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ABSTRACT 
The issue of entropy generation in laminar forced 

convection of a Newtonian fluid through a slit microchannel is 

analytically investigated by taking the viscous dissipation 

effect, the slip velocity and the temperature jump at the wall 

into account. Flow is considered to be hydrodynamically fully 

developed but thermally developing. The energy equation is 

solved by means of integral transform. The results demonstrate 

that to increase Knudsen number is to decrease entropy 

generation, while the effect of increasing values of Brinkman 

number and the group parameter is to increase entropy 

generation. Also it is disclosed that in the thermal entrance 

region the average entropy generation number over the cross 

section of channel is an increasing function of axial coordinate.   

Keywords: Microchannel; Slip flow; Viscous dissipation; 

Knudsen number; Entropy generation; Bejan number  

1  INTRODUCTION 
Microchannels with dimensions ranging from 100 �� to 

fractions of 1 �� have found applications for use in the cooling 

of integrated circuits (ICs), biochemical applications, 

microelectromechanical systems (MEMS) and cryogenics. This 

characteristic geometric scale is comparable with the gas mean 

free path, which at standard atmospheric condition is about 100 

nm. In this case, the gas flow cannot be modeled based on the 

continuum hypothesis, since the rarefaction effects are 

important. The deviation of the state of the gas from continuum 

behavior is measured by the Knudsen Number (��), which is 

defined as �� � � ��	 , where � is the mean free path of gas 

molecules and �� is the channel hydraulic diameter. Based on a 

definition given by Beskok and Karniadakis [1], gas flow can 

be classified as one of four regimes according to its Knudsen 

number. In the slip flow regime which corresponds to 
��
 ��� � ��
, deviations from the state of continuum are relatively 

small and the Navier-Stokes equations are still valid. The 

rarefaction effect can be modeled through the partial slip at the 

wall using slip boundary conditions which can be determined 

using kinetic theory of gases. The experiments conducted by 

Liu et al. [2] and Hsieh et al. [3] on the transport of gases 

through microchannels confirm that Navier-Stokes equations 

subject to first order slip boundary conditions can be used to 

obtain flow characteristics in micronsize devices.  

Several research efforts have presented the analytical 

solutions for laminar slip flow forced convection through 

simple microgeometries. Aydin and Avci [4,5] theoretically 

investigated the steady, laminar, fully developed forced 

convection in a microtube and microduct between two parallel 

plates for both boundary conditions of constant wall 

temperature and constant wall heat flux. Heat transfer 

characteristics of hydrodynamically and thermally fully 

developed laminar rarefied gas flow in annular microducts with 

constant wall heat fluxes have been studied by Duan and 

Muzychka [6]. They have performed the analysis by combining 

the solutions of two sub problems consisting of a microchannel 

with one wall being adiabatic and the other having constant 

heat flux. Tunc and Bayazitoglu [7] studied both 

hydrodynamically and thermally fully developed slip flow in 

rectangular microducts. The H2 type boundary condition, 

constant axial and peripheral heat flux, was applied at the 

channel walls. 

The problem of hydrodynamically fully developed and 

thermally developing flow in a channel, with the assumptions 
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of steady and incompressible flow, constant fluid properties and 

negligible energy dissipation and streamwise conduction effects 

is known as the Graetz problem, the one who originally solved 

this problem for a circular tube [8]. Since its original solution, 

the Graetz problem has served as an archetypal convective heat 

transfer problem both from a process modeling and an 

educational point of view. The Graetz problem for a 

microchannel has gained interest because of its fundamental 

importance in microfluidic problems such as the analysis and 

design of micro heat exchangers. Barron et al. [9] and Ameel et 

al. [10] have extended the Graetz problem to slip flow through 

a microtube with uniform temperature and uniform heat flux 

boundary conditions, respectively. Thermally developing 

laminar slip flow forced convection in rectangular 

microchannels has been studied by Yu and Ameel [11] by 

applying a modified generalized integral transform technique to 

solve the energy equation, assuming hydrodynamically fully 

developed flow. 

