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ABSTRACT 
 
The complex rheology of red blood cell (RBC) in 
microcirculation has been a topic of interest for many 
decades. As RBC is highly deformable, shape change 
affects the microcirculation and such effect should be 
accounted accurately to understand the rheology of 
blood flow. A particle based model is developed to 
construct the red blood cell (RBC) based on the 
minimum energy principle. A bead-spring network is 
utilized to represent the cross-sectional plane of RBC 
membrane. The total energy of the RBC is associated 
with spring stretch/compression, bending and constraint 
of fixed area. Shape optimization of swollen RBC due to 
continuous deflation is performed. A bi-concave RBC 
shape is accurately achieved when the circular shape is 
deflated to 65%. Dissipative particle dynamics (DPD), a 
coarse-grained Mesoscopic particle simulation is used to 
simulate the flow. RBC in its equilibrium shape is placed 
inside a microchannel of height 10 µm to study the 
deformation of the cell under shear. Force exerted on 
RBC particles by plasma particles were determined and 
solved as the external force in the DPD equation to 
calculate the position and velocity of each particle. As 
the simulation started, the RBC experienced the shear 
and drag force by surrounding plasma and evolved to 
the characteristic parachute type shape as observed in 
experiments. Once the RBC reached the steady 
deformation, it continued with the same shape and 
stayed in the center of the channel. It is observed that 
the parachute shape and its motion along the centerline 
of the flow help reducing the drag and subsequently 
achieving the state of minimum energy. Formulation and 
results were validated against the experimental and 
computational results reported in the literature. 
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INTRODUCTION 
 
 Blood is an inhomogeneous fluid containing 
blood cells suspended in a liquid component called 
plasma. About 45% of the blood is occupied by 
erythrocytes or red blood cells (RBCs) and they play a 
crucial role in oxygen transport. The rheology of RBC 
has been a topic of interest for many decades as blood 
flow dynamics depends strongly on the motion and 
deformation of RBCs and how they interact with the 
capillary wall and surrounding constituents. Changes in 
the property by large deformation of cell through 
biochemical reaction and presence of parasites and 
bioactive lipids influence many diseases such as sickle 
cell anemia and malaria (Suresh et al. 2005). Healthy 
RBCs demonstrate extraordinary ability to undergo 
reversible large deformation and it can pass through 
capillaries of as small as 3 µm of inner diameter 
(Dzwinel et al. 2003). RBCs infected by the protozoan 
Plasmodium falciparum change their intracellular 
structure and their elastic modulus can increase by more 
than a factor of 10 (Suresh et al. 2006). In this case, 
RBCs can no longer pass through narrow capillaries and 
result in higher flow resistivity and change in Hematocrit 
number, which is the volumetric ratio of RBCs to the 
whole blood. Understanding the changes in mechanical 
behavior of cells can help to predict diseases and their 
progression in early stages. Hence, it is very important to 
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study the mechanical behavior of RBCs and their 
dynamics under different shear and flow conditions in 
capillaries. 
 A number of experimental (Fischer et al., 1978; 
Discher et al., 1994; Dao et al., 2003; Fischer 2007; 
Skotheim and Secomb 2007; Abkarian et al., 2007), 
theoretical (Evans and Fung 1972; Skalak et al. 1973) 
and computational (Dzwinel et al., 2003; Dao et al., 
2006; Tsubota et al., 2006; Pivkin and Karniadakis 2008) 
investigations have been conducted to study the 
structure and dynamics of RBC. There are two main 
approaches: continuum and discrete microscopic 
assumptions. The nature of blood flow changes greatly 
with the vessel diameter. Blood can be regarded as 
homogenous fluid from macroscopic point of view for the 
cases where vessel diameter is greater than two orders 
of magnitude larger than the size of RBC. In contrast to 
the macroscale, where blood is regarded as a 
continuous medium, at the microscopic level blood can 
be viewed as the collective motion of an ensemble of 
microscopically interacting discrete particles. In vessels 
of diameters smaller than 25 µm, the interaction among 
blood constituents and capillary wall can no longer be 
ignored. Blood must be regarded as a two-phase non 
homogeneous fluid consisting of liquid plasma phase 
and a discrete solid phase of blood cells. There are 
about 1010 blood vessels whose diameters are in the 
range of 5-10 µm, which are comparable with the 
diameter of RBC (Boryczko et al., 2003). Since RBC is 
highly deformable, shape change affects the 
microcirculation and such effect should be accounted 
accurately to understand the rheology of blood flow 
correctly. 
 Recent developments in Bio-MEMS and 
microfluidics have facilitated the study of microstructure 
of RBC experimentally (Discher et al., 1994; Dao et al., 
2003) and further motivated the development of various 
theoretical and numerical techniques to study the 
rheology of RBC at microscale. Many numerical 
schemes based on discrete particle modeling of blood 
have been developed in the last decade. Migliorini et al. 
(2003) and Sun and Munn (2005) proposed two-
dimensional lattice Boltzmann method (LBM) and 
produced quantitative results of axial migration of cells. 
RBCs were modeled as rigid rods and the deformation 
was not considered. Zhang et al. (2007) used LBM to 
simulate multiple deformable RBCs in shear flow but 
cells were modeled as solid elastic body and RBC shape 
was compared with its innate equilibrium shape. Secomb 
et al. (2007) represented RBC as a set of interconnected 
viscoelastic elements and interactions with the 
surrounding fluids were computed using finite element 
method. Hosseini et al. (2009) developed two-
dimensional model using smooth particle hydrodynamics 
where the angle between the elements were always 
compared with the angle for corresponding equilibrium 
shape. When RBC shape is compared with its innate 
shape in equilibrium, curvature of the membrane at a 
given location is always forced to have the same shape 
at all times. This approach may not follow the actual 
physics and the shape during the tank-treading motion 
keep changing as the lipid bilayer treads over the cytosol 

