain shape 
through nanochannel for a case without inserting body force 
and during time advancement. It is clear that the polymer chain 
does not move through the nanochannel because we do not 
implement any body force.  
Figure 5 provides results for the movement of polymer chain 
through Poiseuille flow in nanochannel. Each bead is affected 
by the other beads in the polymer chain. The beads are also 
affected by the DPD particles.  

Figure 6 illustrates the result for a polymer chain motion 
positioned in a newtonian electroosmotic flow. The 
nanochannel is 2D. Comparing with Figs. 4 and 5, it is clear 
that the movement of polymer chain through the nanochannel is 
quite possible. As is seen, we would have less polymer chain 
dispersion if we use the electroosmotic flow with explained 
constant parameters.  

We also study the chain monometer in 3D cases. Figure 7 
provides the results for a case without implementing body force 
during time advancement. Again, the movement of polymer 
chain is impossible because there is no body force to drive the 
polymer beads. 
 
 

 
Figure 4. Motion of 2D polymer chain without enforcing any body 

force and during the time advancement. 
 
Figurer 8 shows the motion of polymer chain by the 

Poiseuille flow though the nanochannel. Again, the result 
shows that it is possible the polymer chain inserted in 
nanochannel with a Poiseuille flow through it. 

Figure 9 illustrates the results for the motion of polymer 
chain inserted in a newtonian electroosmotic flow though a 
nanochannel considering a 3D simulation. Again, the result 
shows that it is possible to move the polymer chain through a 
3D nanochannel with EOF. Up to here, a comparative study on 
the results given by Figs. 3, 7, 8, and 9, it is concluded that the 
electroosmotic phenomenon provides less dispersion for the 
polymer chain movement.  
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Figure 5. Motion of 2D polymer chain in a Poiseuille flow during 

the time advancement. 
 
Ones more, the current results indicate that the prediction of 
polymer chain movement through the electroosmotic flow, 
Poiseuille flow and without inserting body force by the DPD 
method is quite reliable. Additionally, the electroosmotic flow 
provides less dispersion for a movement of polymer chain in 
2D and 3D simulations. 

 
Figure 6. Motion of 2D polymer chain in an EOF during the time 

advancement. 
 

 
 
5.     Conclusion 

We used the DPD method to simulate the motion of 
polymer chain through Poiseuille flow and newtonian and non 
newtonian electroosmotic flows. We provided the velocity 
profiles for the Poiseuille flow and the newtonian and non-
newtonian electroosmotic flows without inserting any polymer 
chain. Our simulations were performed with the motion of 
polymer chain without any body force and also with body 
forces in both 2D and 3D cases.  Additionally, we simulated the 
motion of polymer chain by the Poiseuille flow and the 
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newtonian electroosmotic flow. It was shown that the 
electroosmotic flow transport the polymer chain with less 
dispersion than the Poiseuille flow.  

 
 

Figure 7. Motion of 3D polymer chain without enforcing any body 
force during the time advancement. 

 
 

 

 
 

Figure 8. Motion of 3D polymer chain in a Poiseuille flow during 
the time advancement. 

 
 
 
 

 
 

Figure 9. Motion of 3D polymer chain in an EOF during the time 
advancement. 
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