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ABSTRACT 
Dissipative Particle Dynamics (DPD) is a mesoscopic 

simulation approach used in wide range of applications and 
length scales. In this paper, a DPD simulation is carried out to 
study dripping flow from a nozzle. The results of this study are 
used to answer this question that whether DPD is capable of 
simulating the free surface fluid on all different scales.  

A novel wall boundary condition is developed for the 
nozzle surface that controls its penetrability, near wall fluid 
density oscillations and the fluid slip close to the wall. We also 
utilize a new method to capture the real-time instantaneous 
geometry of the drop. The obtained results are in good 
agreement with the macroscopic experiment except near the 
breakup time, when the fluid thread that connects the primitive 
drop to the nozzle, becomes tenuous. At this point, the DPD 
simulation can be justified by thermal length of DPD fluid and 
the finest accuracy of the simulation that is the radius of a 
particle. We finally conclude that in spite of the fact that DPD 
can be used potentially for simulating flow on different scales, 
it is restricted to the nanoscale problems, due to the surface 
thermal fluctuations. 

INTRODUCTION 
When a fluid is continuously delivered from a nozzle into 

an immiscible and inert medium, two modes of flow regime can 
be formed: dripping and jetting. Occurrence of each mode 
depends on the quantity of the governing dimensionless 
numbers e.g. Ohnesorge number, Bond number and Weber 

number [1]. Dripping mode is an active area of interest and it 
has applications in a number of technological processes 
including inkjet printing [2], spraying[3], separation processes 
[4]. Dripping flow has also been studied by many researchers, 
experimentally [5] or numerically [6] in macroscale problems. 
When the length and time scale is reduced to the mesoscale 
levels, atomistic fluctuation play a key role in the flow pattern 
in the dripping mode and another dimensionless number, 
thermal length, becomes important. Thermal fluctuations 
cannot be captured by experiment and they can no longer be 
justified with the continuum perturbation theory [7]. DPD is an 
eligible method to study this category of problems because it is 
able to highlight the importance of thermal fluctuations. 

DPD is applied to simulate problems in different scales. 
Kumar et al. [8] have simulated fluid flow in a microchannel. 
Füchslin et al. [9] have shown that the single phase DPD is not 
only a mesoscale method but also a free scale method. Clark et 
al. [10] simulated multi-component breakup of a micro drop in 
shear field. Tiwari and Abraham [11] simulated breakup of a 
nanojet of a two-phase fluids. The motivation of the present 
study is to answer this question that whether DPD is a free 
scale method for simulating two-phase flows or free surface 
flows. Hence, a DPD simulation of dripping is planned to 
achieve the same Ohnesorge number, Bond number and Weber 
number of an available macroscopic experiment. 

Adjusting DPD parameters to simulate a specific physical 
problem is still an open area of interest, due to the fluid 
properties and kinematic variables in DPD simulation which 
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are in reduced units. To reach this aim, we present a different 
approach by introducing the concept of dimensionless numbers. 
By duplicating these numbers to the real physics for a DPD 
fluid, we can explicitly establish a relation between the DPD 
simulation fluid parameters to those of a mixture of 85% 
glycerol by weight in water dripping from a 1600 mµ nozzle. 

In our simulation, the nozzle surface is constructed with 
the frozen particles and its impenetrability, proper surface 
wettability, ability to eliminate density oscillation near the wall 
and no-slip boundary condition are attained by manipulating 
the coefficient of conservative forces between the wall particles 
and the fluid particles. In order to capture the instantaneous 
geometry of the drop on a Cartesian grid, we assumed that DPD 
particles must have a volume mass rather than a point mass that 
carry data through the domain. 

At last we show that our simulation can be corresponded to 
the physics of a dripping flow from a nanoscale nozzle and not 
a macroscopic one. 