and move from concave to convex portion of the cell. 
Also, tumbling and tank-treading behavior at low shear 
rate cannot be produced accurately. The above cited 
work utilized simplified models for RBC membrane, 
whose application is limited. Though these models 
produce good qualitative results, it is not easy to obtain 
quantitative results for a wide range of cases observed 
in the experiment.  
 A more comprehensive approach is based on 
the energy of the RBC where the optimum shape is 
achieved by minimizing the total energy (Li et al., 2005; 
Tsubota et al., 2006). Experiments have shown that 
RBC membrane store energy in a conservative manner 
which allows the membrane to undergo shape recovery 
after removal of external perturbation (Evans, 1980). In 
the last decade various models were developed based 
on minimum energy principle to study the rheology of 
RBCs. Discher et al. (1998) and Boey et al. (1998) 
performed Monte-Carlo simulations of large deformation 
of RBC. Li et al. (2005) implemented coarse-grained 
model for spectrin network and studied the elastic 
properties of the membrane. The total energy, which 
was calculated based on in-plane deformation, bending, 
area constraint and volume constraint, was minimized to 
recover the shape of the RBC. Cited works focused on 
the elastic property of the RBC and studied only the 
response of mechanical stretching and the dynamics of 
the cell in capillaries was not investigated. Recently, 
Pivkin and Karniadakis (2008) modeled RBC using 
dissipative particle dynamics (DPD) based on coarse-
grained spectrin network and simulated the dynamics 
inside a capillary. However, cytosol and plasma fluids 
were not modeled explicitly and RBC membrane was 
treated as fully permeable. Dao et al. (2003) performed 
simulations with and without the presence of cytosol and 
showed that during the stretching process the effect of 
cytosol was negligible. However, during the dynamics of 
RBC under shear in a capillary flow, viscous interaction 
is significant (Abkarian et al., 2007; Fischer 2007) as the 
viscosity of cytosol is approximately five times larger 
than that of plasma. During the tank-treading motion 
high viscous cytosol exerts higher resistance to the 
motion of the lipid bilayer enclosing it. It is important to 
account its viscous interactions while comparing the 
model with experimental results. Secomb et al. (2007) 
discussed that by neglecting the effect of cytosol, the 
tank-treading frequency under shear deviated 
considerably from the experimental results.  
 The main objective of this work is to present a 
discrete two-dimensional RBC model based on minimum 
energy principle and to use dissipative particle dynamics 
to study the dynamics and deformation in shear and 
pressure driven flow in capillary of different sizes. RBC 
will be treated as 2-D plane deformable membrane, 
which simplifies flow model of microcirculation. In simple 
shear flow in capillary, RBC shape has a plane of 
symmetry, which is parallel to the flow axis. Particles 
representing blood cell, cytosol, plasma and capillary 
wall will be defined by different sets of DPD particles. A 
new method will be utilized to separate cytosol and 
plasma particles. Model parameters and scaling scheme 
will be selected to match the mechanical property of 
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RBC. The position of the cell in the lateral direction will 
be varied to study the migration of the cell to achieve the 
minimum energy. Tumbling and tank-treading motion will 
be studied for a wide range of shear rates. The model 
will be validated by comparing the results with 
experimental and computational results published in the 
literature.  
 