Viscous dissipation effects are typically only significant for 

high viscous flows or in presence of high gradients in velocity 

distribution. In macroscale, such high gradients occur in high 

velocity flows. However, in microscale devices such as 

microchannels, because of small dimensions, such high 

gradients may occur even for low velocity flows. So, for 

microchannels the viscous dissipation should be taken into 

consideration. Viscous dissipation causes the variation in the 

temperature distributions by behaving like an energy source due 

to a considerable power generation induced by the shear stress, 

which, consequently, affects heat transfer rates. The effects of 

viscous dissipation on the temperature field and ultimately on 

the friction factor have been investigated by Koo and 

Kleinstreuer [12,13], using dimensional analysis and 

experimentally validated computer simulations. It was found 

that ignoring viscous dissipation could affect accurate flow 

simulations and measurements in microconduits. Aydin and 

Avci [4,5] have considered the effects of viscous heating in 

their studies. They also analytically studied slip flow heat 

transfer in a microannulus for the special case of one wall being 

adiabatic and the other having constant heat flux, considering 

viscous heating effects [14]. Viscous dissipation effect on fully 

developed slip flow forced convection in rectangular 

microchannels with constant wall heat flux has been studied by 

Aynor et al. [15]. Extended Graetz problem including viscous 

dissipation for a microtube was studied by Tunc and 

Bayazitoglu [16] using integral transform method. The two 

boundary conditions of constant wall temperature and constant 

wall heat flux were considered in the study. Similar study but 

for a slit microchannel with constant wall temperature was 

undertaken by Chen [17]. Aydin and Avci [18] numerically 

investigated thermally developing rarefied gas flow in a 

microchannel between two parallel plates by taking into 

account the influences of viscous heating for two different 

boundary conditions of constant wall temperature and constant 

wall heat flux.  

Besides the analysis based on the basic conservation laws, 

the second law analysis is crucial in understanding the entropy 

generation attributed to the thermodynamic irreversibility, 

which is useful for studying the optimum operating conditions 

in designing a system with less entropy and destruction of 

available work (exergy), in accordance to the Gouy-Stodola 

theorem [19] stating that the lost available work is directly 

proportional to the entropy generation. Bejan [19,20] referred 

this method of engineering research as Entropy Generation 

Minimization (EGM) and discussed its derivations and 

applications in a vast coverage of applied thermal engineering. 

Nowadays, second law analysis of thermofluid systems has 

become a prominent topic in thermal engineering. 

Despite the fact that there are numerous works related to 

second law analysis of macroscale devices, unfortunately the 

open literature shows very small number of papers that deal 

with entropy generation in microdevices. To the authors’ best 

knowledge, the first thermodynamics analysis work considering 

rarefaction effects in microchannels has been performed by 

Haddad et al. [21]. They numerically investigated the entropy 

generation due to developing laminar forced convection 

through parallel plate microchannels with the boundary 

condition of constant wall temperature. Avci and Aydin [22] 

applied the second law analysis considering constant wall heat 

flux for two different microgeometries, namely, microtube and 

microducts, between two parallel plates. Hydrodynamically and 

thermally fully developed slip flow with constant properties 

was examined, using the previously obtained velocity and 

temperature profiles. Hooman [23] presented closed form 

solutions for fully developed temperature distribution and 

entropy generation due to forced convection in two above 

mentioned cross sections for two different thermal boundary 

conditions, being isothermal and isoflux walls. In a recent 

study, Sadeghi et al. [24] performed the second law of 

thermodynamics analysis for steady state hydrodynamically 

and thermally fully developed laminar gas flow in annulus 

microchannels with constant wall heat fluxes.  

In the present study, the objective is to analytically 

investigate the entropy generation in thermally developing 

hydrodynamically fully developed laminar forced convection 

through a slit microchannel with constant wall heat fluxes. The 

rarefaction effects are taken into consideration using first order 

slip boundary conditions. Viscous heating is also included for 

either the wall cooling or the wall heating case. Using fully 

developed velocity profile, the energy equation is solved by 

means of integral transform. The interactive influences of 

rarefaction, viscous dissipation and the group parameter on 

entropy generation rates are shown in graphical form and also 

discussed in detail. 