  

METHODOLOGY 
A. Dissipative Particle Dynamics 

In DPD simulation each particle represents a cluster of 
atoms or molecules called DPD particle. Movement of DPD 
particles is governed by the Newton second’s law: 

 

,i i
i i i

r v
v m f

t t
∂ ∂

= =
∂ ∂

r r rr  (1) 
 

 
where ir

r and ivr  are the respective position and velocity of  ith 

DPD particles. The total force acting on these particles if
r

 is 
given by [12]:  

 
C D R

i ij ij ij
j

f F F F= + +∑
r r r r

 
(2) 

 
where C

ijF
r

, D
ijF
r

and R
ijF
r

are called conservative, dissipative and 
random force, respectively and defined as:  
 

ˆ( , )C C
ij ij ij c ijF a r r eω=
r

 (3) 

( )ˆ ˆ( , )D D
ij ij ij c ij ij ijF r r e v eγ ω= −
r r

�  (4) 
1

2 ˆ( , )R R
ij ij ij c ij ijF r r t eσ ω θ δ −
=

r
 (5) 

 
Here ij i jr r r= −

r r r , îj ij ije r r=
r r , ij i jv v v= −

r r r  and ijθ is a 
random number drawn from a Gaussian statistics and has zero 
mean and unit variance. ija , ijγ and ijσ determine the strength 
of the conservative, dissipative and random forces, respectively. 
These forces are pair-wise and effective in a certain distance, 
called cutoff radius cr . The weight functions are continuous 
functions of the distance, given by: 
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Español and Warren [13] showed through the fluctuation-
dissipation theorem that the below relation must be satisfied for 
the thermal equilibrium: 
 

2 2 Bk Tσ γ=  (7) 

 
 where T is the system temperature and Bk is the Boltzmann 
constant. 
 
B. Free surface DPD fluid 

In DPD simulation, free surface fluid is formed by 
changing conservative forces. If the repulsion conservative 
forces of DPD are substituted with long range attraction and 
short range repulsion conservative forces, DPD will be able to 
construct an interface with vacuum [14]: 
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where the first term is the attraction and the second term is the 
repulsion part of conservative forces. Here iρ  is the 
instantaneous local density and is defined as: 
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where sum runs over all neighboring particles and pw  is: 

3 2( , ) max 15 / (2 )(1 / ) ,0 .p ij c c cw r r r r rπ⎡ ⎤= −⎣ ⎦  (10) 

 

WALL BOUNDARY CONDITION 
Implementing a proper wall boundary condition is 

necessary for simulating fluid flow inside the nozzle. The 
nozzle wall must produce a favorite velocity profile and its tip 
must control its wettability. In DPD, wall boundary condition is 
satisfied by using frozen particles that do not contribute in the 
integration of equation of motion. Soft inter-particle forces let 
particles penetration into the wall. To overcome this problem in 
the simulation of fluid flow near the wall, we utilized 
conservative forces instead of interaction rules between fluid 
and wall particles .e.g. bounce back [15]. In fact conservative 
forces between fluid and wall particles control wall 
penetrability, fluid density oscillations and fluid slip close to 
the wall. In the case of stationary fluid, they are employed to 
mimic correct contact angle at the solid boundaries. 
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Figure 1: The penetrated particle is subjected to 
forces that returns it into the fluid area 

 
When a particle penetrates into the wall, the conservative 

forces between that particle and the wall is adjusted as follows: 
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where ρ  is the local density approximated by Eq. (9) and C is 
a coefficient that the position of a penetrated particle 
determines its sign. We imagine a surface parallel to the wall-
fluid interface which encompasses the penetrated particle; wall 
particles that are located above this surface attract penetrated 
particle with negative conservative forces and wall particles 
that are below it, repel the penetrated particle with positive 
conservative forces (see Figure 1). In fact “force back” obliges 
the penetrated particle to restore in the fluid area. Therefore 
wall penetrability is determined by magnitude of C. An initial 
guess for C would be the coefficient of fluid repulsion force, 
Eq. (8). 