METHODS 
 
RBC MODEL DESCRIPTION 
 
 Typically, a human RBC has a biconcave shape 
of ~8 µm in diameter and ~2.5 µm in thickness. The cell 
wall is made of phospolipid bilayers and contains 
viscous Newtonian liquid called cytosol. From 
mechanical perspective, RBC can be treated as an 
incompletely inflated flexible capsule. The cytosol acts to 
preserve the interior volume of the red blood cell during 
deformation as well as to maintain the uniform 
distribution of the internal fluid pressure on the 
membrane. The overall shape of the RBC is determined 
by the elastic properties of the membrane, its surface 
area and the enclosed volume. The important feature of 

the mechanical behavior is that the order of magnitude 
of these elastic properties are significantly different. The 
resistance to area change is around five times larger 
than the resistance to in-plane deformation. Also, energy 
associated with bending rigidity of the membrane 
curvature is much smaller compared to in-plane 
deformation (Evans, 1980). These properties allow a 
large deformation of RBC at constant volume and 
facilitate its passage through narrow capillaries. The total 
surface area and volume of the cell is estimated to be 
134 µm2 and 95 µm3, respectively (Li et al., 2005). If 
RBC is compared with sphere of equivalent area, the 
volume of RBC is 65% of the volume of the sphere. 
 The RBC cell wall contains underlying spectrin 
network which is tethered to the membrane. These 
structural networks are the basic building block of the 
load bearing structure of RBC, which determine the 
overall deformation behavior of the RBC. The modeling 
approach is similar to the models based on minimum 
energy principle (Li et al., 2005; Tsubota et al., 2006; 
Pivkin and Karniadakis 2008).  In the present work, RBC 
membrane was discretized into N DPD particles which 
were connected to their neighbor particles by elastic 
springs (see, Figure 1a). 

 

 

 
 
 

 
 

 

 RBC vertex nodes can move freely in two-
dimensional Cartesian plane according to the forces 
acting on them. The three points building block of the 
membrane is schematically shown in Figure 1(b). For 
any given node, n, its neighbor nodes one in front, n+1, 
and another in the back, n-1, is considered. Two 
elements, α and β are considered between a vertex pair 
(n, n-1) and (n, n+1), respectively. Length of these 
elements are given by 1−− nn rr  and nn rr −+1 , 
respectively, where r is the position vector of the node. 
The position vector of center of mass of each element is 

( ) 21−+= nn rrrα and ( ) 21 nn rrr += +β  and their 

normal vectors are αn  and βn , respectively. The 
network of the elements form a 2-D enclosed area given 

by ( )∑
=

=

⋅=
Ni

i
iiit lnrA

1
2 , which is based on the 

continuum divergence theorem. The advantage of this 
method is that it is independent of the frame of reference 
and any shape of the geometry. 
 RBC membrane has elastic resistances to 
stretching, bending and area expansion. The total free 
energy of the cell is given by (Tsubota et al., 2006), 
 

BendingAreaSpringTotal EEEE ++=                                  (1)  
 
where ESpring, EArea and EBending is the energy associated 
with stretch/compression, changes in area and bending 
of the membrane. 
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Figure 1: (a) Fully inflated RBC                        (b) Three node building block 
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The elastic energy stored in the stretch/compression 
spring due to the change in length li from its reference l0 
is expressed as, 
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where li is the lenght of the ith  spring at given instant and  
l0 is the unstretched reference lenght. The area 
conservation constraint is given by,  
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where At is the total area of the cell at any instant and A0 
is the desired total area.  
Lipid bilayers exhibit bending and compressional 
stiffnesses. The elastic energy can be expressed as a 
function of the angle between two neighboring elements 
(α, β) and given by, 
  