NOMENCLATURE �� Bejan number �� ��� ��	 � �� Brinkman number �� ��� ��	 � �� specific heat at constant pressure �� �!�"#�"� �� hydraulic diameter of channel [� $�] 
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%& momentum accommodation coefficient %' thermal accommodation coefficient ( heat transfer coefficient �)*��#�"� � half of channel height [m] + thermal conductivity �)*�"#�"�  �� Knudsen number �� � ��	 � � normalization integral [Eq. (17)] �,, entropy generation number related to 

fluid friction ��� entropy generation number related to 

heat transfer �� entropy generation number, total -� ./ ./01	 2 ��034 average entropy generation number �5 Nusselt number �� (�� +	 � 6 pressure [Pa] 7� Prandtl number �� 8 9	 � � wall heat flux �)*��� :� Reynolds number �� ��� 8	 � ./ entropy generation rate �)*�
#�"� ./01 characteristic entropy generation rate �)*�
#�"� ; temperature [K] 5 axial velocity �*<�"� � mean velocity �*<�"� = axial coordinate [m] > transverse coordinate [m] 

Greek symbols 9 thermal diffusivity [*�<�"� ? eigenvalue @ heat capacity ratio A normal direction exiting the wall [m]  B dimensionless temperature [Eq. (6)] � gas mean free path [m] � dynamic viscosity [kg*�"<�"� 8 kinematic viscosity �*�<�"� C auxiliary variable [Eq. (10)] D transformed form of C [Eq. (18)] E eigenfunction F dimensionless temperature 

difference �� �� +;G	 � 
Subscripts H bulk : reference I fluid property at solid surface J wall = local 

� inlet  K fully developed flow property 

Superscript L dimensionless variable 

2  SLIP VELOCITY AND TEMPERATURE JUMP 
Due to velocity and temperature discontinuities on boundary, 

the fluid particles adjacent to the solid surface no longer attain 

the velocity and temperature of the solid surface. Therefore, the 

fluid particles have a tangential velocity, which is the slip 

velocity and a finite temperature difference, which is the 

temperature jump, at the solid surface. Using first order slip 

boundary conditions, the slip velocity and temperature jump are 

respectively expressed as [25] 

5M � N O %&%& ���� PQ5QARS (1) 

;M O ;S � N O %'%'
N@
 T @ ����7� PQ;QARS (2) 

where 5M and U;M are the velocity and temperature of the gas at 

the wall, respectively, ;S is the wall temperature, A is the 

normal direction exiting the wall, %& is the tangential 

momentum accommodation coefficient and %' is the thermal 

accommodation coefficient. The accommodation coefficients 

depend on various parameters that affect surface interaction, 

such as the magnitude and the direction of the velocity. It is 

shown that these coefficients are reasonably constant for a 

given gas and surface combination [26]. For light gases the 

accommodation coefficients may differ significantly from unity, 

while for heavy gases they are close to unity. If one deals with a 

sufficiently heavy gas and with an ordinarily contaminated 

surface, one may assume the values of accommodation 

coefficients to be unity [27]. According to Hadjiconstantinou 

[28], for most engineering applications the values of 

accommodation coefficients are close to unity. 

3 MATHEMATICAL FORMULATION 
The laminar hydrodynamically fully developed forced 

convection in a slit microchannel is considered. Geometry of 

the physical problem with the coordinate system is shown in 

Fig. 1. Because of symmetry, the analysis is restricted to the 

upper half domain of the channel. The fully developed velocity 

profile in dimensionless form can be determined from the 

momentum equation by employing the velocity slip condition, 

which modifies the Hagen-Poiseuille velocity profile, and the 

resulting profile becomes 

5LV>LW � XN Y
 T Z N O %&%& �� O >L�

 T 
N N O %&%& �� [ (3) 

in which >L � > �	  , 5L � 5 �	  and � is the mean velocity. 
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Fig. 1 Schematic of the slit microchannel and coordinate 

system. 

3.1 First Law Analysis 
It is assumed that temperature of the fluid entering the channel 

is uniform at ; � ;\. Neglecting the axial conduction, the 

energy equation may be written as 

5 Q;Q= � 9 Q�;Q>� T 8�� P]5]>R�
 (4) 

and relevant boundary conditions are 

PQ;Q>RV^0\W � � (5a) 

+ PQ;Q>RV^0�W � � (5b) 

;V\0_W � ;\ (5c) 

In order to generalize the solution, the energy equation and 

relevant boundary conditions are made dimensionless, using the 

following dimensionless parameters, besides those introduced 

previously 

B � ; O ;\��+ UUU0UUUU=L � =:�7��� (6) 

The energy equation then is modified into the following 

dimensionless form  

X `
 T Z N O %&%& �� O >L�a
XN `
 T 
N N O %&%& ��a QBQ=L

� Q�BQ>L� T b��`
 T 
N N O %&%& ��a� >L�
 

(7) 

where the Brinkman number is defined as 

�� � �����  (8) 