We can control fluid density oscillation and fluid slip close 
to the wall by adjusting the coefficient of conservative forces 
between wall and fluid ( 12A  and 12B ). Because of the short 
range nature of the repulsion force, increasing 12B  leads to a 
decrease in the fluid density and an increase in fluid slip very 
close to the wall. On the other hand decreasing 12A  diminishes 
long range effect of the wall on the fluid. 
The proposed boundary conditions are validated by simulating 
a free surface flow on an inclined plane.  A column of fluid 
with thickness of 8 cr  is place on a wall of 2 cr  thickness. The 
imposed body force vector components are 0.03 DPD units on 
the flow direction (x direction) and 0.1 DPD units on the 
direction perpendicular to the wall-fluid interface (z direction). 
Simulation domain is periodic in x and y directions. The 
simulation parameters are the same as those in Table 1 except 
for γ  which is set to be 12.5. For these system  parameters, the 
fluid viscosity measured by Lees Edward method [16] is 

6.66µ = . We investigate three scenarios for  12A  and 12B  
coefficients. The system is run for more than 410  time steps to 
ensure us that flow is steady state. The density and velocity  

Figure 2: Density profile of flow on the inclined plane 
 

profile in each case are obtained by averaging over 510  time 
steps and shown in Figure 2 and Figure 3. 

When 12 40A = − , 12 25B = +  are the same as fluid 
conservative forces, force back is active and 25C = + : only 2 
particles per 10 unit of area are penetrated into the wall but 
when force back parameter is switched off, 1 particle per unit of 
area is penetrated. Therefore force back could make the wall 
almost impenetrable. Figure 2 shows that some fluid density 
oscillation can be seen close to the wall. These oscillations may 
be considered desirable and physical but near to the continuum 
scale they are unacceptable. In spite of density oscillation, 
velocity profile is in good agreement with continuum results 
and the no-slip boundary condition is achieved (see Figure 3 ). 
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Figure 3: velocity profile of flow on the inclined plane 
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Table 1 Parameters of DPD simulation 
Temperature 

Bk T  1 

Particle mass m 1 
Cutoff radius 

cr  1 

Fluid attraction amplitude 
11A  -40 

Fluid repulsion amplitude 
11B  +25 

Dissipative force amplitude γ 12.92 
Time step tδ  0.02 

 
For the second scenario, we increase repulsion 

conservative force to 12 30B = +  to reduce the first peak of 
density oscillations and decrease the attraction to 12 35A = −  
to reduce the long range effect of the wall on the fluid particles. 
Thus, as illustrated in Figure 2 a nearly flat density profile is 
achieved while the velocity profile is unaltered and matched 
with the continuum velocity profile. 

When repulsion force is fixed at 12 25B = +  and the 
strength of attraction force is reduced to 12 20A = − , the slip 
boundary condition is dominant and particles density deplete 
near the wall (see Figure 2 ), similar to the result when the 
repulsion force is increased in the ordinary DPD [15]. Hence in 
the third situation the velocity profile deviates from the 
continuum result (see Figure 3). 

SIMULATIONS 
Consider a nozzle of radius R that a fluid which can form 

a free surface with viscosity µ , density ρ  and surface tension 
Γ emerges from its tip by imposing a low flow rate at the inlet. 
In this case, discrete drops are formed from the nozzle in 
gravitational acceleration g. We also intend to simulate the 
dripping of a mixture of 85% glycerol by weight in water from 
a nozzle of radius 1600 mµ . Table Table 22  lists the properties 
and the values of the dimensionless numbers corresponding to 
the assumed liquid and the nozzle dimension[5]. In follow, we 
describe how the DPD system parameters and the boundary 
conditions are set for such an experiment.  
 
A. How to map the physical parameters into the DPD system 

An important part of the DPD simulation is to relate 
simulation parameters to the physical problem. Dimensionless 
numbers which reflect significant physical features of a 
problem can be used as a convenient way of establishing this 
relation. Dripping is governed by three dimensionless numbers 
[5]: Weber number 2 /We u Rρ= Γ  that measures the ratio of 
inertial force to the surface tension force, Ohnesorge number 

/Oh Rµ ρ= Γ  that measures the ratio of viscous force to the 
surface tension force and the gravitational Bond number 

2 /G gRρ= Γ  that measures the ratio of gravitational force to 
the surface tension force. Therefore, these dimensionless 
numbers are used to calculate DPD parameters. 