( )[ ]∑ −−=
βα

αβ θθ
,

0cos1
pairadjacent

BSpringBending TkkE  ,       (4) 

 
where θαβ is the angle between the normal to the 
adjacent face elements. The reference angle θ0 is the 
angle of unstressed bilayers. For numerical calculation, 
the following formula is applied, 

( ) 000 sinsincoscoscos θθθθθθ αβαβαβ +=− , 

where βααβθ nn ⋅=cos  and βααβθ nn ×±=sin . The 

positive sign is taken when ( ) ( ) 0≥−⋅− βαβα rrnn .  
In the present work, θ0 was taken to be zero degree, i.e. 
the bending stress is zero for when the cell membrane 
was flat. The total force on each nodal point can be 
calculated by minimizing the total energy (ETotal) with 
respect to the position vector of each nodal point (ri).    
 

i

Total
i r

EF
∂

∂
−=                        (5) 

S 
The analytical expression for the total energy was 
calculated using Eqs. (1-4). As given by Eq. (5), total 
energy is differentiated with respect to the position 
vector of each node to determine the force. Once the 
total force on each node is calculated, the evolution of 
velocity and position of all the points are determined 
based on Newton's second law of motion, 
 

ext
ii

i
i FF

t
dvm +=
∂

;  i
i v
t

dr
=

∂
,          (6) 

 
where vi is the velocity and ext

iF is the external force 
acting on the node. 
 

SOLUTION METHODOLOGY 
 
 Dissipative particle dynamics (DPD) is used to 
simulate the dynamics of the RBC in microchannel. DPD 
is a particle-based mesoscopic simulation method 
introduced by Hoogerbrugge and Koelman (1992), which 
captures both hydrodynamics and colloidal behavior of 
the system. Each DPD particle represents a cluster of 
actual molecules of the flow field and move in a 
Lagrangian fashion (Español and Warren 1995; Groot 
and Warren 1997). 
 Each DPD particle interacts with surrounding 
particles through a set of distance and velocity 
dependent forces within a certain cutoff radius. The total 
momentum of the interacting particles are conserved 
hence the system exhibits correct hydrodynamics of the 
flow. There are three types of forces in DPD, which are 
conservative, C

ijf
r

, dissipative, D
ijf
r

, and random, R
ijf
r

, 
and are expressed as: 
 

ij
C

ij )( erf ij
C rr

ωα= ,                       (7) 
 

( ) ijijijij
DD

ij )(γ everf rrrr
⋅−= ω ,                           (8) 

 

ij
2/1

ijij
RR

ij ζ)(σ etrf rr
−Δ= ω .                                   (9) 

 

ijf
r

represents the total force on particle i due the 
surrounding j particles. The vector rij points from i to j 
such that rij = rj-ri and vij = vj-vi; eij is the unit vector 
pointing in direction from j to i. Conservative force takes 
the usual form of a gradient of two particle interaction 
with soft quadratic potential, where the parameter α is 
the maximum repulsion between the particles. The 
weight function ωC decreases monotonically with 
particle-particle separation distance and becomes zero 
beyond the cutoff length and is given by, 
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Parameters γ and σ are the strength of dissipative and 
random forces, respectively. ijζ is a random number 
with zero mean and unit variance. It is the same for a 
pair of interacting particles at each time step and 

jiij ζζ = ensures that the momentum of the interacting 
pair of particles is conserved. Weight functions ωD(rij) 
and ωR(rij) for dissipative and random forces are given 
by, 
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Español and Warren (1995), using fluctuation-dissipation 
theorem, established the relation between forcing 
parameters and weight functions of Equations (8) and 
(9), which is given by, 
 

TkB
2 2γσ = , ( )2ijij )()( rr RD ωω = .             (12) 

 
Equation (11) ensures that DPD is simulating a 

Hamiltonian system in canonical ensemble. Dissipative 
force acts to relax the system whereas the random force 
keeps the system in thermal motion. So, Equations (8) 
and (9) together works as a thermostat. 
 Different set of DPD particles were defined to 
represent plasma, RBC membrane points and boundary 
of the capillary. Their relative interactions were 
controlled by the force parameters. External body force 
on each particle was applied to drive the flow in the 
channel. Time evolution of DPD particles was governed 
by Newton's second law, which is given by Equation (6). 
 