The Brinkman number is the criterion which shows the 

importance of viscous dissipation relative to the other terms of 

the energy equation. The thermal boundary conditions in the 

dimensionless form are written as   

P QBQ>LRV^L0\W � � (9a) 

P QBQ>LRV^L0"W � 
 (9b) 

BV\0_LW � � (9c) 

Since the boundary conditions are non homogenous, therefore, 

a new variable C is introduced, such that  CV=L0 >LW � BV=L0 >LW O BcV=L0 >LW (10) 

where the fully developed temperature profile is simply derived 

as   

BcV=L0 >LW � �"N d>L� O 
e O ��
N d>Lf O 
e
T �
 `�"X O ��
ga O �f `�"
g O ��hXa
T 
h ijj

k
 T X��`
 T 
N N O %&%& ��a�lmm
n =L 

(11) 

with 

PQBcQ>L RV^L0\W � � (12a) 

PQBcQ>L RV^L0"W � 
 (12b) 

where 

 

�" � 
 T Z N O %&%& ��

 T 
N N O %&%& �� ijj

kXN T b��N `
 T 
N N O %&%& ��a�lmm
n
 

 

�� � XN `
 T 
N N O %&%& ��a T b��`
 T 
N N O %&%& ��a�

T b��N `
 T 
N N O %&%& ��a
 

 

;\ N� 
= 

> � 

� 
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�
 � X `
 T Z N O %&%& ��a
N `
 T 
N N O %&%& ��aUUUUUUU0UUUUUUUU�f

� XN `
 T 
N N O %&%& ��a 

(13) 

The following equation system, which is obtained after the 

substitution of B � C T Bc into the energy equation, is 

satisfied by C  

X `
 T Z N O %&%& �� O >L�a
XN `
 T 
N N O %&%& ��a QCQ=L � Q�CQ>L� (14a) 

PQCQ>LRV^L0\W � � 
(14b) 

PQCQ>LRV^L0"W � � 
(14c) 

CV\0_LW � OBcV\0_LW (14d) 

The finite integral transform method [29], a straightforward and 

very general technique for the solution of Graetz type channel 

flow problems, is applied to solve the present heat transfer 

problem. To begin with, an integral transform pair is developed 

by considering an eigenvalue problem appropriate for the 

present problem. Next, by transformation, the partial derivative 

with respect to >L is removed from Eq. (14a), reducing it to an 

ordinary differential equation. Then the resulting ODE is solved 

subject to the transformed initial condition. Finally, C is 

immediately obtainable from the inversion formula. Based on 

the method of separation of variables, an appropriate 

eigenvalue problem is given by   

]�E]>L� T ?&� P
 T Z N O %&%& �� O >L�R E � � (15a) 

P]E]>LRV\W � � (15b) 

P]E]>LRV"W � � (15c) 

where EV?&0 >LW’s and ?&’s are the eigenfunctions and 

eigenvalues, respectively. Since the above eigenvalue problem 

constitutes a Sturm-Liouville problem, the eigenfunctions 

satisfy the following orthogonality condition 

o P
 T Z N O %&%& �� O >L�R EV?&0 >LWEV?p0 >LW]>L"
\ � q �UUUUUUUUUUU�V?&Wr U UUUstuU� v �UUUstuU� � � 

(16) 

where the normalization integral �V?&W is calculated from the 

following formula 

�V?&W � o P
 T Z N O %&%& ��"
\ O >L�R �EV?&0 >LW��]>L 

(17) 

Consequently, the integral transform pair with respect to the >L 

variable is defined as 

Transform: 

DV?&0 =LW � o P
 T Z N O %&%& ��"
\ O >L�R EV?&0 >LWCV=L0 >LW]>L 

(18) 

Inversion: 

CV=L0 >LW � w EV?&0 >LW�V?&Wc
&x" DV?&0 =LW (19) 

The next step in the solution is solving the eigenvalue problem 

by the method of Frobenius. Assuming the function EV?&0 >LW 

to be a power series gives  

EV?&0 >LW � w yzV?&W>Lzc
zx\  (20) 