Table 2 Properties of mixture of 85% glycerol and 
dimensionless numbers used in experiment and DPD 

simulation 
Property Physical system DPD system 

ρ 1.223 3/g cm  6.06 
µ 1.129 /g cm s  6.73 ± 0.05 
Γ  66.0 2/g s  7.47 ± 0.05 
R 1600 mµ  10.15 
u 2.07 /mm s  0.004 
g 9.81 2/m s   0.006 

We 1.27e-4  1.27e-4  
Oh 0.31 0.31 
G 0.47 0.47 

 
A common way to determine the coefficient of conservative 
force is to match the compressibility of the DPD system with 
the physical system [17]. However, if we suppose that the 
thermodynamic state is almost unaltered for the problem under 
investigation, the conservative forces can be employed to 
achieve the correct interfacial properties at the free surface. We 
select the coefficients of conservative forces between particles 
of fluid to be 11 40A = − , 11 25B = + which results in a free 
surface fluid model with sharp interface and density equal to 

6.06ρ =% [14]. When cr  is equal to unit, because of 
computational costs, density number is kept around the order of 
unity as well. It is noted that temperature, mass and cutoff 
radius of DPD system are in reduced unit (i.e. 

1B ck T m r= = =% % % % ). For the selected conservative coefficients, 
the surface tension of DPD model is measured to be 

7.47 0.05Γ = ±%  as described in [14] (variables with hat 
illustrate DPD system variables, so the units of them are not 
mentioned). 

In order to determine the radius of nozzle in DPD unit 
2 /lµ µ ρσ=  can be an appropriate length scale for 

constructing the dimensionless numbers, because the fluid 
behavior near the pinch point in the macroscopic scales only 
depends on its intrinsic properties and pinching occurrs at lµ  
scale [18]. Therefore, the cutoff radius is set to cr lµ= . As a 
result, the viscosity of the DPD fluid is determined to 
be 6.73µ =% . 

Viscosity of a DPD fluid can be changed by varying the 
coefficient of dissipative force without significantly affecting 
the other properties. The suitable coefficient that obliges the 
fluid to have a predefined viscosity can be obtained by 
performing several Lees-Edward shear simulations [16] and 
interpolating between the sample results; in this case, this 
coefficient is found to be 12.92γ = . Finally, the coefficient of 
the random force is calculated from the fluctuation-dissipation 
theory Eq.(7). The DPD simulation parameters are presented in 
Table 1. 

By duplicating Oh number between the DPD and the 
physical system, nozzle radius in DPD system is achieved to be 
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10.15R =% . By duplicating the two other dimensionless 
numbers, G and We, the gravity and flow rate can be 
determined as 0.006g =%  and  0.004u =%  , respectively, in 
DPD system. The properties and kinematics variables of DPD 
fluid and their corresponding physical values are listed in Table 
2. 

 
B. Simulation of Dripping 

The frozen nozzle particles are extracted from the 
homogeneous distribution of the particles achieved by 
performing an independent simulation of the free surface fluid 
in a periodic box. The inner radius of the nozzle is set to 

0.5iR R=% %  where R is the outer radius of the nozzle tip. The 
nozzle is composed of three types of frozen particles: tip (2), 
wall (3) and piston (4) (see Figure 4), so with the fluid (1) itself 
four types of particles exist in the simulation. 

 

Figure 4: Geometry of nozzle; black particles show 
piston, red particles are wall and green particles 

show tip of the nozzle 
 
 In order the fluid particles to be able to wet the tip surface 

as in the experiment, the conservative forces between the tip 
nozzle particles and the fluid particles must be the same as in 
the fluid/fluid interactions (i.e. 12 11A A=  and 12 11B B= ). We 
aim to simulate the nozzle flow in a millimeter scale so the 
density oscillations near the wall are not captured and no-slip 
boundary condition is dominated. Consequently, the 
conservative forces between the nozzle wall and the fluid are 
set to 13 35A = −  and 13 30B = + . Conservative coefficients for 
the piston/fluid particle interactions are the same as the nozzle 
wall/fluid interactions, except for their velocity which is set to 
u% . During the simulation, in every specific time interval, some 
new fluid particles are introduced close to the piston to satisfy 
the inflow boundary condition. The production rate of these 
particles is constant and corresponds to the physical value. The 
height of nozzle is long enough, 40h =% , to ensure us that the 
disturbance of the new generated particles is damped and a 
steady flow forms at the nozzle exit. The downward 
gravitational force, g% , is applied to each fluid particle. By 
advancing in time, the exited particles wet the nozzle tip 

surface and gradually form a spherical drop, as seen in Figure 
6. 
 