NUMERICAL IMPLEMENTATION AND SCALING 
ANALYSIS 
 
 An in-house code in FORTRAN was developed 
to implement a two-dimensional model for blood flow in a 
microchannel of height H and length L. The 
computational domain was descretized into Nx×My 
number of square unit cells of side length equal to rc. 
DPD particles were generated with a unique 
identification number and distributed randomly into each 
indexed cell. The total number of simulated particles in 
the domain was σDPD×Nx×My, where σDPD is the number 
of particles in each cell. As the forces were effective 
within the cutoff radius, particles far from rc were 
excluded in the computation. A cell division and link-list 
approach was implemented to enhance the 
computational efficiency (Allen and Tildesley 1989). A 
modified version of velocity-Verlet integration scheme 
was used to solve the governing equation (Groot and 
Warren 1997). Top and bottom walls of the 
computational domain were treated by freezing DPD 
particles in two extra layers of the domain and bounce 
back boundary condition was applied at the interface of 
fluid and wall. RBC in its equilibrium shape was imported 
and placed at the given location inside the domain. 
Plasma particles interact with RBC particles through 
DPD forces given by Eqs. (7-12) and used as Fext. The 
deformation and motion of the RBC were determined 
based on Eq. (6). 

The DPD equations were solved in terms of 
DPD reference scales of rc, kBT and mDPD. Each 
computational cell was divided into 4 bins for statistical 

averaging of the result. The model parameters are 
chosen to exhibit the properties of actual RBC as close 
as possible. The bending rigidity of RBC was measured 
experimentally and its corresponding value is given to be 
50 kBT (Noguchi and Gompper, 2005). Energy 
associated with in-plane shear stress and area change 
was much stronger and the parameters kA and kS were 
taken to be 6000 and 1000, respectively. This would 
assure that the total contour length and area of the cell 
would be constant and correspond to its large scale 
deformation at constant internal volume and surface 
area.  
 For length scale the cutoff radius was set to rc=1 
µm and taken as the reference length. The average 
blood velocity in 10 µm capillary is typically about 1 
mm/s (Pivkin and Karniadakis, 2008). Taking this 
velocity as the reference velocity and equating it with the 
unit velocity in DPD (1 rc/tDPD), the reference time in DPD 
is calculated to be tDPD=0.001 sec. The conventional 
parameters in DPD correspond to DPD fluid of very low 
viscosity. To increase the viscosity dissipative force 
parameter and the number density was set to γ=45 and 
σDPD=6, respectively. For dynamics of the flow in a 
channel of height 10 µm, a computational domain of 
10×40 is considered and a body force Fp is applied. 
Body force for various average velocities were selected 
accordingly as the Fp is proportional to the average 
velocity of the flow in a channel. 

 
RESULTS AND DISCUSSION 
 
 At first, shape optimization is performed to 
construct the structure of RBC in equilibrium when there 
is no external force on it. It is insightful that by 
constraining the total length of the geometry, different 
shapes can be attributed for a given reference area. As 
an initial shape, RBC was assumed as a fully inflated 
circle of diameter 6.1 µm as shown in Figure 1(a). The 
membrane was descretized into N=80 particles that 
were connected by the network of springs. Shape 
change simulations were performed based on the 
minimum energy principle. The reference area (A0) of 
the cell was gradually decreased from its initial circular 
area. A transient simulation was carried out to solve the 
equations (1) to (6). As the parameters for area was 
much stronger compared to bending, the resulting area 
of the shape was the same as the reference area. Figure 
2 shows the optimum shape based on the minimum 
energy for different reference area (A0). Figure 2(a) and 
2(b) is the optimum shape for the minimum energy when 
A0 is 85% and 75% of the area of the equivalent circle, 
respectively. When A0 was reduced to 65% of the area 
of the equivalent circle, a biconcave shape of RBC was 
achieved as given by Figure 2(c). 
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Dynamics and deformation of RBC was studied 
in the channel flow. First, a simple fluid flow of pure 
plasma in the channel of height 10 µm was simulated. 
No-slip boundary condition was imposed on the top and 
bottom wall and periodic boundary condition was 
imposed on the left and right face of the domain. When a 
particle exited from the right face, it was reentered from 
the left face. The fully developed velocity profile was 
parabolic and the maximum velocity was in the middle of 
the channel.  