From the first boundary condition of eigenvalue problem (15), 

it is evident that y" � �. After substituting the series (20) into 

Eq. (15a), we obtain 

y� � O ?&� `
 T Z N O %&%& ��aN y\ 
 

yz �
{||
}
||~

�UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUt]]U� � X
?&��V� O 
W -yz�f rUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

rOyz�� P
 T Z N O %&%& ��R� UUUUUUUUUU����U� � $
rU 

(21) 

y\ will appear as an additive constant at all steps. Hence, 

without loss of generality, we can assume y\ to be 1 as it will 

not affect the shape of the temperature profile and gradients at 

the wall. So, EV?&0 >LW and its derivative with respect to >L can 

be written as  
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EV?&0 >LW � 
 T y�>L� T yf>Lf T � (22a) 

]EV?&0 >LW]>L � Ny�>L T $yf>L
 T � 
(22b) 

The second boundary condition of eigenvalue problem, Eq. 

(15c), is used to obtain eigenvalues. By substituting Eq. (22b) 

into Eq. (15c), we come up with 

w �yz
c

zx�0f0� � � (23) 

Equation (23) may be rewritten by combining the coefficients 

of the terms containing the same power of ?& as  

w H�?��c
�x" � H"?� T H�?f T � � � (24) 

By numerically solving Eq. (24), the eigenvalues, ?&’s  are 

obtained. After solving the eigenvalue problem, we now take 

the integral transform of Eq. (14a) by the application of the 

transform (18). The transformation process starts with the 

operation on both terms of Eq. (14a) by the operator � EV?&0 >LW"\ ]>L to obtain  XXN `
 T 
N N O %&%& ��a o P
 T Z N O %&%& ��"
\

O >L�R EV?&0 >LW QCQ=L ]>L

� o EV?&0 >LW Q�CQ>L� ]>L"
\  

(25) 

The term in the RHS of Eq. (25) is evaluated by integrating it 

by parts twice and utilizing the eigenvalue problem and the 

dimensionless boundary conditions of Eq. (14). Next, using the 

transform formula, we can obtain the following ordinary 

differential equation 

]D&]=L T XN `
 T 
N N O %&%& ��aX ?&� D& � � 
(26) 

The solution to Eq. (26) is given by D& � �&����^L
 (27) 

where 

�& � XN `
 T 
N N O %&%& ��aX ?&�  
(28) 

and �& which is the integral transformation of the initial 

condition has the following form 

�& � O o P
 T Z N O %&%& �� O >L�R ��"N d>L� O 
e"
\

O ��
N d>Lf O 
e T �
 `�"X O ��
ga
O �f `�"
g O ��hXa� EV?&0 >LW]>L 

(29) 

Hence, the transformed C can be written as     

D&
� O �o P
 T Z N O %&%& �� O >L�R ��"N d>L� O 
e"

\
O ��
N d>Lf O 
e T �
 `�"X O ��
ga
O �f `�"
g O ��hXa� EV?&0 >LW]>L� ��
�`"�"���,�,� �pa
 ��� ^L

 
(30) 

By introducing Eq. (30) into the inversion formula, CV=L0 >LW 

becomes    

CV=L0 >LW
� O w EV?&0 >LW� `
 T Z N O %&%& �� O >L�a �EV?&0 >LW��]>L"\

c
&x" �o P
"

\
T Z N O %&%& �� O >L�R ��"N d>L� O 
e O ��
N d>Lf O 
e
T �
 `�"X O ��
ga
O �f `�"
g O ��hXa� EV?&0 >LW]>L� ��
�`"�"���,�,� �pa
 ��� ^L

 

(31) 

Finally, the temperature distribution is obtained by adding Bc 

to C. Once the temperature distribution is obtained, the 

quantities of physical interest, including the bulk temperature of 

the fluid and the heat transfer rate can be obtained. The 

dimensionless bulk temperature can be expressed as   

B� � o 5LV>LWBV=L0 >LW]>L"
\  (32) 
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The heat transfer rate can be expressed in terms of the local 

Nusselt number as 

�5^ � (^��+ � ���+V;S O ;�W
� $BM O B� T N O %'%' Z@
 T @ ��7�  

(33) 

 

3.2 Second Law Analysis 
Entropy is generated due to the presence of irreversibility, and 

entropy generation is adopted as a quantitative measure of the 

irreversibility associated with a process. Flow and heat transfer 

processes inside the microchannel are irreversible. The non-

equilibrium conditions arise due to the exchange of energy and 

momentum within the fluid and at solid boundaries, thus 

resulting in entropy generation. A part of the entropy 

production is due to the heat transfer in the direction of finite 

temperature gradients and the other part of entropy production 

arises due to the fluid friction. According to Bejan [20], the 

volumetric rate of entropy generation can be derived as   

./ � +;G� PQ;Q>R� T �;G P]5]>R�
 (34) 

where ;G is the absolute reference temperature. Equation (34) 

can be made dimensionless to get entropy generation number ��: 