C. Capture instantaneous drop geometry 

The geometry of DPD drop must be analyzed within the 
simulation as part of the comparison with the experiment. A 
common approach to find the drop interface is to divide the 
simulation domain into a finite number of cells and then 
compute the corresponding cell fluid density by considering the 
number of particles which occupy that cell. This approach leads 
to an accurate result for stationary flow geometry where the 
averaging process can be performed over many time steps. In 
such a case, the longer averaging time interval results in a more 
accurate density profile. But this method is not applicable to the 
problems in which the flow geometry is changing during the 
simulation. In this case, when density is calculated in every 
time step, it is very likely to face some empty cells within the 
fluid region as a result of small cell size. Therefore, a different 
approach is adopted. In this approach, the DPD particles are 
assumed to have a volume mass rather than a point mass that 
carries data through the domain. Here the simulation box is 
covered by finite number of nodes and the effects of each 
particle volume are considered on the nearby nodes with a 
weight function. In contrast to the local density calculation 
[19], here there is no advantage for selecting a particular weight 
function because we are only interested in finding nodes which 
are close to the interface and the accuracy of the local density is 
not important.  

The radius of a particle is computed from: 
1/33 ( / )

4p m molr N m ρ
π

=  

where molm  is the mass of each fluid molecule. The radius of a 
particle is calculated to be 55.373 10−× m and when converted 
to the DPD unit using Table 2 it becomes 0.34pr =% . 
 

Figure 5: the effects of each particle volume is 
considered on its neighbor nodes 

 
The method is accurate when the length scale is larger than 

the radius of a particle. Using this grid size, each particle can 
affect 8  nodes of the Cartesian grid (see Figure 5). This leads 
to a smoother drop profile and almost all of the interface nodes 
that form the drop geometry are recognized. This profile will be 
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utilized to calculate the real-time minimum radius of the drop 
and the length from its tip up to the nozzle outlet at the necking 
process. 

RESULTS AND DISCUSSION 
Figure 6 shows few snapshots of the drop formation and 

the evolution of the thread that connects the falling drop to the 
remainder of the liquid in the nozzle during the necking and 
breakup process. The time difference is given in DPD units and 
is measured from the breakup time bt  as a reference. As shown 
in the figure, as the drop size is increased in time, the shape of 
the drop is transformed to a pear shape and finally a neck is 
developed near the nozzle tip.  

In all stages of the simulation some surface fluctuations are 
observed while in the experimental results the surface is 
obviously smooth [5]. On the other hand, we expect for the 
85% glycerol mixture to develop a secondary neck in this scale. 
However, in the present simulation, the surface fluctuations 
prevent the formation of the secondary neck and instead cause 
an early break up in the primary thread. 

Figure 6: snapshots of the Drop formation, its 
evolution in time and its beakup 

 
Moseler and landman [20] through a MD simulation have 

shown that this surface fluctuation can be observed in a system 
which size is in the order of the thermal length 

scale /T Bl k T= Γ . This length is about 1nm for the most 
liquids at the room temperature. Therefore, in this length scale 
the thermal fluctuations almost alters the characteristics of the 
breakup and speeds up the process by making the surface 
tension insignificant [7]. Thermal length in our simulation is 

Tl = 0.37. 

Figure 7: evolution in time of the dimensionless 
length of the experimental [5] drop and the DPD drop 

according to their bt  

tb-t (msec)

R
m

in
/R

100 101 102
0.0

0.2

0.4

0.6

0.8

1.0

1.2

DPD
Experiment

Figure 8: evolution in time of the dimensionless 
minimum radius for the experimental [5] thread and 

the DPD thread according to their bt  
As seen in Figure 6, when the radius of fluid approaches 

to Tl , a symmetric double-cone structure is formed at the 
location where primary thread begins to thin. Figure 7 shows a 
comparison between the experimental [5] and the DPD 
numerical results for the evolution of the thread dimensionless 
length in time with bt  as the reference time. Figure 8 shows the 
thinning trend of the minimum radius for the experimental 
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thread [5] and the DPD thread according to their bt . The time 
of both the experiment and the DPD simulation is given in 
milliseconds. 
As seen in this figures, the DPD results follow the experiment 
up to the break up point. However, the surface fluctuation of 
DPD fluid is clearly seen in Figure 7 and Figure 8. 