After the flow was fully developed, RBC in its 
equilibrium shape was placed in the middle of the 
channel. Force exerted on the cell by the plasma 
particles were determined and used as an external force 
in the Equation (6) to calculate the position and velocity 
of each node. As the simulation started, the RBC 
experienced the shear and drag force by surrounding 
plasma. It moved with the flow and its shape started 
changing and eventually evolved to the characteristic 
parachute shape. As the shear was high near the wall,                     
the thickness of the cell was small near the wall 

compared to the mid section of the cell. The gradual 
evolution of parachute shape is shown in Figure 3. This 
behavior was in agreement with experiments and 
computational simulations (Secomb et al. 2007, Pivkin 
and Karniadakis 2008, Husseini et al. 2009). 

For the average velocity of 1 mm/s RBC 
acquired the final parachute shape after moving 30 µm 
in the flow direction (see, Figure 3), which agreed well 
with experiments and computational results (Secomb et 
al., 2007; Pivkin and Karniadakis 2008, Hosseini and 
Feng, 2009). 

Parachute shape helped to reduce the drag 
force and consequently reduced the total energy of the 
RBC. Once the final shape was achieved, the RBC 
continued moving with the same shape along the flow. It 
also tried to remain in the middle of the channel and the 
shape was symmetric about the center line of the 
channel as velocity gradient is small in the middle 
compared to the region close to the wall. 
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Figure 3: Evolution of shape of RBC in a flow. Channel height=10 µm, average velocity=1 mm/s. Starting with 

equilibrium shape it becomes fully developed after moving 30 µm 

~8µm 

~2.6µm 

(a) (b) (c) 
Figure 2: Shape evolution of cell based on minimum energy for a given area. Starting from a circle of 

radius 6.1 µm. Total boundary length is constrained (19.2 µm) (a): 85% deflation (b): 75% deflation (c): 
65% deflation (Shape of RBC) 
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To test this behavior further, the RBC was 
placed 1 µm above the central axis of the channel. 
Figure 4 shows the progressive development of the 
shape as the RBC moved along the flow. At the start, 
RBC took asymmetric shape where the top portion close 
to the wall was thin whereas the central and lower 
portion, which was close to the middle of the channel 
was bulkier as the shear was low in the middle of the 
channel. Also, the cell was elongated in the upper half of 
the channel as the velocity gradient was high near the 

wall. As the simulation progressed, the cell shifted to the 
center of the channel. After moving towards the 
cente0line of the flow, RBC started evolving into 
parachute type shape. Eventually the shape was fully 
developed and was symmetric to the center-line of the 
flow. Then the RBC continued moving in the middle of 
the channel. The lateral migration and shape evolution 
showed the same behavior observed in the experiment 
(Secomb et al., 2007).
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Figure 4: Evolution of shape of RBC in a flow. Channel height=10 µm, average velocity=1 mm/s. RBC in equilibrium 

shape is placed 1 µm above the center line of the channel. RBC shifts back to the central line and eventually takes the 
parachute shape 

 
 
 
CONCLUSIONS  
 
 Complex rheology and discrete nature of blood 
at microscale has been a topic of interest since a long 
time. Continuum assumptions have not been successful 
as blood flow at microscale involves the interaction of 
highly deformable blood cells with surrounding 
constituents. A particle based simulation technique was 
utilized to address this problem. A two-dimensional 
model of red blood cell based on dissipative particle 
dynamics was developed to study the deformation and 
dynamics under a wide range of shear and flow rates. 
The cell membrane was represented by particles 
connected by elastic springs. The total energy, which 
was calculated based on in-plane deformation, bending 
and area constraint was minimized to recover the shape 
of RBC. RBC was simulated inside a 10 µm channel at 
different locations from the central axis to study the 
lateral migration of the cell and it was observed that the 
RBC moves towards the central-line to minimize the total 
energy as shear stress is less in the middle of the 
channel and develops the characteristic parachute type 
shape as observed in experiments. 
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