�� � ././01 � P QBQ>LR� T ��F P]5L]>LR� � ��� T �,, (35) 

where the dimensionless temperature difference F and the 

characteristic entropy generation rate ./01 are as follows 

F � ��+;G (36a) 

./01 � ��+;G� (36b) 

The ratio of Brinkman number to dimensionless temperature 

difference �� �	  is known as the group parameter. The group 

parameter is an important dimensionless number for 

irreversibility analysis. It determines the importance of viscous 

effects [20] and cannot be neglected in real flow situations. On 

the RHS of Eq. (35), ��� represents entropy generation due to 

heat transfer and �,, is the fluid friction contribution to 

entropy generation. Using dimensionless velocity and 

temperature distributions, entropy generation number becomes 

��V=L0 >LW
� �O w ]EV?&0 >LW]>L� `
 T Z N O %&%& �� O >L�a �EV?&0 >LW��]>L"\

c
&x"

T Z N O %&%& �� O >L�R ��"N d>L� O 
e O ��
N d>Lf O 
e
T �
 `�"X O ��
ga
O �f `�"
g
O ��hXa� EV?&0 >LW]>L� ��
�`"�"���,�,� �pa
 ��� ^L T �">L

O ��X >L
�
�

T b ��F`
 T 
N N O %&%& ��a� >L�
 

(37) 

Note that QC Q	 >L vanishes at =L � K, so, the entropy 

generation number of fully developed flow ��0c will be in the 

following form   ��0cV>LW � `�">L O ��X >L
a�

T b ��F`
 T 
N N O %&%& ��a� >L�
 

(38) 

The average dimensionless entropy generation over the cross 

section of the microchannel can be computed by the following 

integration   

��034 � � ��V=L0 >LW]>L"\ � ]>L"\ � o ��V=L0 >LW]>L"
\  (39) 

In many engineering designs and energy optimization 

problems, the contribution of heat transfer entropy ��� to 

overall entropy generation rate �� which is known as Bejan 

number �� is needed. The Bejan number is so defined 

mathematically as 

�� � �����  (40) 

Clearly, the Bejan number ranges from � to 
. �� � � is the 

limit where the irreversibility is dominated by fluid friction 

effects and �� � 
 corresponds to the limit where the 

irreversibility due to heat transfer by virtue of finite 

temperature differences dominates. The contributions of both 

heat transfer and fluid friction to entropy generation are equal 

when �� � 
 N	 . Similar to entropy generation number, the 

fully developed Bejan number ��c may be written as   
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��cV>LW�
� `�">L O ��X >L
a�

`�">L O ��X >L
a� T b ��F`
 T 
N N O %&%& ��a� >L�
 (41) 

4  RESULTS AND DISCUSSION 
The Knudsen number, the Brinkman number and the group 

parameter are the main parameters governing thermal transport 

characteristics in laminar slip flow forced convection through 

slit microchannels. Here, their interactive effects on transverse 

distributions of velocity and temperature and finally on entropy 

generation are analyzed. Without loss of generality, unless 

otherwise stated, the results are obtained using 7� � ��� and @ � 
�$. Also through this section the values of accommodation 

coefficients are assumed to be unity [9].  

Figure 2 depicts transverse distribution of dimensionless 

velocity at different values of Knudsen number. As a result of 

slip conditions, slip velocity occurs at the wall. An increase in �� results in an increase in the slip velocity at the wall, while 

according to mass conservation, the maximum velocity 

decreases. Note that as Knudsen number increases the velocity 

gradient becomes smaller, especially at the wall at which the 

maximum decrease occurs. Figure 3 shows the comparison 

between local Nusselt numbers obtained in present study 

against those given by Aydin and Avci [18] for �� � ���Ng and 7� � ���
 at different values of Brinkman number. It should be 

pointed out here that the definitions of dimensionless axial 

parameter, Knudsen number and Brinkman number in their 

study are different from ours. As seen, the results show quite 

good agreement.  

 

 

Fig. 2.  Transverse distribution of dimensionless velocity at 

different values of Knudsen number. 