As spelled out earlier, the thermal noise speeds up the 
breakup, so the rupture of DPD simulation happens faster than 
the experiment i.e. bt of DPD is less than bt  for the experiment 
( expDPD

b bt t< ). Therefore, for the comparison sake, the time 
reference DPD

bt  is shifted 2ms sooner.. This leads to a better 
agreement between the experimental and the DPD results for 
the evolution of dimensionless thread length as shown in Fig. 9. 
Moreover, the minimum radius of the thread achieves a better 
agreement with the experiment as the radius of the neck 
approaches Tl , as seen in Figure 10. In this situation the thread 
quickly thins and the breakup occurs.  
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Figure 9: evolution in time of the dimensionless 
length of the experimental [5] drop and the DPD drop 

according to exp
bt  

 
The smallest distinguished length scale in the DPD 

simulation is dictated by the volume of a particle 0.34p cr r=  
which is about Tl . Hence, one may conclude that the simulation 
result below pr  is unacceptable and therefore, the early drop 
break up can be justified in this way. However, this simulation 
could also be viewed in a different way. In fact, if the thermal 
length was used to duplicate the dimensionless numbers, the 
results of this DPD simulation would be corresponded to the 
physics of a dripping flow from a nanoscale nozzle with the 
same thermal length. Accordingly, from this view point, the fast 
drop break-up, the surface fluctuations and the formation of 
double-cone structure can be justified. Therefore, it must be 
noted that the DPD simulations are restricted to the nanoscale 

problems where the thermal fluctuation effects become 
important. 

CONCLUSION 
In this work, we have used a DPD-based free surface 

model to simulate the dripping of a mixture of 85% glycerol by 
weight in water from a nozzle of radius 1600 mµ . The dripping 
dynamics is studied as a function of Ohnesorge number, Bond 
number and Weber number. Therefore, a DPD simulation of 
dripping is planned to achieve the aforementioned 
dimensionless numbers without matching the dimensionless 
thermal length. 

The nozzle is constructed with frozen particles and its 
impenetrability, proper surface wettability, ability to eliminate 
density oscillation near the wall and no-slip boundary condition 
is attained by manipulating the coefficient of interacting 
conservative forces between the wall and the fluid particle. In 
order to capture the instant geometry of the drop on a Cartesian 
grid, we assumed that DPD particles should have a volume 
mass rather than a point mass that carry data through the 
domain. 

tb-t (msec)

R
m

in
/R

100 101 102
0.0

0.2

0.4

0.6

0.8

1.0

1.2

DPD
Experiment

Figure 10: evolution in time of the dimensionless 
minimum radius of the experimental [5] thread and 

the DPD thread according to experiment exp
bt  

 
Our results are in good agreement with the macroscopic 
experiment except near the break-up time, when the fluid 
thread that connects the primitive drop to the nozzle, becomes 
tenuous. At this point, the DPD simulation comes into question 
by two issues: the thermal length of the DPD fluid and the 
finest achievable resolution which is the radius of a particle. 
The former was much longer than the corresponding value in 
the experiment. Larger thermal length leads to a break-up 
which happens before the expected time. However this 
simulation could be observed in a different way; it can show the 
physics of a dripping flow from a nanoscale nozzle with the 
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same thermal length instead. Accordingly in this view the fast 
drop break-up can be justified. 

To conclude, DPD is a powerful method for simulation of 
free surface flow on different scales but when a phenomenon 
involves thermal fluctuation, DPD simulation is restricted to 
nanoscales. 

REFERENCES 
[1] Basaran, O. A., 2002, "Small-Scale Free Surface Flows with 
Breakup: Drop Formation and Emerging Applications," AIChE 
Journal, 48(9), pp. 1842-1848. 
[2] Rothgordt, U., 1978, "Document Printing", Acta Electron, 
21(1), pp. 71-82. 
[3] Inculet, I. I., 1985, "Industrial Applications of Static 
Electricity", Journal of Electrostatics, 16(2-3), pp. 287-298. 
[4] Wham, R. M., and Byers, C. H., 1985, "Mass Transport 
from Single Droplets in Imposed Electric Fields", Separation 
Science and Technology, 22(2-3), pp. 447-466. 
[5] Zhang, X., and Basaran, O. A., 1995, "An Experimental 
Study of Dynamics of Drop Formation", Physics of Fluids, 
7(6), pp. 1184-1203. 
[6] Schulkes, R. M. S. M., 1994, "Evolution and Bifurcation of 
a Pendant Drop," Journal of Fluid Mechanics, 278(pp. 83-100. 
[7] Eggers, J., 2002, "Dynamics of Liquid Nanojets", Physical 
Review Letters, 89(8), pp. -. 
[8] Kumar, A., Asako, Y., Abu-Nada, E., Krafczyk, M., and 
Faghri, M., 2009, "From Dissipative Particle Dynamics Scales 
to Physical Scales: A Coarse-Graining Study for Water Flow in 
Microchannel", Microfluidics and Nanofluidics, 7(4), pp. 467-
477. 
[9] Füchslin, R. M., Fellermann, H., Eriksson, A., and Ziock, H. 
J., 2009, "Coarse Graining and Scaling in Dissipative Particle 
Dynamics", Journal of Chemical Physics, 130(21), pp.  
[10] Clark, A. T., Lal, M., Ruddock, J. N., and Warren, P. B., 
2000, "Mesoscopic Simulation of Drops in Gravitational and 
Shear Fields", Langmuir, 16(15), pp. 6342-6350. 
[11] Tiwari, A., and Abraham, J., 2006, "Dissipative-Particle-
Dynamics Model for Two-Phase Flows", Phys Rev E Stat 
Nonlin Soft Matter Phys, 74(5 Pt 2), pp. 056701. 
[12] Groot, R., and Warren, P., 1997, "Dissipative Particle 
Dynamics: Bridging the Gap between Atomistic and 
Mesoscopic Simulation", The Journal of Chemical Physics, 
107(11), pp. 4423-4435. 
[13] Espanol, P., and Warren, P., 1995, "Statistical-Mechanics 
of Dissipative Particle Dynamics", Europhysics Letters, 30(4), 
pp. 191-196. 
[14] Warren, P. B., 2003, "Vapor-Liquid Coexistence in Many-
Body Dissipative Particle Dynamics", Physical Review E, 
68(6), pp. -. 
[15] Pivkin, I. V., and Karniadakis, G. E., 2005, "A New 
Method to Impose No-Slip Boundary Conditions in Dissipative 
Particle Dynamics", Journal of Computational Physics, 207(1), 
pp. 114-128. 
[16] Lees, A. W., and Edwards, S. F., 1972, "The Computer 
Study of Transport Processes under Extreme Conditions", 

Journal of Physics C: Solid State Physics, 5(15), pp. 1921-
1928. 
[17] Groot, R. D., and Warren, P. B., 1997, "Dissipative Particle 
Dynamics: Bridging the Gap between Atomistic and 
Mesoscopic Simulation", Journal of Chemical Physics, 107(11), 
pp. 4423-4435. 
[18] Eggers, J., 1997, "Nonlinear Dynamics and Breakup of 
Free-Surface Flows", Reviews of Modern Physics, 69(3), pp. 
865-929. 
[19] Trofimov, S. Y., Nies, E. L. F., and Michels, M. a. J., 2002, 
"Thermodynamic Consistency in Dissipative Particle Dynamics 
Simulations of Strongly Nonideal Liquids and Liquid 
Mixtures", Journal of Chemical Physics, 117(20), pp. 9383-
9394. 
[20] Moseler, M. and Landman, U., 2000, "Formation, stability, 
and breakup of nanojets", Science, 289, pp. 1165-1169. 
 