 

Fig. 3 Comparison between local Nusselt numbers obtained in 

present study against those given by Aydin and Avci [18]. 

 
Fig. 4 Transverse distribution of dimensionless temperature in 

the absence of viscous heating. 

Transverse distribution of dimensionless temperature of 

fully developed flow at different Knudsen numbers in the 

absence of viscous heating is illustrated in Fig. 4. As Knudsen 

number increases the dimensionless temperature decreases. The 

maximum and minimum decrements take place at the wall and 

centerline, respectively. Note that although the dimensionless 

temperature decreases, the dimensionless bulk temperature 

remains unchanged. This is because the viscous heating is 

absent and the total energy delivered to the flow by the wall is 

not dependent on Knudsen number. Transverse distribution of 

dimensionless temperature at different axial positions in the 

absence of viscous heating for no slip conditions is presented in 

Fig. 5. As =L increases, the dimensionless temperature 

increases, which is an expected behavior. The existence of core 

flow which has not yet felt the presence of wall is seen for =L � ����N and also at a smaller region for =L � ����$. 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

y
*

u*

5

6

7

8

9

10

11

12

0 0.005 0.01 0.015 0.02 0.025 0.03

N
u

x

x*

0

0.2

0.4

0.6

0.8

1

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

y
*

�

Kn � 0.00 

Kn � 0.02 

Kn � 0.04 

Kn � 0.06 

Kn � 0.08 

Kn � 0.10 

Pr � 0.71 

Kn � 0.025 

�uU � UO��NU
�uU � U���U�uU � U��NU

Aydin and Avci [18] 

Present study 

�uU � U� �L � ���gU

#�U � U����U#�U � U���gU#�U � U��
�U



 9 Copyright © 2010 by ASME 

 

Fig. 5  Transverse distribution of dimensionless temperature at 

different axial positions in the absence of viscous heating. 

In Fig. 6 transverse distribution of dimensionless 

temperature of fully developed flow at different values of 

Brinkman number is shown. Positive values of Brinkman 

number correspond to the wall cooling case where heat is 

transferred from the wall to the fluid, while the opposite is true 

for negative values of Brinkman. From the Figure, one can see 

that increasing values of Brinkman number lead to greater 

values of dimensionless temperature. This is due to the fact that 

as Brinkman number increases the energy generation due to 

viscous heating increases. 

 

Fig. 6 Transverse distribution of dimensionless temperature 

at different values of Brinkman number. 

Transverse distribution of �� for �� � ��N, �� � ���g and �� �	 � ��Ng at different axial positions is depicted in Fig. 7. 

The distribution of �� at =L � K is obtained using Eq. (38). 

Entropy generation number attains its maximum value at the 

wall due to the presence of high velocity and temperature 

gradients. At centerline, at which velocity and temperature 

gradients are zero, the entropy generation number attains its 

minimum magnitude which is zero. As an expected behavior, 

the entropy generation number increases with increasing =L. At 

the entrance the temperature distribution is uniform, except at 

the wall. So, the entropy generation is mainly due to fluid 

friction. As =L is increased the extent of the core flow will 

shrink which this consequently leads to greater values of ��. 

The corresponding Bejan number distribution for the above 

mentioned case is presented in Fig. 8. The Bejan number is 

greater for greater values of dimensionless axial coordinate. 

The Bejan number for =L � ����N is zero in the vicinity of the 

centerline. This is the core flow which has not yet felt the 

presence of wall and the temperature is still uniform at ;\. For =L � ����N, the Bejan number attains its maximum value at the 

wall and reaches a local minimum at centerline. For greater 

values of =L such as =L � ����g, the point of maximum Bejan 

number shifts a little to centerline, until it reaches centerline at 

fully developed conditions. Also the point of minimum Bejan 

number moves from centerline to the wall. 

    

Fig. 7  Transverse distribution of �� at different axial positions. 

 

Fig. 8 Transverse distribution of Bejan number at different 

axial positions. 
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Figure 9 illustrates transverse distribution of ��0c for �� � ��N and �� �	 � ��Ng at different Knudsen numbers. As 

seen, to increase Knudsen number is to decrease entropy 

generation due to decreasing the velocity and temperature 

gradients. The maximum decrement takes place at the wall at 

which the maximum decrement of velocity slope occurs. The 

corresponding Bejan number distribution for the above 

mentioned case is illustrated in Fig. 10. Increasing Knudsen 

number leads to greater values of Bejan number which implies 

that the effect of Knudsen number on velocity distribution is 

greater than temperature distribution. The Bejan number 

distribution for high values of Knudsen number such as �� � ��
 is nearly uniform. This is due to the fact that slip 

conditions tend to unify the temperature and velocity profiles. 

  

Fig. 9 Transverse distribution of ��0� at different Knudsen 

numbers. 

 

Fig. 10 Transverse distribution of fully developed Bejan 

number at different Knudsen numbers. 

Figure 11 shows transverse distribution of ��0c for �� ���N and �� � ���g at different values of the group parameter. 

As expected, increasing values of the group parameter lead to 

greater values of ��0c due to increasing viscous effects. The 

maximum value of ��0c occurs at the wall, except for �� �	 ��. In the absence of the fluid friction contribution to entropy 

generation, the point of maximum entropy generation number 

coincides with the point of maximum temperature gradient 

which for �� � ��N and �� � ���g does not occurs at the wall. 

Transverse distribution of fully developed Bejan number at 

different values of the group parameter for �� � ��N and �� � ���g is depicted in Fig. 12. For �� �	 � �, the fluid 

friction contribution to entropy generation is zero. Bejan 

number is independent of transverse coordinate and equal to its 

maximum value which is unity. For other values of �� �	 , the 

maximum and minimum values of Bejan number occur at 

centerline and the wall, respectively. A higher �� �	  leads to a 

lower value of Bejan number due to increasing fluid friction 

effects.  

 

Fig. 11. Transverse distribution of ��0� at different group 

parameters. 

 

Fig. 12 Transverse distribution of fully developed Bejan 

number at different group parameters. 
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Downstream variation of average entropy generation number at 

different Knudsen numbers for �� � ��N and �� �	 � ��Ng is 

presented in Fig. 13. It can be seen that to increase Knudsen is 

to decrease average entropy generation number due to 

decreasing temperature and velocity slopes. The decrease of 

fully developed average entropy generation number for �� � ��
 with respect to no slip conditions is more than h��. 

Moreover, ��034 increases with increasing values of =L, until it 

reaches a constant value at fully developed conditions. The 

reason is that as flow is thermally being developed the region 

affected by the wall heat flux will grow and consequently attain 

greater temperature gradients. Figure 14 shows variation of 

average entropy generation number in the entrance region at 

different Brinkman numbers for for �� � ���g and �� �	 ���Ng. A greater Brinkman number is accompanied by greater 

magnitudes of average entropy generation number, except at the 

entrance. At the entrance, entropy generation is mainly due to 

fluid friction effects and since viscous heating only affects 

temperature distribution, its effect on entropy generation is 

negligible. Effects of �� �	  on average entropy generation 

number in the entrance region is illustrated in Fig. 15. 

Increasing �� �	  results in higher magnitudes of ��034. The 

increment of average entropy generation number due to 

increasing values of the group parameter is constant for each 

axial position. This is because of linear dependency of entropy 

generation to �� �	 . 

 

Fig. 13 Downstream variation of average entropy generation 

number at different Knudsen numbers. 

5  CONCLUSIONS  
We have analytically studied entropy generation in thermally 

developing forced convection through a slit microchannel. The 

analysis included the influence of the viscous dissipation in 

addition to the slip velocity and temperature jump prescriptions 

at the wall. Using fully developed velocity profile, the energy 

equation was solved by means of integral transform. An 

expression for entropy generation number in the form of an 

infinite series was obtained. For fully developed conditions, 

closed form solutions were presented for entropy generation 

number and Bejan number. From the results it is disclosed that 

the entropy generation decreases as Knudsen number increases. 

This is due to the fact that slip conditions tend to unify the 

velocity and temperature profiles. Depending of the value of 

flow parameters, the decrease of average entropy generation 

number for �� � ��
 with respect to no slip conditions may be 

even more than h��. The effect of increasing values of 

Brinkman number and the group parameter is to increase 

entropy generation. Also it is found that the average entropy 

generation number over the cross section of channel increases 

with increasing values of axial coordinate, until it reaches a 

constant value at fully developed conditions. 

 

Fig. 14  Variation of average entropy generation number in the 

entrance region at different Brinkman numbers. 

 
Fig. 15 Effects of �� �	  on average entropy generation number 

in the entrance region.  
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